1
|
He Z, Gao J, Chen X, Ru Y, Zhang D, Pan X. Efficient recovery of heavy metals and selenium from wastewater using granular sludge: The crucial role of glutathione (GSH). WATER RESEARCH 2025; 270:122826. [PMID: 39602962 DOI: 10.1016/j.watres.2024.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Microbial technology offers an effective method for treating heavy metals and selenium (Se) in wastewater, yet the recovery of these valuable elements is often overlooked. This study introduces a glutathione (GSH)-enhanced granular sludge technology for the removal and recovery of heavy metals and Se from wastewater. Using the new technology, the removal rates of copper (Cu), cadmium (Cd), and Se from wastewater reached 99.4-99.99%, while the recovery rates reached 73.2-87.9%. Both long-term reactor operation and short-term stimulation experiments indicated that GSH substantially increased the residual fraction of Cu, Cd, and Se in the sludge. This residual fraction was identified as metal selenides (MSe), composed of Cu1.08Se (75.4 ± 1.8%) and CdSe (15.4 ± 1.0%). The increased abundance and significant upregulation of GSH-related genes, including gshA, gshB, and gor, as well as the indispensable roles of GSH, glutathione reductase (GorA), and NADPH in the in vitro synthesis of MSe, demonstrated that the GSH-mediated Painter-type reaction was the primary pathway for MSe synthesis in the sludge. The biosynthesized MSe was efficiently extracted and recovered from the final sludge, and the extract showed high catalytic activity in pollutant degradation. Given the widespread presence of GSH in diverse microorganisms, the GSH-mediated mechanism for MSe synthesis is likely to occur in various environments contaminated with heavy metals and Se.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Jingxun Gao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Xin Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Yulong Ru
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, PR China.
| |
Collapse
|
2
|
Zhang T, Gao Z, Zhang J, Shi R, Liu Y, Wang J, Zhu Y. Toward high-performance rechargeable magnesium batteries with a Cu 2Se-CTAB nanoparticle cathode and Mg[B(HFIP) 4] 2/DME electrolyte. Chem Commun (Camb) 2025; 61:2818-2821. [PMID: 39838892 DOI: 10.1039/d4cc06041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Developing advanced cathode materials effectively enhances the electrochemical performance of rechargeable magnesium batteries (RMBs). Herein, we designed a CTAB-assisted hydrothermal method to construct Cu2Se nanoparticles as the cathode and Mg[B(HFIP)4]2/DME as the electrolyte shows high specific capacity and great cycling performance in RMBs.
Collapse
Affiliation(s)
- Tengteng Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Zihang Gao
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Rui Shi
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.
| |
Collapse
|
3
|
Li S, Song Q, Fang C, Lu Y, Ding X, Liu T, Zhang J, Xu FJ. High-Performance Flexible and Symmetric Supercapacitors Based on Micro-Flower-Like MnSe@Ti 3C 2T x Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409130. [PMID: 39580692 DOI: 10.1002/smll.202409130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Flexible supercapacitors, renowned for their exceptional power density and cycling stability, are a focus in the field of energy storage. Ti3C2Tx MXene is a promising electrode material for supercapacitors owing to its excellent metallic conductivity. However, its stacking layered structure limits device performance on specific capacitance, operating voltage, and energy density. Herein, a MnSe@Ti3C2Tx heterostructure is developed to enhance the electrochemical performance of Ti3C2Tx-based electrode materials. With the solvothermal synthesis method, MnSe nanosheets are in situ grown on Ti3C2Tx surface to form micro-flower-like MnSe@Ti3C2Tx heterostructures by adjusting the ratio of ethanolamine solvent and the amount of Ti3C2Tx. The specific capacitance of the optimized heterostructure (E3/MnSe@Ti3C2Tx-45) is as high as 721.4 F g-1 at 1 A g-1, approximately ten times higher than that of pure Ti3C2Tx. The MnSe@Ti3C2Tx flexible symmetric supercapacitor (MT-FSC) based on E3/MnSe@Ti3C2Tx-45 exhibits a wide working voltage window of 1.2 V and a large energy density of 28.68 Wh kg-1 at 308.23 W kg-1. The capacitance retention rate keeps 90.77% after 4000 charge-discharge cycles. Furthermore, MT-FSC can power LEDs even under large-angle (90°) bending. This heterostructure electrode material not only improves the electrochemical performance of Ti3C2Tx-based flexible supercapacitors but also offers a robust energy supply for flexible wearable electronic devices.
Collapse
Affiliation(s)
- Siyan Li
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Song
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunlei Fang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yong Lu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ting Liu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jicai Zhang
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Zhang L, Guo J, Yuan M, Xu Y, Pu Z, Tan C, Wang Q, Xiong X. Microplasma-induced in situ rapid synthesis of CoSe nanosphere@N-doped polymeric carbon dots derived from ZIF-67 for highly sensitive dopamine detection. Anal Chim Acta 2024; 1329:343236. [PMID: 39396300 DOI: 10.1016/j.aca.2024.343236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Designing a fast and sensitive electrochemical sensing platform to achieve selective quantitative detection of dopamine (DA) is a great challenge. Combining transition metal selenides (TMSs) with a variety of conductive carbonaceous materials is one of the effective strategies to improve the electrocatalytic activity of TMSs. However, most of the reported preparation methods of TMSs/carbon-based composite nanomaterials need to be annealed at a high temperature for a long time, which does not meet the requirements of sustainable development. Therefore, it is of great significance to explore an energy-efficient and fast method to prepare these compounds. RESULTS In this work, CoSe nanosphere@nitrogen-doped polymeric carbon dots are rapid prepared using ZIF precursor by simple dielectric barrier discharge (DBD) microplasma-induced on carbon cloth (CoSe NSs@N-PCDs/CC) for the first time. Owing to the fact that CoSe can promote rapid proton transfer, N-CDs has a high specific surface area, rich functional groups and electrical conductivity, this electrode exhibits highly sensitive non-enzymatic electrochemical sensing performance for DA detection. The linear range and detection limit are 0.1 μM-50 μM and 40.2 nM, respectively, and it have been successfully applied to the determination of DA levels in real human serum samples. Theoretical DFT calculations show that the most efficient interaction with DA on the surface of CoSe (101) can promote electrochemical reactions and catalyze DA oxidation. SIGNIFICANCE Using ZIF as precursor, CoSe NSs@N-PCDs/CC electrochemical electrode was synthesized in situ by simple and energy-saving DBD microplasma. CoSe NSs can effectively prevent the aggregation of function-rich N-PCDs and significantly improve the electrocatalytic activity of the composite. The mechanism of high selectivity of CoSe NSs@N-PCDs/CC electrode to DA was studied by DFT calculation. This work provides a new idea for the fast and green synthesis of transition metal and carbon-based nanomaterials by microplasma.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Junchun Guo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ming Yuan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Yao Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Ziyu Pu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Chao Tan
- Key Lab of Process Analysis and Control of Sichuan Universities, Yibin University, Yibin, 644000, China
| | - Qian Wang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Xiaoli Xiong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
5
|
Yue W, Ye Z, Liu C, Xu Z, Wang L, Cao X, Yamashita H, Zhang J. Enhanced Photocatalytic Hydrogen Evolution Activity Driven by the Synergy Between Surface Vacancies and Cocatalysts: Surface Reaction Matters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407092. [PMID: 39319636 DOI: 10.1002/advs.202407092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/19/2024] [Indexed: 09/26/2024]
Abstract
The incorporation of defects and cocatalysts is known to be effective in improving photocatalytic activity, yet their coupled contribution to the photocatalytic hydrogen evolution process has not been well-explored. In this study, We demonstrate that the incorporation of S vacancies and NiSe can contribute to the improvement of charge separation efficiency via the formation of a strong electric field within the bulk ZnIn2S4 (ZIS) and on its surface. More importantly, We also demonstrate that the synergy of S vacancies and NiSe benefits the overall hydrogen evolution activity by facilitating the H2O adsorption and dissociation process. This is particularly important for hydrogen evolution taking place under alkaline conditions where the proton concentration is low, allowing ZISv-NiSe (containing abundant S vacancies) to outperform ZIS-NiSe under alkaline conditions. In contrast, under acid conditions, since there are already sufficient amounts of protons available for reaction, the hydrogen evolution activity became governed by the hydrogen adsorption/desorption process rather than the H2O dissociation process. This leads to ZIS-NiSe exhibiting higher activity than ZISv-NiSe due to its more favorable hydrogen adsorption energy. The findings thus provide insights into how defect and cocatalyst modification strategies can be tailor-made to improve hydrogen evolution activity under different pH conditions.
