1
|
Karami P, Aghapour Aktij S, Moradi K, Rastgar M, Khorshidi B, Mohammadtabar F, Peichel J, McGregor M, Rahimpour A, Soares JBP, Sadrzadeh M. Comprehensive Characterization of Commercial Reverse Osmosis Membranes through High-Temperature Cross-Flow Filtration. ACS OMEGA 2024; 9:1990-1999. [PMID: 38222588 PMCID: PMC10785276 DOI: 10.1021/acsomega.3c09331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.
Collapse
Affiliation(s)
- Pooria Karami
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, 12-263 Donadeo Innovation
Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sadegh Aghapour Aktij
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, 12-263 Donadeo Innovation
Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Masoud Rastgar
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Behnam Khorshidi
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Farshad Mohammadtabar
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - John Peichel
- Veolia
Water Technologies & Solutions, 5951 Clearwater Drive, Minnetonka, Minnesota 55343, United States
| | - Michael McGregor
- Suncor
Energy Inc., P.O. Box 2844, 150-Sixth Ave. SW, Calgary, Alberta T2P 3E3, Canada
| | - Ahmad Rahimpour
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Joao B. P. Soares
- Department
of Chemical & Materials Engineering, 12-263 Donadeo Innovation
Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
2
|
Rastgar M, Moradi K, Burroughs C, Hemmati A, Hoek E, Sadrzadeh M. Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chem Rev 2023; 123:10156-10205. [PMID: 37523591 DOI: 10.1021/acs.chemrev.3c00168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Greenhouse gas emissions associated with power generation from fossil fuel combustion account for 25% of global emissions and, thus, contribute greatly to climate change. Renewable energy sources, like wind and solar, have reached a mature stage, with costs aligning with those of fossil fuel-derived power but suffer from the challenge of intermittency due to the variability of wind and sunlight. This study aims to explore the viability of salinity gradient power, or "blue energy", as a clean, renewable source of uninterrupted, base-load power generation. Harnessing the salinity gradient energy from river estuaries worldwide could meet a substantial portion of the global electricity demand (approximately 7%). Pressure retarded osmosis (PRO) and reverse electrodialysis (RED) are more prominent technologies for blue energy harvesting, whereas thermo-osmotic energy conversion (TOEC) is emerging with new promise. This review scrutinizes the obstacles encountered in developing osmotic power generation using membrane-based methods and presents potential solutions to overcome challenges in practical applications. While certain strategies have shown promise in addressing some of these obstacles, further research is still required to enhance the energy efficiency and feasibility of membrane-based processes, enabling their large-scale implementation in osmotic energy harvesting.
Collapse
Affiliation(s)
- Masoud Rastgar
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Cassie Burroughs
- Department of Chemical & Materials Engineering, University of Alberta, 12-263 Donadeo Innovation Centre for Engineering, Edmonton, Alberta T6G 1H9, Canada
| | - Arman Hemmati
- Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Eric Hoek
- Department of Civil & Environmental Engineering, University of California Los Angeles (UCLA), Los Angeles, California 90095-1593, United States
- Energy Storage & Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta, 10-367 Donadeo Innovation Center for Engineering, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Goh PS, Ahmad NA, Wong TW, Yogarathinam LT, Ismail AF. Membrane technology for pesticide removal from aquatic environment: Status quo and way forward. CHEMOSPHERE 2022; 307:136018. [PMID: 35973494 DOI: 10.1016/j.chemosphere.2022.136018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The noxious side effects of pesticides on human health and environment have prompted the search of effective and reliable treatment techniques for pesticide removal. The removal of pesticides can be accomplished through physical, chemical and biologicals. Physical approaches such as filtration and adsorption are prevailing pesticide removal strategies on account of their effectiveness and ease of operation. Membrane-based filtration technology has been recognized as a promising water and wastewater treatment approach that can be used for a wide range of organic micropollutants including pesticides. Nanofiltration (NF), reverse osmosis (RO) and forward osmosis (FO) have been increasingly explored for pesticide removal from aquatic environment owing to their versatility and high treatment efficiencies. This review looks into the remedial strategies of pesticides from aqueous environment using membrane-based processes. The potentials and applications of three prevailing membrane processes, namely NF, RO and FO for the treatment of pesticide-containing wastewater are discussed in terms of the development of advanced membranes, separation mechanisms and system design. The challenges in regards to the practical implementation of membrane-based processes for pesticide remediation are identified. The corresponding research directions and way forward are highlighted. An in depth understanding of the pesticide nature, water chemistry and the pesticide-membrane interactions is the key to achieving high pesticide removal efficiency. The integration of membrane technology and conventional removal technologies represents a new dimension and the future direction for the treatment of wastewater containing recalcitrant pesticides.
