Abstract
The purpose of this paper is to demonstrate the use of the phase separation procedure in order to synthesize ultrafiltration polycarbonate containing aluminum oxide (Al2O3) nanoparticles (NPs) to remove emerging contaminants from wastewater at varying temperatures and nanoparticle contents. In the membrane structure, Al2O3-NPs are loaded at rates of 0≤φ≤1% volume. Fourier transform infrared (FTIR), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the fabricated membrane containing Al2O3-NPs. Nevertheless, volume fractions ranged from 0 to 1% during the experiment, which was conducted between 15 and 55 °C. An analysis of the ultrafiltration results was conducted by using a curve-fitting model to determine the interaction between these parameters and the effect of all independent factors on the emerging containment removal. Shear stress and shear rate for this nanofluid are nonlinear at different temperatures and volume fractions. Viscosity decreases with increasing temperature at a specific volume fraction. In order to remove emerging contaminants, a decrease in viscosity at a relative level fluctuates, resulting in more porosity in the membrane. NPs become more viscous with an increasing volume fraction at any given temperature on the membrane. For example, a maximum relative viscosity increases of 34.97% is observed for a 1% volume fraction at 55 °C. A novel model is then used to measure the viscosity of nanofluid. This indicates that the results and experimental data are in very close agreement, as the maximum deviation is 2.6%.
Collapse