Collapse
Affiliation(s)
- Wenhui Yue
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Cong Liu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zehong Xu
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Lingzhi Wang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiaoming Cao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Jinlong Zhang
- Key Laboratory for Advanced Materials, Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| |
Collapse
|
6
|
Li Y, Deng L, Jiang Y, Jiang X. Hydrothermal synthesis and characterization of samarium molybdate nanosheets modified multi-walled carbon nanotubes: Real-time analysis of dimetridazole in environmental and biological samples. CHEMOSPHERE 2024; 367:143616. [PMID: 39447769 DOI: 10.1016/j.chemosphere.2024.143616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/08/2024] [Accepted: 10/22/2024] [Indexed: 10/26/2024]
Abstract
Dimetridazole (DMZ) is commonly used as a veterinary drug, resulting in high emissions and environmental pollution and DMZ residues are carcinogenic, genotoxic, and mutagenic to humans. Therefore, it is essential to construct a fast, sensitive and simple sensor to monitor DMZ. In this study, samarium molybdate nanosheets modified multi-walled carbon nanotube composites (SmM/MWCNT) were synthesized to modify GCE for detecting DMZ. The SmM/MWCNT material was also characterized by various analytical and spectroscopic techniques, such as FE-SEM, HRTEM, FT-IR, Raman spectroscopy, XRD, elemental mapping and XPS, to demonstrate the successful synthesis of the composite. Besides, the electrochemical behavior of SmM/MWCNT/GCE for DMZ was also investigated using CV and DPV, and the modified electrode showed good electrochemical sensing performance for DMZ with a low detection limit (0.08 μM), a wide linear range (0.1∼1000 μM), and excellent selectivity. Finally, the SmM/MWCNT/GCE was successfully applied to detect DMZ in environmental and biological samples, and satisfactory recoveries (95%∼105%) were obtained. To the best of our knowledge, the synthesis of SmM/MWCNT and its application in electrochemical sensors are reported for the first time, which demonstrates that it can provide a new route for real-time monitoring of environmental pollutants.
Collapse
Affiliation(s)
- Yanting Li
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China; Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Lihua Deng
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China
| | - Yaxi Jiang
- Department of Pharmacy of Guang'an People's Hospital, Sichuan, 638550, China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
7
|
Tang G, Tang W, Li Q, Tian B, Zhang X, Liang J, Wu W. Boosting the Electrical Transfer by Molybdenum Doping for Robust and Flexible NiSe-Based Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402609. [PMID: 39075935 DOI: 10.1002/smll.202402609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/15/2024] [Indexed: 07/31/2024]
Abstract
NiSe is a promising electrode material for enhancing the energy density of supercapacitors, but it faces challenges such as sensitivity to electrolyte anions, limited specific capacity, and unstable cycling. This study employs a strategy of metal atom doping to address these issues. Through a hydrothermal reaction, Mo-doped NiSe demonstrates significant improvement in electrochemical performance, exhibiting high capacity (799.90 C g-1), splendid rate performance, and excellent cyclic stability (90% capacity retention). The introduction of Mo induces charge redistribution in NiSe, leading to a reduction in the band gap. Theoretical calculation reveals that Mo doping can effectively enhance the electrical conductivity and the adsorption energy of NiSe. A flexible printed hybrid Mo-doped NiSe-based supercapacitor is fabricated, demonstrating superior electrochemical performance (367.04 mF cm-2) and the ability to power timers, LEDs, and toy fans. This research not only deepens the understanding of the electrochemical properties of metal-doped NiSe but also highlights its application potential in high-performance supercapacitors.
Collapse
Affiliation(s)
- Guilin Tang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Weinan Tang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Quancai Li
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Bin Tian
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Xinyu Zhang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Liang
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Wu
- Laboratory of Printable Functional Materials and Printed Electronics, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
8
|
Hao Y, Lv Z, Dong W, Hu K, Qin P, Huang F. Integrating anti-aggregation Ta-Se motifs into copper selenide for fast and robust sodium-ion storage. Chem Commun (Camb) 2024; 60:11172-11175. [PMID: 39291804 DOI: 10.1039/d4cc03585b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
We report a novel bimetallic selenide Cu3TaSe4 anode for sodium-ion batteries synthesized via a one-step solid-state method. The integration of Ta-Se motifs into copper selenide forms a cubic grid structure that prevents copper atom aggregation and mitigates electrode failure. Cu3TaSe4 exhibits a high specific capacity of 305 mAh g-1 at 1 C, excellent rate performance of 286 mAh g-1 at 50 C, and superior cycling stability with 272 mAh g-1 after 3500 cycles at 20 C. This work demonstrates the potential of bimetallic selenides in enhancing sodium-ion battery performance.
Collapse
Affiliation(s)
- Yiran Hao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuoran Lv
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wujie Dong
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Keyan Hu
- School of Mechanical and Electrical Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China.
| | - Peng Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, P. R. China.
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
9
|
Kekana MTM, Mosuang TE, Ntsendwana B, Sikhwivhilu LM, Mahladisa MA. Notable synthesis, properties and chemical gas sensing trends on molybdenum disulphides and diselenides two-dimensional nanostructures: A critical review. CHEMOSPHERE 2024; 366:143497. [PMID: 39389376 DOI: 10.1016/j.chemosphere.2024.143497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/01/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Evaluation of synthesis methods, notable properties, and chemical gas sensing properties of molybdenum disulphides and diselenides two-dimensional nanosheets is unfold. This is motivated by the fact that the two dichalcogenides have good sensitivity and selectivity to different harmful gases at ambient temperatures. Synthesis methods explored include exceptional top-down and bottom-up approaches, which consider physical and chemical compositional inceptions. Mechanical exfoliation in both molybdenum disulphides and diselenides nanosheets demonstrate good crystalline purity with structural alterations under varying stacking conditions. These chalcogenides exhibit low energy band gaps of ±1.80 eV for MoS2 and ±1.60 eV for MoSe2, which reduces with introduction of impurities. Thus, upon doping with other metal elements, a transformation from either n-type or p-type semiconductors is normally observed, leading to tuneable electronic properties. Thus, different gases such as methane, ethanol, toluene, ammonia, nitrogen oxide have been systematically detected using molybdenum disulphide and diselenide based thin films as sensing platforms. This review highlights structural, electronic and morphological characteristics of the two dichalcogenides which influences the sensitivity and selectivity ability for a couple of gases at ambient temperatures. The strategies for enhancing the selectivity by introducing defects, impurities and interfacing with other composites expanding the choice of these gases wider is also discussed in details. The review also provides overviews of challenges and limitations that open new research avenues to further enriching both chalcogenides as flexible, stable and cost effective state-of-the-art chemical gas sensors.
Collapse
Affiliation(s)
- M T M Kekana
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa; Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - T E Mosuang
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa.
| | - B Ntsendwana
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa
| | - L M Sikhwivhilu
- Advanced Materials Division/MINTEK, Private Bag X3015, Randburg, 2125, Gauteng Province, South Africa; Department of Chemistry, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou, 0950, South Africa.
| | - M A Mahladisa
- University of Limpopo, Department of Physics, Private Bag x1106, Sovenga, 0727, South Africa
| |
Collapse
|
10
|
Xu Y, Li S, Yin L, Wu X, Zhang H. Progress on Copper-Based Anode Materials for Sodium-Ion Batteries. Chemphyschem 2024; 25:e202400416. [PMID: 38752794 DOI: 10.1002/cphc.202400416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Indexed: 08/07/2024]
Abstract
Fossil fuels have clearly failed to meet people's growing energy needs due to their limited reserves, potential pollution of the environment, and high costs. The development of cleaner, renewable energy sources as well as secondary batteries for energy storage is imminent, in a modern society where energy demand is soaring. Sodium-ion batteries (SIBs) have become the focus of large-scale energy storage systems as a promising alternative to lithium-ion batteries. The development of SIBs relies on the construction of high performance electrode materials. The design of low cost and high performance anode materials is a key link in this regard. Copper-based anodes are characterized by high theoretical capacity, abundant reserves, low cost and environmental friendliness. A variety of copper-based anode materials, which include cobalt oxides, sulfides, selenides and phosphides, have been synthesized and evaluated in the scientific literature for sodium storage. In detail, the preparation methods, response mechanisms, strengths and weaknesses, the relationship between morphology structure and electrochemical performance are discussed, as well as highlighting strategies to improve the electrochemical performance of copper-based anode materials. Finally, we offer our perspective on the challenges and potential for the development of copper-based anodes as a means of developing practical and high performing SIBs.