Collapse
Affiliation(s)
- P S Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| | - N A Ahmad
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - T W Wong
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - L T Yogarathinam
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - A F Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia.
| |
Collapse
|
4
|
Mannich-mediated synthesis of a recyclable magnetic kraft lignin-coated copper nanostructure as an efficient catalyst for treatment of environmental contaminants in aqueous media. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Joafshan M, Shakeri A, Razavi SR, Salehi H. Gas responsive magnetic nanoparticle as novel draw agent for removal of Rhodamine B via forward osmosis: High water flux and easy regeneration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
ZnO@PMMA incorporated PSf substrate for improving thin-film composite membrane performance in forward osmosis process. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
High-Performance Thin-Film nanocomposite forward osmosis membranes modified with Poly(dopamine) coated UiO66-(COOH)2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119438] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Water Purification of Classical and Emerging Organic Pollutants: An Extensive Review. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The main techniques used for organic pollutant removal from water are adsorption, reductive and oxidative processes, phytoremediation, bioremediation, separation by membranes and liquid–liquid extraction. In this review, strengths and weaknesses of the different purification techniques are discussed, with particular attention to the newest results published in the scientific literature. This study highlighted that adsorption is the most frequently used method for water purification, since it can balance high organic pollutants removal efficiency, it has the possibility to treat a large quantity of water in semi-continuous way and has acceptable costs.
Collapse
|
9
|
Shakeri A, Babaheydari SMM, Salehi H, Razavi SR. Reduction of the Structure Parameter of Forward Osmosis Membranes by Using Sodium Bicarbonate as Pore-Forming Agent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7591-7599. [PMID: 34106713 DOI: 10.1021/acs.langmuir.1c01097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The forward osmosis (FO) process suffers from unfavorable internal concentration polarization (ICP) of the solute within the support layer of thin-film composite forward osmosis (TFC-FO) membranes. To lower the ICP effect, a support layer with low tortuosity, high porosity, and interconnected pores is necessary. In the present investigation, sodium bicarbonate has been presented as a simple pore-forming agent to decline the ICP within a poly(ethersulfone) substrate. In particular, the porous poly(ethersulfone) support layer was fabricated by embedding sodium bicarbonate into the casting solution to form CO2 gas bubbles in the substrate during phase inversion in an acidic nonsolvent. Experimental results revealed that the separation performance of the TFC-FO membranes significantly improved. The most water-permeable membrane was prepared in the acidic nonsolvent (TFC-SB.3) and it demonstrated a water flux of 26.6 LMH and a reverse salt flux of 3.6 gMH in the FO test. In addition, the TFC-SB.3 membrane showed an 85% increase in water permeability (2.13 LMH/bar) with negligible change in salt rejection (94.3%). Such observations were based on the increase of substrate porosity and the improved connectivity of the finger-like channels through in situ CO2 gas bubbling that alleviate the ICP phenomena. Therefore, the current study presents a simple, scalable method to design a high-performance TFC-FO membrane.
Collapse
Affiliation(s)
- Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran 25529, Iran
| | | | - Hasan Salehi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran 25529, Iran
| | - Seyed Reza Razavi
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6619, Tehran 25529, Iran
| |
Collapse
|
10
|
Asad A, Rastgar M, Sameoto D, Sadrzadeh M. Gravity assisted super high flux microfiltration polyamide-imide membranes for oil/water emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Karkooti A, Rastgar M, Nazemifard N, Sadrzadeh M. Study on antifouling behaviors of GO modified nanocomposite membranes through QCM-D and surface energetics analysis. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|