Collapse
Affiliation(s)
- Yao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengkai Li
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Linwei Yin
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xia Wu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
11
|
Chen D, Xu Y, Lu J, Tian Y, Li T, Jia P, Wang X, Zhang L, Hou Y, Wang L, Zhang Q, Ye Z, Lu J. Intercalation-Induced Localized Conversion Reaction in h-CuSe for Ultrafast-Rechargeable and Long-Cycling Sodium Metal Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404640. [PMID: 38775475 DOI: 10.1002/adma.202404640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Cathode materials of sodium-based batteries with high specific capacity and fast charge-discharge mode, as well as ultralong reversible cycles at wide applied temperatures, are essential for future development of advanced energy storage system. Developing transition metal selenides with intercalation features provides a new strategy for realizing the above cathode materials. Herein, this work reports a storage mechanism of sodium ion in hexagonal CuSe (h-CuSe) based on the density functional theory (DFT) guidance. This work reveals that the two-dimensional ion intercalation triggers localized redox reaction in the h-CuSe bulk phase, termed intercalation-induced localized conversion (ILC) mechanism, to stabilize the sodium storage structure by forming localized Cu7Se4 transition phase and adjusting the near-edge coordination state of the Cu sites to achieve high reversible capacity and ultra-long cycling life, while allowing rapid charge-discharge cycling over a wide temperature range.
Collapse
Affiliation(s)
- Dongliang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yunkai Xu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Tian
- Zhijiang Lab, Hangzhou, 311121, China
| | - Tongtong Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Peng Jia
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Xu Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liqiang Zhang
- State Key Laboratory of Metastable Materials Science and Technology, School of Materials Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
Li L, Wang S, Peng J, Lai J, Zhang H, Yang J. Transition Metal Selenide-Based Anodes for Advanced Sodium-Ion Batteries: Electronic Structure Manipulation and Heterojunction Construction Aspect. Molecules 2024; 29:3083. [PMID: 38999035 PMCID: PMC11243387 DOI: 10.3390/molecules29133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
In recent years, sodium-ion batteries (SIBs) have gained a foothold in specific applications related to lithium-ion batteries, thanks to continuous breakthroughs and innovations in materials by researchers. Commercial graphite anodes suffer from small interlayer spacing (0.334 nm), limited specific capacity (200 mAh g-1), and low discharge voltage (<0.1 V), making them inefficient for high-performance operation in SIBs. Hence, the current research focus is on seeking negative electrode materials that are compatible with the operation of SIBs. Many studies have been reported on the modification of transition metal selenides as anodes in SIBs, mainly targeting the issue of poor cycling life attributed to the volume expansion of the material during sodium-ion extraction and insertion processes. However, the intrinsic electronic structure of transition metal selenides also influences electron transport and sodium-ion diffusion. Therefore, modulating their electronic structure can fundamentally improve the electron affinity of transition metal selenides, thereby enhancing their rate performance in SIBs. This work provides a comprehensive review of recent strategies focusing on the modulation of electronic structures and the construction of heterogeneous structures for transition metal selenides. These strategies effectively enhance their performance metrics as electrodes in SIBs, including fast charging, stability, and first-cycle coulombic efficiency, thereby facilitating the development of high-performance SIBs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (L.L.); (S.W.); (J.P.); (J.L.); (H.Z.)
| |
Collapse
|
13
|
Asghar A, Khan K, Hakami O, Alamier WM, Ali SK, Zelai T, Rashid MS, Tareen AK, Al-Harthi EA. Recent progress in metal oxide-based electrode materials for safe and sustainable variants of supercapacitors. Front Chem 2024; 12:1402563. [PMID: 38831913 PMCID: PMC11144895 DOI: 10.3389/fchem.2024.1402563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024] Open
Abstract
A significant amount of energy can be produced using renewable energy sources; however, storing massive amounts of energy poses a substantial obstacle to energy production. Economic crisis has led to rapid developments in electrochemical (EC) energy storage devices (EESDs), especially rechargeable batteries, fuel cells, and supercapacitors (SCs), which are effective for energy storage systems. Researchers have lately suggested that among the various EESDs, the SC is an effective alternate for energy storage due to the presence of the following characteristics: SCs offer high-power density (PD), improvable energy density (ED), fast charging/discharging, and good cyclic stability. This review highlighted and analyzed the concepts of supercapacitors and types of supercapacitors on the basis of electrode materials, highlighted the several feasible synthesis processes for preparation of metal oxide (MO) nanoparticles, and discussed the morphological effects of MOs on the electrochemical performance of the devices. In this review, we primarily focus on pseudo-capacitors for SCs, which mainly contain MOs and their composite materials, and also highlight their future possibilities as a useful application of MO-based materials in supercapacitors. The novelty of MO's electrode materials is primarily due to the presence of synergistic effects in the hybrid materials, rich redox activity, excellent conductivity, and chemical stability, making them excellent for SC applications.
Collapse
Affiliation(s)
- Ali Asghar
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Karim Khan
- Additive Manufacturing Institute, Shenzhen University, Shenzhen, China
| | - Othman Hakami
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Waleed M. Alamier
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Syed Kashif Ali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Taharh Zelai
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Muhammad Shahid Rashid
- Department of Physical Sciences, Physics Division, College of Science, Jazan University, Jazan, Saudi Arabia
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, China
| | - Enaam A. Al-Harthi
- College of Science, Department of Chemistry, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Liu H, Ma C, Zhang C, Zhang W, Deng Y, Sun H, Shen X, Yao S. Hybrid Membrane Composed of Nickel Diselenide Nanosheets with Carbon Nanotubes for Catalytic Conversion of Polysulfides in Lithium-Sulfur Batteries. Chemistry 2024; 30:e202303157. [PMID: 38019179 DOI: 10.1002/chem.202303157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 11/30/2023]
Abstract
Lithium-sulfur batteries demonstrate enormous energy density are promising forms of energy storage. Unfortunately, the slow redox kinetics and polysulfides shuttle effect are some of the factors that prevent the its development. To address these issues, the hybrid membrane with combination of nickel diselenide nanosheets modified carbon nanotubes (NSN@CNTs) and utilized Li2 S6 catholyte for lithium sulfur battery. The conductive CNTs facilitates fast electronic/ionic transport, while the polarity of NSN as a strong affinity to lithium polysulfides, effectively anchoring them, facilitating the redox conversion of polysulfide species, and effectively diminishing reaction barriers. The cell with NSN@CNTs delivers the first discharge capacity of 1123.8 mAh g-1 and maintains 786.5 mAh g-1 after 300 cycles (0.2 C) at the sulfur loading 5.4 mg. Its rate capability is commendable, enabling it to sustain a capacity of 559.8 mAh g-1 even at a high discharge rate of 2 C. In addition, its initial discharge capacity can remain 8.33 mAh even at 10.8 mg for duration of 100 cycles. This research indicates the potential application of NSN@CNTs hybrid materials in lithium-sulfur batteries.
Collapse
Affiliation(s)
- Hongtao Liu
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Cuijuan Zhang
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Wenwen Zhang
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuge Deng
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Huayu Sun
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiangqian Shen
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shanshan Yao
- College of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
15
|
Han Q, Zhang W, Zhu L, Liu M, Xia C, Xie L, Qiu X, Xiao Y, Yi L, Cao X. MOF-Derived Bimetallic Selenide CoNiSe 2 Nanododecahedrons Encapsulated in Porous Carbon Matrix as Advanced Anodes for Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6033-6047. [PMID: 38284523 DOI: 10.1021/acsami.3c18236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Transition metal selenides have received considerable attention as promising candidates for lithium-ion battery (LIB) anode materials due to their high theoretical capacity and safety characteristics. However, their commercial viability is hampered by insufficient conductivity and volumetric fluctuations during cycling. To address these issues, we have utilized bimetallic metal-organic frameworks to fabricate CoNiSe2/C nanodecahedral composites with a high specific surface area, abundant pore structures, and a surface-coated layer of the carbon-based matrix. The optimized material, CoNiSe2/C-700, exhibited impressive Li+ storage performance with an initial discharge specific capacity of 2125.5 mA h g-1 at 0.1 A g-1 and a Coulombic efficiency of 98% over cycles. Even after 1000 cycles at 1.0 A g-1, a reversible discharge specific capacity of 549.9 mA h g-1 was achieved. The research highlights the synergistic effect of bimetallic selenides, well-defined nanodecahedral structures, stable carbon networks, and the formation of smaller particles during initial cycling, all of which contribute to improved electronic performance, reduced volume change, increased Li+ storage active sites, and shorter Li+ diffusion paths. In addition, the pseudocapacitance behavior contributes significantly to the high energy storage of Li+. These features facilitate rapid charge transfer and help maintain a stable solid-electrolyte interphase layer, which ultimately leads to an excellent electrochemical performance. This work provides a viable approach for fabricating bimetallic selenides as anode materials for high-performance LIBs through architectural engineering and compositional tailoring.
Collapse
Affiliation(s)
- Qing Han
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Weifan Zhang
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Limin Zhu
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Minlu Liu
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Changle Xia
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lingling Xie
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Xuejing Qiu
- School of Environmental Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yongmei Xiao
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lanhua Yi
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, School of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiaoyu Cao
- Key Laboratory of High Specific Energy Materials for Electrochemical Power Sources of Zhengzhou City, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
16
|
Song Y, Liu L, Li S, Jiang X, Zheng X. CoFeSe 2 @DMSA@FA Nanocatalyst for Amplification of Oxidative Stress to Achieve Multimodal Tumor Therapy. Chembiochem 2024; 25:e202300631. [PMID: 37930640 DOI: 10.1002/cbic.202300631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Nanomedicine has significantly advanced precise tumor therapy, providing essential technical blessing for active drug accumulation, targeted consignment, and mitigation of noxious side effects. To enhance anti-tumor efficacy, the integration of multiple therapeutic modalities has garnered significant attention. Here, we designed an innovative CoFeSe2 @DMSA@FA nanocatalyst with Se vacancies (abbreviated as CFSDF), which exhibits synergistic chemodynamic therapy (CDT) and photothermal therapy (PTT), leading to amplified tumor oxidative stress and enhanced photothermal effects. The multifunctional CFSDF nanocatalyst exhibits the remarkable ability to catalyze the Fenton reaction within the acidic tumor microenvironment, efficiently converting hydrogen peroxide (H2 O2 ) into highly harmful hydroxyl radicals (⋅OH). Moreover, the nanocatalyst effectively diminishes GSH levels and ameliorates intracellular oxidative stress. The incorporation of FA modification enables CFSDF to evade immune detection and selectively target tumor tissues. Numerous in vitro and in vivo investigations have consistently demonstrated that CFSDF optimizes its individual advantages and significantly enhances therapeutic efficiency through synergistic effects of multiple therapeutic modalities, offering a valuable and effective approach to cancer treatment.
Collapse
Affiliation(s)
- Yingzi Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
| | - Lekang Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
| | - Shulian Li
- Linyi Cancer Hospital, Linyi, 276000, China) E-mail: address
| | - Xiaolei Jiang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276000, China
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
| | - Xiuwen Zheng
- Key Laboratory of Advanced Biomaterials and, Nanomedicine in Universities of Shandong, Linyi University, Linyi, 276000, China
- Qilu Normal University, Jinan, 250200, China
| |
Collapse
|
17
|
Nam KH, Ganesan V, Kim DH, Jeong S, Jeon KJ, Park CM. SiSe 2 for Superior Sulfide Solid Electrolytes and Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:643-654. [PMID: 38147638 DOI: 10.1021/acsami.3c14489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Among the various existing layered compounds, silicon diselenide (SiSe2) possesses diverse chemical and physical properties, owing to its large interlayer spacing and interesting atomic arrangements. Despite the unique properties of layered SiSe2, it has not yet been used in energy applications. Herein, we introduce the synthesis of layered SiSe2 through a facile solid-state synthetic route and demonstrate its versatility as a sulfide solid electrolyte (SE) additive for all-solid-state batteries (ASSBs) and as an anode material for Li-ion batteries (LIBs). Li-argyrodites with various compositions substituted with SiSe2 are synthesized and evaluated as sulfide SEs for ASSBs. SiSe2-substituted Li-argyrodites exhibit high ionic conductivities, low activation energies, and high air stabilities. In addition, when using a sulfide SE, the ASSB full cell exhibits a high discharge/charge capacity of 202/169 mAh g-1 with a high initial Coulombic efficiency (ICE) of 83.7% and stable capacity retention at 1C after 100 cycles. Furthermore, the Li-storage properties of SiSe2 as an anode material for LIBs are evaluated, and its Li-pathway mechanism is explored by using various cutting-edge ex situ analytical tools. Moreover, the SiSe2 nanocomposite anode exhibits a high Li- insertion/extraction capacity of 950/775 mAh g-1, a high ICE of 81.6%, a fast rate capability, and stable capacity retention after 300 cycles. Accordingly, layered SiSe2 and its versatile applications as a sulfide SE additive for ASSBs and an anode material for LIBs are promising candidates in energy storage applications as well as myriad other applications.
Collapse
Affiliation(s)
- Ki-Hun Nam
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Vinoth Ganesan
- School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Do-Hyeon Kim
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
- School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Ki-Joon Jeon
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
- Program in Environmental and Polymer Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, Republic of Korea
| | - Cheol-Min Park
- Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
- School of Materials Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| |
Collapse
|
18
|
Mohapatra S, Das HT, Tripathy BC, Das N. Recent Developments in Electrodeposition of Transition Metal Chalcogenides-Based Electrode Materials for Advance Supercapacitor Applications: A Review. CHEM REC 2024; 24:e202300220. [PMID: 37668292 DOI: 10.1002/tcr.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/19/2023] [Indexed: 09/06/2023]
Abstract
High-performance supercapacitive electrode materials have received significant attention from researchers worldwide, thus aiming for comparable performance similar to the extensively used rechargeable batteries. For emerging energy storage technologies like flexible supercapacitors, transition metal chalcogenides (TMCs) have been in the spotlight due to their promising electrochemical features compared to other electrode materials. Among the synthesis techniques, electrodeposition-mediated preparation of thin films of TMCs offered an affordable binder-free approach for electrode fabrication that effectively improved the supercapacitor performance. Hence, this review mainly focussed on the electrodeposition-based syntheses of single/ multinary chalcogenides and their composites for supercapacitors applications. Further, the effects of different deposition parameters were discussed for boosting the supercapacitor performance. Finally, this review outlined the existing challenges and future perspectives in this research domain, which will assist the upcoming exploration in the energy storage field.
Collapse
Affiliation(s)
- Subhashree Mohapatra
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Himadri Tanaya Das
- Centre for Advanced Materials and Applications, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| | - Bankim Chandra Tripathy
- Department of Hydro & Electrometallurgy, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Nigamananda Das
- Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
- Centre for Advanced Materials and Applications, Utkal University, Vani Vihar, Bhubaneswar, 751004, India
| |
Collapse
|
19
|
Li J, Zhang W, Zheng W. Metal Selenides Find Plenty of Space in Architecting Advanced Sodium/Potassium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305021. [PMID: 37712116 DOI: 10.1002/smll.202305021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
The rapid evolution of smart grid system urges researchers on exploiting systems with properties of high-energy, low-cost, and eco-friendly beyond lithium-ion batteries. Under the circumstances, sodium- and potassium-ion batteries with the semblable work mechanism to commercial lithium-ion batteries, hold the merits of cost-effective and earth-abundant. As a result, it is deemed a promising candidate for large-scale energy storage devices. Exploiting appropriate active electrode materials is in the center of the spotlight for the development of batteries. Metal selenides with special structures and relatively high theoretical capacity have aroused broad interest and achieved great achievements. To push the smooth development of metal selenides and enhancement of the electrochemical performance of sodium- and potassium-ion batteries, it is vital to grasp the inherent properties and electrochemical mechanisms of these materials. Herein, the state-of-the-art development and challenges of metal selenides are summarized and discussed. Meanwhile, the corresponding electrochemical mechanism and future development directions are also highlighted.
Collapse
Affiliation(s)
- Jingjuan Li
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
20
|
Wang Q, Wang Q, Yuan R, Zhang Z, Long J, Lin H. Facile Preparation of the ZnSe/Ag 2Se Binary Heterojunction for Photocatalytic Antibacterial Efficiency. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50155-50165. [PMID: 37852272 DOI: 10.1021/acsami.3c09534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In a novel approach that capitalized on the differential solubility product (Ksp) of ZnSe and Ag2Se, a unique ZnSe/Ag2Se binary heterostructure was efficiently synthesized in situ. ZnSe/Ag2Se exhibited excellent antimicrobial efficiency under visible light. Incorporating Ag2Se into ZnSe significantly enhanced the photoelectric performance of the catalyst, greatly accelerating the separation of the photogenerated electrons in the system. Active species removal experiments determined that ·O2- and H2O2 played crucial roles in photocatalytic antibacterial efficiency. Further investigation into the levels of cellular membrane peroxidation, bacterial morphology, and intracellular contents concentration revealed that during the photocatalytic antimicrobial process, reactive oxygen species initially oxidize phospholipids in the cell membrane, leading to damage to the external structure of the cell and leakage of the intracellular contents, ultimately resulting in bacteria inactivation. The photocatalytic antimicrobial process of ZnSe/Ag2Se fundamentally deviates from conventional methods, offering new insights into efficient disinfection and photocatalytic antimicrobial mechanisms.
Collapse
Affiliation(s)
- Qian Wang
- College of Chemistry of Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Qin Wang
- College of Chemistry of Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Rusheng Yuan
- College of Chemistry of Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Zizhong Zhang
- College of Chemistry of Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Jinlin Long
- College of Chemistry of Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| | - Huaxiang Lin
- College of Chemistry of Fuzhou University, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
21
|
Scarpa D, Cirillo C, Ponticorvo E, Cirillo C, Attanasio C, Iuliano M, Sarno M. Iron Selenide Particles for High-Performance Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5309. [PMID: 37570012 PMCID: PMC10419825 DOI: 10.3390/ma16155309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Nowadays, iron (II) selenide (FeSe), which has been widely studied for years to unveil the high-temperature superconductivity in iron-based superconductors, is drawing increasing attention in the electrical energy storage (EES) field as a supercapacitor electrode because of its many advantages. In this study, very small FeSe particles were synthesized via a simple, low-cost, easily scalable, and reproducible solvothermal method. The FeSe particles were characterized using cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS), revealing enhanced electrochemical properties: a high capacitance of 280 F/g at 0.5 A/g, a rather high energy density of 39 Wh/kg and a corresponding power density of 306 W/kg at 0.5 A/g, an extremely high cycling stability (capacitance retention of 92% after 30,000 cycles at 1 A/g), and a rather low equivalent series resistance (RESR) of ~2 Ω.
Collapse
Affiliation(s)
- Davide Scarpa
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Claudia Cirillo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Eleonora Ponticorvo
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Carla Cirillo
- CNR-SPIN, c/o University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Carmine Attanasio
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Mariagrazia Iuliano
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Sarno
- Department of Physics “E.R. Caianiello”, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.C.); (E.P.); (C.A.); (M.I.)
- NANO_MATES Research Centre, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
22
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Chen D, Zhao Z, Chen G, Li T, Chen J, Ye Z, Lu J. Metal selenides for energy storage and conversion: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Ball mill–assisted synthesis of carbon-free SnSe nanoparticles for sodium-ion battery anodes. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
25
|
Gong Y, Li Y, Li Y, Liu M, Bai Y, Wu C. Metal Selenides Anode Materials for Sodium Ion Batteries: Synthesis, Modification, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206194. [PMID: 36437114 DOI: 10.1002/smll.202206194] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The powerful and rapid development of lithium-ion batteries (LIBs) in secondary batteries field makes lithium resources in short supply, leading to rising battery costs. Under the circumstances, sodium-ion batteries (SIBs) with low cost, inexhaustible sodium reserves, and analogous work principle to LIBs, have evolved as one of the most anticipated candidates for large-scale energy storage devices. Thereinto, the applicable electrode is a core element for the smooth development of SIBs. Among various anode materials, metal selenides (MSex ) with relatively high theoretical capacity and unique structures have aroused extensive interest. Regrettably, MSex suffers from large volume expansion and unwished side reactions, which result in poor electrochemistry performance. Thus, strategies such as carbon modification, structural design, voltage control as well as electrolyte and binder optimization are adopted to alleviate these issues. In this review, the synthesis methods and main reaction mechanisms of MSex are systematically summarized. Meanwhile, the major challenges of MSex and the corresponding available strategies are proposed. Furthermore, the recent research progress on layered and nonlayered MSex for application in SIBs is presented and discussed in detail. Finally, the future development focuses of MSex in the field of rechargeable ion batteries are highlighted.
Collapse
Affiliation(s)
- Yuteng Gong
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Mingquan Liu
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| |
Collapse
|
26
|
Yu L, Pang X, Tian Z, Wang S, Feng L. Fe-doped NiSe2 nanorods for enhanced urea electrolysis of hydrogen generation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
TAŞALTIN N, TÜZÜN E, KARAKUŞ S. Three-Dimensional Nb Nanopillar based Electrode for Energy Storage Devices. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1112145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In this study, aluminum (Al) film with high purity was coated on the Niobium (Nb) sheet by thermal evaporation under ultra-high vacuum. An Anodic Aluminum Oxide (AAO) nanotemplate was prepared on the Nb sheet. During AAO nanotemplate preparation, three-dimensional (3D) Nb nanopillars were grown on the Nb sheet. We performed a simple 3D Artificial Intelligence (AI) analysis of Nb nanopillars. According to the experimental results, the width of the prepared Nb nanopillars is in the range of 100–120 nm, and the length is approximately 150 nm. The Electron Diffraction Spectroscopy (EDS) results confirmed that the nanopillars are Nb. The prepared Nb nanopillars can be a potential candidate for energy storage applications.
Collapse
|
28
|
Mei J, Shang J, Zhang C, Qi D, Kou L, Wijerathne B, Hu C, Liao T, MacLeod J, Sun Z. MAX-phase Derived Tin Diselenide for 2D/2D Heterostructures with Ultralow Surface/Interface Transport Barriers toward Li-/Na-ions Storage. SMALL METHODS 2022; 6:e2200658. [PMID: 35802910 DOI: 10.1002/smtd.202200658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
2D tin diselenide and its derived 2D heterostructures have delivered promising potentials in various applications ranging from electronics to energy storage devices. The major challenges associated with large-scale fabrication of SnSe2 crystals, however, have hindered its engineering applications. Herein, a tin-extraction synthetic method is proposed for producing large-size SnSe2 bulk crystals. In a typical synthesis, a Sn-containing MAX phase (V2 SnC) and a Se source are heat-treated under a reducing atmosphere, by which Sn is extracted from the V2 SnC phase as a rectified Sn source to form SnSe2 crystals in the cold zone. After the following liquid exfoliation, the obtained 2D SnSe2 nanosheets have a lateral size of a few centimeters and an atomic thickness. Furthermore, by coupling with 2D graphene to form 2D/2D SnSe2 /graphene heterostructured electrodes, as validated by theoretical calculation and experimental studies, the superior Li-/Na-ion storage performance with ultralow surface/interface ion transport barriers are achieved for rechargeable Li-/Na-ion batteries. This innovative synthetic strategy opens a new avenue for the large-scale synthesis of selenides and offers more options into the practical application of emerging 2D/2D heterostructure for electrochemical energy storage.
Collapse
Affiliation(s)
- Jun Mei
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jing Shang
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Materials Science & Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Chao Zhang
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Dongchen Qi
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Liangzhi Kou
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Binodhya Wijerathne
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Chunfeng Hu
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Ziqi Sun
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
29
|
Mao B, Xu D, Meng T, Cao M. Advances and challenges in metal selenides enabled by nanostructures for electrochemical energy storage applications. NANOSCALE 2022; 14:10690-10716. [PMID: 35861338 DOI: 10.1039/d2nr02304k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of nanomaterials and their related electrochemical energy storage (EES) devices can provide solutions for improving the performance and development of existing EES systems owing to their high electronic conductivity and ion transport and abundant embeddable sites. Recent progress has demonstrated that metal selenides are attracting increasing attention in the field of EES because of their unique structures, high theoretical capacities, rich element resources, and high conductivity. However, there are still many challenges in their application in EES, and thus the use of nanoscale metal selenide materials in commercial devices is limited. In this review, we summarize recent advances in the nanostructured design of metal selenides (e.g., zero-, one-, two-, and three-dimensional, and self-supported structures) and present their advantages in terms of EES performance. Moreover, some remarks on the potential challenges and research prospects of nanostructured metal selenides in the field of EES are presented.
Collapse
Affiliation(s)
- Baoguang Mao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Dan Xu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tao Meng
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Minhua Cao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
30
|
Zhao R, Zhu Y, Zhou J, Liu B, Du Y, Gai S, Shen R, Feng L, Yang P. Dual Glutathione Depletion Enhanced Enzyme Catalytic Activity for Hyperthermia Assisted Tumor Therapy on Semi-Metallic VSe 2/Mn-CS. ACS NANO 2022; 16:10904-10917. [PMID: 35797013 DOI: 10.1021/acsnano.2c03222] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Semimetallic nanomaterials as photothermal agents for bioimaging and cancer therapy have attracted tremendous interest. However, the poor photothermal stability, low biocompatibility, and single component limit their therapeutic efficiency in cancer treatment. Here, manganese-doped VSe2 semimetallic nanosheets were prepared and subsequently modified with chitosan (named VSe2/Mn-CS NSs) for combined enzyme catalytic and photothermal therapy. VSe2/Mn-CS NSs show high photothermal property with a photothermal conversion efficiency of 34.61% upon 808 nm near-infrared laser irradiation. In the tumor microenvironment, VSe2/Mn-CS NSs can convert endogenous H2O2 into lethal hydroxyl radicals (•OH) to induce cancer cell apoptosis. The interaction between glutathione (GSH) and Se-Se bonds in VSe2/Mn-CS NSs results in the depletion of GSH level, and the valence states transition of manganese ions is also beneficial for the GSH consumption. This dual depletion of GSH markedly enhances the peroxidase (POD) activity, leading to the high •OH production and the improved therapeutic effect. What is more, the T1-weighted magnetic resonance and photoacoustic imaging endow VSe2/Mn-CS NSs with the ability to guide and track the treatment process. Our study provides a research strategy for the application of semimetallic nanomaterials in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jialing Zhou
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yaqian Du
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| | - Ruifang Shen
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, P. R. China
| |
Collapse
|
31
|
Zheng H, Xu HS, Hu J, Liu H, Wei L, Wu S, Li J, Huang Y, Tang K. Electrochemical performance of CoSe 2 with mixed phases decorated with N-doped rGO in potassium-ion batteries. RSC Adv 2022; 12:21374-21384. [PMID: 35975082 PMCID: PMC9344900 DOI: 10.1039/d2ra03608h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Potassium-ion batteries (PIBs) have received much attention as next-generation energy storage systems because of their abundance, low cost, and slightly lower standard redox potential than lithium-ion batteries (LIBs). Nevertheless, they still face great challenges in the design of the best electrode materials for applications. Herein, we have successfully synthesized nano-sized CoSe2 encapsulated by N-doped reduced graphene oxide (denoted as CoSe2@N-rGO) by a direct one-step hydrothermal method, including both orthorhombic and cubic CoSe2 phases. The CoSe2@N-rGO anodes exhibit a high reversible capacity of 599.3 mA h g−1 at 0.05 A g−1 in the initial cycle, and in particular, they also exhibit a cycling stability of 421 mA h g−1 after 100 cycles at 0.2 A g−1. Density functional theory (DFT) calculations show that CoSe2 with N-doped carbon can greatly accelerate electron transfer and enhance the rate performance. In addition, the intrinsic causes of the higher electrochemical performance of orthorhombic CoSe2 than that of cubic CoSe2 are also discussed. Potassium-ion batteries (PIBs) have received much attention as next-generation energy storage systems because of their abundance, low cost, and slightly lower standard redox potential than lithium-ion batteries (LIBs).![]()
Collapse
Affiliation(s)
- Hui Zheng
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Han-Shu Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 People's Republic of China .,Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Jiaping Hu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Huimin Liu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Lianwei Wei
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Shusheng Wu
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Jin Li
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Yuhu Huang
- Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| | - Kaibin Tang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 People's Republic of China .,Department of Chemistry, University of Science and Technology of China Hefei 230026 People's Republic of China
| |
Collapse
|
32
|
Wang J, Zhu Y, Li S, Zhai S, Fu N, Niu Y, Hou S, Luo J, Mu S, Huang Y. Ni-soc-MOF derived carbon hollow sphere encapsulated Ni 3Se 4 nanocrystals for high-rate supercapacitors. Chem Commun (Camb) 2022; 58:8846-8849. [PMID: 35849002 DOI: 10.1039/d2cc01951e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Carbon hollow sphere encapsulated Ni3Se4 (Ni3Se4@CHS) nanocrystals are prepared using the Ni-soc-MOF by pyrolysis and further selenization. Ni3Se4@CHS exhibits a capacitance of 1720 F g-1 at 1 A g-1 and a capacitance retention of 97% after 6000 cycles at 5 A g-1. Moreover, the asymmetric supercapacitor of Ni3Se4@CHS//AC displays a wide potential window of 1.6 V, an energy density of 45.2 W h kg-1 at a power density of 800 W kg-1, and excellent cycling stability (89% capacitance retention) after 5000 cycles. Overall, this work establishes a significant step to synthesize a new carbon-based material with appreciable capacitance and long cycling durability for potential applications in energy storage and beyond.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yue Zhu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shuo Li
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shengxian Zhai
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Ning Fu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Yongsheng Niu
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shaogang Hou
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Jiahuan Luo
- School of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, P. R. China.
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan, 528200, China
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
33
|
Ni W, Li X, Shi LY, Ma J. Research progress on ZnSe and ZnTe anodes for rechargeable batteries. NANOSCALE 2022; 14:9609-9635. [PMID: 35789356 DOI: 10.1039/d2nr02366k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transition-metal chalcogenides (TMCs) with tunable direct bandgaps and interlayer spacing are attractive for energy-related applications. Semiconducting zinc chalcogenides, especially their selenides (ZnSe) and tellurides (ZnTe), with enhanced conductivity, high theoretical capacity, low operation voltage and abundance, have appeared on the horizon and receive increasing interest in terms of electrochemical energy storage and conversion. Despite the existing typical obstruction owing to the large volume change, relatively low electrical conductivity and sluggish ion diffusion kinetics into the bulk phase, several effective strategies such as compositing, doping, nanostructuring, and electrode/cell design have exhibited promising applications. We herein provide a timely and systematic overview of recent research and significant advances regarding ZnSe, ZnTe and their hybrids/composites, covering synthesis to electrode design and to applications, especially in advanced Li/Na/K-ion batteries, as well as the reaction mechanisms thereof. It is hoped that the overview will shed new light on the development of ZnSe and ZnTe for next-generation rechargeable batteries.
Collapse
Affiliation(s)
- Wei Ni
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, ANSTEEL Research Institute of Vanadium & Titanium (Iron & Steel), Chengdu 610031, China
| | - Xiu Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Ling-Ying Shi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianmin Ma
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
34
|
Javed MS, Mateen A, Ali S, Zhang X, Hussain I, Imran M, Shah SSA, Han W. The Emergence of 2D MXenes Based Zn-Ion Batteries: Recent Development and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201989. [PMID: 35620957 DOI: 10.1002/smll.202201989] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/29/2022] [Indexed: 05/26/2023]
Abstract
Rechargeable zinc-ion batteries (ZIBs) with exceptional theoretical capacity have garnered significant interest in large-scale electrochemical energy storage devices due to their low cost, abundant material, inherent safety, high specific energy, and ecofriendly nature. Metal carbides/nitrides, known as MXenes, have emerged as a large family of 2D transition metal carbides or carbonitrides with excellent properties, e.g., high electrical conductivity, large surface functional groups (e.g., F, O, and OH), low energy barriers for the diffusion of electrolyte ions with wide interlayer spaces. After a decade of effort, significant development has been achieved in the synthesis, properties, and applications of MXenes. Thus, it has opened up various exciting opportunities to construct advanced MXene-based nanostructures for ZIBs with excellent specific energy and power. Herein, this review summarizes the advances across multiple synthesis routes, related properties, morphological and structural characteristics, and chemistries of MXenes for ZIBs. The recent development of MXene-based electrodes is introduced, and electrolytes for ZIBs are elucidated in detail. MXene-based rocking chair ZIBs, strategies to enhance the performance of MXene-based cathodes, suppress the dendrites in MXene-based anodes, and MXene-based flexible ZIBs are pointed out. A rational design and modification of the MXenes as well as the production of composites with metal oxides exhibits promise in solving issues and enhancing the electrochemical performance of ZIBs. Finally, the present challenges and future prospects for MXene-based ZIBs are discussed.
Collapse
Affiliation(s)
- Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Abdul Mateen
- Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing, 100084, China
| | - Salamat Ali
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaofeng Zhang
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Syed Shoaib Ahmad Shah
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, P. R. China
| | - Weihua Han
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
35
|
Liao Y, Du Q, Sun S, Shi N, Yin G, Huang Z, Liao X. Quasi-aligned Cu 2S/Cu(OH) 2nanorod arrays anchored on Cu foam as self-supported electrode for non-enzymatic glucose detection. NANOTECHNOLOGY 2022; 33:385501. [PMID: 35667364 DOI: 10.1088/1361-6528/ac75f7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Self-supported Cu2S/Cu(OH)2composite nanorods for highly sensitive non-enzymatic glucose sensing werein situgrown on Cu foam by simple hydrothermal treatment of aligned Cu(OH)2nanorods. The physicochemical and electrochemical properties of the as-fabricated Cu2S/Cu(OH)2composite nanorods were characterized by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, Raman spectroscope, x-ray photoelectron spectroscope, cyclic voltammetry, electrochemical impedance spectroscopy, amperometrici-tmeasurements. The mechanism of the composite nanorods produced on conductive substrates was also explored. The electrode exhibits a sensitivity of 9626.88μA mM-1cm-2towards glucose with good anti-interference ability, indicating it a promising electrode material for the enhanced non-enzymatic glucose detection.
Collapse
Affiliation(s)
- Yanxin Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Qian Du
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Shupei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Nianfeng Shi
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
36
|
Alshorifi FT, Alswat AA, Salama RS. Gold-selenide quantum dots supported onto cesium ferrite nanocomposites for the efficient degradation of rhodamine B. Heliyon 2022; 8:e09652. [PMID: 35706958 PMCID: PMC9189889 DOI: 10.1016/j.heliyon.2022.e09652] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/28/2022] Open
Abstract
In this work, different weight percentage of gold-selenide quantum dots (AuSe QDs) (1.0, 2.5, 5.0 and 7.0 wt.%) were successfully synthesized and decorated on cesium ferrite nanocomposite (Cs2Fe2O4 NC). The as-prepared pure AuSe QDs, pure Cs2Fe2O4 NC, and x wt.% AuSe QDs/Cs2Fe2O4 NC photocatalysts were investigated using different characterization techniques such as nitrogen adsorption desorption isotherms (BET), X-ray diffraction patterns (XRD), transmission electron microscopy (TEM), and UV-vis absorption spectroscopy. The results show that AuSe QDs were uniformly distributed on Cs2Fe2O4NCs surface as spherical dots with an average size of 1.0-8.0 nm. While the Cs2Fe2O4 NCs possess an average size between 10 to 35 nm. The photocatalytic performance of x wt. % AuSe QDs/Cs2Fe2O4NCs were measured through the photodegradation of rhodamine B (RhB) dye as a model water pollutant, under a150 W-Mercury lamp with a filter (JB400) as a simulated source of visible light. The results revealed that the % degradation of RhB increased from 50.0 %, 59.1 %, 76.4 %, and to 99.15 % within 150 min for the pure Cs2Fe2O4, 1.0, 2.5 and 5.0 wt.% AuSe QDs/Cs2Fe2O4 NC photocatalysts, respectively. The 5.0 wt.% AuSe/Cs2Fe2O4 NC sample showed highest photocatalytic activity. The effect of recycling also studied. High photocatalytic performance and superior stability confirmed that the prepared nanocomposites act as good photocatalysts.
Collapse
Affiliation(s)
- Fares T. Alshorifi
- Department of Chemistry, Faculty of Science, University of Saba Region, Yemen
- Department of Chemistry, Faculty of Science, Sana'a University, Yemen
| | - Abdullah A. Alswat
- Chemistry Department, Faculty of Education and Applied Science, Arhab Sana'a University, Yemen
| | - Reda S. Salama
- Basic Science Department, Faculty of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
37
|
Rajesh JA, Park J, Kang S, Ahn KS. Effect of molar concentration on the crystallite structures and electrochemical properties of cobalt fluoride hydroxide for hybrid supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Hsiao YS, Chang-Jian CW, Huang TY, Chen YL, Huang JH, Wu NJ, Hsu SC, Chen CP. High-performance supercapacitor based on a ternary nanocomposites of NiO, polyaniline, and Ni/NiO-decorated MWCNTs. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Shinde PA, Chodankar NR, Abdelkareem MA, Patil SJ, Han YK, Elsaid K, Olabi AG. All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200248. [PMID: 35441451 DOI: 10.1002/smll.202200248] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Transition metal selenides (TMSs) have enthused snowballing research and industrial attention due to their exclusive conductivity and redox activity features, holding them as great candidates for emerging electrochemical devices. However, the real-life utility of TMSs remains challenging owing to their convoluted synthesis process. Herein, a versatile in situ approach to design nanostructured TMSs for high-energy solid-state hybrid supercapacitors (HSCs) is demonstrated. Initially, the rose-nanopetal-like NiSe@Cu2 Se (NiCuSe) positive electrode and FeSe nanoparticles negative electrode are directly anchored on Cu foam via in situ conversion reactions. The complementary potential windows of NiCuSe and FeSe electrodes in aqueous electrolytes associated with the excellent electrical conductivity results in superior electrochemical features. The solid-state HSCs cell manages to work in a high voltage range of 0-1.6 V, delivers a high specific energy density of 87.6 Wh kg-1 at a specific power density of 914.3 W kg-1 and excellent cycle lifetime (91.3% over 10 000 cycles). The innovative insights and electrode design for high conductivity holds great pledge in inspiring material synthesis strategies. This work offers a feasible route to develop high-energy battery-type electrodes for next-generation hybrid energy storage systems.
Collapse
Affiliation(s)
- Pragati A Shinde
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Mohammad Ali Abdelkareem
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Swati J Patil
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Khaled Elsaid
- Chemical Engineering Department, Texas A&M University, College Station, TX, 77843-3122, USA
| | - Abdul Ghani Olabi
- Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah, 27272, United Arab Emirates
- Mechanical Engineering and Design, School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
40
|
Lee JS, Saroha R, Cho JS. Porous Microspheres Comprising CoSe 2 Nanorods Coated with N-Doped Graphitic C and Polydopamine-Derived C as Anodes for Long-Lived Na-Ion Batteries. NANO-MICRO LETTERS 2022; 14:113. [PMID: 35482108 PMCID: PMC9050979 DOI: 10.1007/s40820-022-00855-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/23/2022] [Indexed: 05/23/2023]
Abstract
Metal-organic framework-templated nitrogen-doped graphitic carbon (NGC) and polydopamine-derived carbon (PDA-derived C)-double coated one-dimensional CoSe2 nanorods supported highly porous three-dimensional microspheres are introduced as anodes for excellent Na-ion batteries, particularly with long-lived cycle under carbonate-based electrolyte system. The microspheres uniformly composed of ZIF-67 polyhedrons and polystyrene nanobeads (ϕ = 40 nm) are synthesized using the facile spray pyrolysis technique, followed by the selenization process (P-CoSe2@NGC NR). Further, the PDA-derived C-coated microspheres are obtained using a solution-based coating approach and the subsequent carbonization process (P-CoSe2@PDA-C NR). The rational synthesis approach benefited from the synergistic effects of dual carbon coating, resulting in a highly conductive and porous nanostructure that could facilitate rapid diffusion of charge species along with efficient electrolyte infiltration and effectively channelize the volume stress. Consequently, the prepared nanostructure exhibits extraordinary electrochemical performance, particularly the ultra-long cycle life stability. For instance, the advanced anode has a discharge capacity of 291 (1000th cycle, average capacity decay of 0.017%) and 142 mAh g-1 (5000th cycle, average capacity decay of 0.011%) at a current density of 0.5 and 2.0 A g-1, respectively.
Collapse
Affiliation(s)
- Jae Seob Lee
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Rakesh Saroha
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, Cheongju, Chungbuk, 361-763, Republic of Korea.
| |
Collapse
|
41
|
Liu L, Yu L, Hu L, Meng X, Liang S, Ge J, Wu Y, Deng C. Building core-shell FeSe 2@C anode electrode for delivering superior potassium-ion batteries. NANOTECHNOLOGY 2022; 33:245403. [PMID: 35263734 DOI: 10.1088/1361-6528/ac5c14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Inferior electrical conductivity and large volume variation are two disadvantages of metal selenides. In this work, we have designed a core-shell structure of FeSe2@C composite with low cost using facile hydrothermal method. The FeSe2particles as the 'core' and the carbon layer as the 'shell' displayed good synergistic effect that attributed to alleviate volume expansion of electrode and improving the electrical conductivity, which achieved the fast potassium storage. The core-shell structural FeSe2@C electrode achieved 286 mA h g-1at 1 A g-1over 1000 cycles with 99.8% coulombic efficiency and delivered excellent rate capacity with 273 mA h g-1at 2 A g-1, which was ascribed to dispersed FeSe2particles and the strong carbon shell coating. This work will provide the basis for the further development of the application of metal selenides in the field of flexible electrodes.
Collapse
Affiliation(s)
- Lingli Liu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| | - Lei Yu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| | - Lei Hu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| | - Xianghe Meng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| | - Sheng Liang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| | - Jinlong Ge
- School of Material and Chemistry Engineering, Bengbu University, Bengbu, People's Republic of China
| | - Yun Wu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| | - Chonghai Deng
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People's Republic of China
| |
Collapse
|
42
|
Bimetallic CoNiSe2/C nanosphere anodes derived from Ni-Co-metal-organic framework precursor towards higher lithium storage capacity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Sha D, Lu C, He W, Ding J, Zhang H, Bao Z, Cao X, Fan J, Dou Y, Pan L, Sun Z. Surface Selenization Strategy for V 2CT x MXene toward Superior Zn-Ion Storage. ACS NANO 2022; 16:2711-2720. [PMID: 35113510 DOI: 10.1021/acsnano.1c09639] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MXenes are promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their layered structure, metallic conductivity, and hydrophilicity. However, they suffer from low capacities unless they are subjected to electrochemically induced second phase formation, which is tedious, time-consuming, and uncontrollable. Here we propose a facile one-step surface selenization strategy for realizing advanced MXene-based nanohybrids. Through the selenization process, the surface metal atoms of MXenes are converted to transition metal selenides (TMSes) exhibiting high capacity and excellent structural stability, whereas the inner layers of MXenes are purposely retained. This strategy is applicable to various MXenes, as demonstrated by the successful construction of VSe2@V2CTx, TiSe2@Ti3C2Tx, and NbSe2@Nb2CTx. Typically, VSe2@V2CTx delivers high-rate capability (132.7 mA h g-1 at 2.0 A g-1), long-term cyclability (93.1% capacity retention after 600 cycles at 2.0 A g-1), and high capacitive contribution (85.7% at 2.0 mV s-1). Detailed experimental and simulation results reveal that the superior Zn-ion storage is attributed to the engaging integration of V2CTx and VSe2, which not only significantly improves the Zn-ion diffusion coefficient from 4.3 × 10-15 to 3.7 × 10-13 cm2 s-1 but also provides sufficient structural stability for long-term cycling. This study offers a facile approach for the development of high-performance MXene-based materials for advanced aqueous metal-ion batteries.
Collapse
Affiliation(s)
- Dawei Sha
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chengjie Lu
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wei He
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jianxiang Ding
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Heng Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Zhuoheng Bao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xin Cao
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jingchen Fan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yan Dou
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Long Pan
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - ZhengMing Sun
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
44
|
Zhao Y, Yan Y, Lee JM. Recent progress on transition metal diselenides from formation and modification to applications. NANOSCALE 2022; 14:1075-1095. [PMID: 35019924 DOI: 10.1039/d1nr07789a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of graphene promotes the research of similar two-dimensional (2D) materials, especially 2D transition metal dichalcogenides (TMDCs) with semiconductor properties. Monolayer or few-layer TMDCs have several advantages, such as direct band gap, weak interlayer van der Waals force, large interlayer spacing, and abundant marginal active sites, which make them widely used in catalysis, optoelectronics, as well as energy conversion and storage devices. In addition, transition metal diselenides (TMDSs) also possess many intriguing characteristics. For instance, transition metal diselenides (e.g., MoSe2) have a more stable 1T phase, larger interlayer spacing, smaller band gap, and more obvious metallic property of Se than TMDCs (e.g., MoS2). Thus, it has become one of the most attractive research topics branching out from TMDCs. Herein, this review unveils the structures, synthesis, properties, modifications, applications, and perspectives for TMDSs.
Collapse
Affiliation(s)
- Yuhan Zhao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yibo Yan
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore.
| |
Collapse
|
45
|
Zhu J, Chen X, Zhang L, Wang Q, Yang J, Geng H. Structural engineering of bimetallic selenides for high-energy density sodium-ion half/full batteries. Dalton Trans 2022; 51:16898-16905. [DOI: 10.1039/d2dt03123j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bimetallic selenide ZnSe/MoSe2@NC fabricated by in situ selenation of a Zn/Mo MOF shows potential for application in high-energy density sodium ion batteries.
Collapse
Affiliation(s)
- Jing Zhu
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Anhui, 230036, China
| | - Xiaoyu Chen
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Anhui, 230036, China
| | - Lei Zhang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Quan Wang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Jun Yang
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| |
Collapse
|
46
|
Zhong F, Xu A, Zeng Q, Wang Y, Li G, Xu Z, Yan Y, Wu S. Confining MoSe 2 Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59882-59891. [PMID: 34894648 DOI: 10.1021/acsami.1c17040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potassium-ion battery (PIB) is the most promising alternative to a lithium-ion battery (LIB). Exploitation of a suitable electrode material is crucial to promote the development of PIBs. The MoSe2 material has attracted much attention due to its high theoretical capacity, unique layered structure, and good conductivity. However, the potassium storage property of MoSe2 has been suffering from structural fragmentation and sluggish reaction kinetic caused by large potassium ions upon insertion/extraction, which needs to be further improved. Herein, the MoSe2 nanosheets are confined into N-doped hollow porous carbon microspheres (MoSe2@N-HCS) by spray drying and high-temperature selenization. It delivers a superior rate performance of 113.7 mAh g-1 at 10 A g-1 and remains at a high capacity of 158.3 mAh g-1 at 2 A g-1 even after 16 700 cycles for PIBs. The excellent electrochemical performance can be attributed to unique structure, N-doping, and robust chemical bonds. The storage mechanism of MoSe2 for potassium ions was explored. The outstanding properties of MoSe2@N-HCS make it a promising anode material for PIBs.
Collapse
Affiliation(s)
- Fulan Zhong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou510641, China
| | - Anding Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Qi Zeng
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Yijun Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou510641, China
| | - Guilan Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhiguang Xu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Songping Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou510641, China
| |
Collapse
|
47
|
Facile Hydrothermal Synthesis and Supercapacitor Performance of Mesoporous Necklace-Type ZnCo2O4 Nanowires. Catalysts 2021. [DOI: 10.3390/catal11121516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, mesoporous ZnCo2O4 electrode material with necklace-type nanowires was synthesized by a simple hydrothermal method using water/ethylene glycol mixed solvent and subsequent calcination treatment. The ZnCo2O4 nanowires were assembled by several tiny building blocks of nanoparticles which led to the growth of necklace-type nanowires. The as-synthesized ZnCo2O4 nanowires had porous structures with a high surface area of 25.33 m2 g−1 and with an average mesopore of 23.13 nm. Due to the higher surface area and mesopores, the as-prepared necklace-type ZnCo2O4 nanowires delivered a high specific capacity of 439.6 C g−1 (1099 F g−1) at a current density of 1 A g−1, decent rate performance (47.31% retention at 20 A g−1), and good cyclic stability (84.82 % capacity retention after 5000 cycles). Moreover, a hybrid supercapacitor was fabricated with ZnCo2O4 nanowires as a positive electrode and activated carbon (AC) as a negative electrode (ZnCo2O4 nanowires//AC), which delivered an energy density of 41.87 Wh kg−1 at a power density of 800 W kg−1. The high electrochemical performance and excellent stability of the necklace-type ZnCo2O4 nanowires relate to their unique architecture, high surface area, mesoporous nature, and the synergistic effect between Zn and Co metals.
Collapse
|
48
|
Han M, Zhou Z, Li Y, Chen Q, Chen M. Highly Conductive Tellurium and Telluride in Energy Storage. ChemElectroChem 2021. [DOI: 10.1002/celc.202100735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Manshu Han
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Zhihao Zhou
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yu Li
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Qingguo Chen
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| |
Collapse
|
49
|
Kumar A, Rathore HK, Sarkar D, Shukla A. Nanoarchitectured transition metal oxides and their composites for supercapacitors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ankit Kumar
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| | - Hem Kanwar Rathore
- Department of Physics Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Debasish Sarkar
- Department of Physics Malaviya National Institute of Technology Jaipur Rajasthan India
| | - Ashok Shukla
- Solid State and Structural Chemistry Unit Indian Institute of Science Bengaluru India
| |
Collapse
|
50
|
Zhang L, Li X, Tai L, Shen C, Yang J, Sun C, Geng H, Zuo X. Constructing electronic interconnected bimetallic selenide-filled porous carbon nanosheets for stable and highly efficient sodium-ion half/full batteries. NANOSCALE 2021; 13:18578-18585. [PMID: 34730602 DOI: 10.1039/d1nr05521f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their large theoretical capacity and relatively high electronic conductivity, transition metal selenides have been investigated as potential anodes for energy storage applications. On the other hand, the quick capacity decline induced by volume expansion during cycling and unconnected conducting network of the transition metal selenide-based electrode severely limit their employment in sodium-ion batteries (SIBs). Herein, a simple solvent ultrasonic technique and pyrolysis selenation process were used to make a porous N-doped carbon nanosheet-supported FeSe2/CoSe2 electrode. The electrochemical kinetics could be improved, and the stress generated by volume expansion could be efficiently adjusted by exquisitely constructed boundary of the FeSe2/CoSe2-CN electrode. As expected, the FeSe2/CoSe2-CN porous nanosheets exhibited a high Na+ storage capacity of 350 mA h g-1 (10 A g-1, 1000 cycles). Kinetic studies were conducted to explore the Na+ storage mechanism of FeSe2/CoSe2-CN. The as-constructed full sodium-ion batteries, when combined with Na3V2(PO4)2O2F, have a phenomenal energy density (109 W h kg-1), encouraging the exploration of energy-related components with the high-energy density properties.
Collapse
Affiliation(s)
- Lei Zhang
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, China.
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Xiao Li
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Linlin Tai
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Chunping Shen
- Jiangsu Tenpower Lithium Co., Ltd., Zhangjiagang, Jiangsu, China
| | - Jun Yang
- School of Material Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Chencheng Sun
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu, 215500, China.
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Xiaobing Zuo
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| |
Collapse
|