1
|
Marsden AA, Corcoran M, Karlsson Hedestam G, Garrett N, Karim SSA, Moore PL, Kitchin D, Morris L, Scheepers C. Novel polymorphic and copy number diversity in the antibody IGH locus of South African individuals. Immunogenetics 2024; 77:6. [PMID: 39627383 PMCID: PMC11615098 DOI: 10.1007/s00251-024-01363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
The heavy chain of an antibody is crucial for mediating antigen binding. IGHV genes, which partially encode the heavy chain of antibodies, exhibit vast genetic diversity largely through polymorphism and copy number variation (CNV). These genetic variations impact population-level expression levels. In this study, we analyzed expressed antibody transcriptomes and matched germline IGHV genes from donors from KwaZulu-Natal, South Africa. Amplicon NGS targeting germline IGHV sequences was performed on genomic DNA from 70 participants, eight of whom had matched datasets of expressed antibody transcriptomes. Germline IGHV sequencing identified 161 unique IGHV alleles, of which 32 were novel. A further 21 novel IGHV alleles were detected in the expressed transcriptomes of these donors. We also examined the datasets for CNV, uncovering gene duplications of 10 IGHV genes from germline sequencing and 33 genes in the expressed transcriptomes. Many of the IGHV gene duplications have not been described in other populations. This study expands our understanding of genetic differences in distinct populations and suggests the potential impact of genetic diversity on immune responses.
Collapse
Affiliation(s)
- Alaine A Marsden
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, HIV Virology Section, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Martin Corcoran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, Columbia, NY, USA
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, HIV Virology Section, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Dale Kitchin
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for HIV and STIs, HIV Virology Section, National Institute for Communicable Diseases (NICD), a Division of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Lynn Morris
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Cathrine Scheepers
- SA MRC Antibody Immunity Research Unit (AIRU), University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Yan Q, Zhang Y, Hou R, Pan W, Liang H, Gao X, Deng W, Huang X, Qu L, Tang C, He P, Liu B, Wang Q, Zhao X, Lin Z, Chen Z, Li P, Han J, Xiong X, Zhao J, Li S, Niu X, Chen L. Deep immunoglobulin repertoire sequencing depicts a comprehensive atlas of spike-specific antibody lineages shared among COVID-19 convalescents. Emerg Microbes Infect 2024; 13:2290841. [PMID: 38044868 PMCID: PMC10810631 DOI: 10.1080/22221751.2023.2290841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Neutralizing antibodies are a key component in protective humoral immunity against SARS-CoV-2. Currently, available technologies cannot track epitope-specific antibodies in global antibody repertoires. Thus, the comprehensive repertoire of spike-specific neutralizing antibodies elicited by SARS-CoV-2 infection is not fully understood. We therefore combined high-throughput immunoglobulin heavy chain (IgH) repertoire sequencing, and structural and bioinformatics analysis to establish an antibodyomics pipeline, which enables tracking spike-specific antibody lineages that target certain neutralizing epitopes. We mapped the neutralizing epitopes on the spike and determined the epitope-preferential antibody lineages. This analysis also revealed numerous overlaps between immunodominant neutralizing antibody-binding sites and mutation hotspots on spikes as observed so far in SARS-CoV-2 variants. By clustering 2677 spike-specific antibodies with 360 million IgH sequences that we sequenced, a total of 329 shared spike-specific antibody clonotypes were identified from 33 COVID-19 convalescents and 24 SARS-CoV-2-naïve individuals. Epitope mapping showed that the shared antibody responses target not only neutralizing epitopes on RBD and NTD but also non-neutralizing epitopes on S2. The immunodominance of neutralizing antibody response is determined by the occurrence of specific precursors in human naïve B-cell repertoires. We identified that only 28 out of the 329 shared spike-specific antibody clonotypes persisted for at least 12 months. Among them, long-lived IGHV3-53 antibodies are likely to evolve cross-reactivity to Omicron variants through accumulating somatic hypermutations. Altogether, we created a comprehensive atlas of spike-targeting antibody lineages in COVID-19 convalescents and antibody precursors in human naïve B cell repertoires, providing a valuable reference for future vaccine design and evaluation.
Collapse
Affiliation(s)
- Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Ruitian Hou
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Wenjing Pan
- Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, People’s Republic of China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Weiqi Deng
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Xiaohan Huang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linbing Qu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Congli Tang
- Nanjing ARP Biotechnology Co., Ltd, Nanjing, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Banghui Liu
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Qian Wang
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Xinwei Zhao
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Zihan Lin
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- University of Chinese Academy of Science, Beijing, People’s Republic of China
| | - Zhaoming Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Jian Han
- iRepertoire Inc., Huntsville, AL, USA
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| | - Song Li
- Hengyang Medical School, University of South China, Hengyang, People’s Republic of China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People’s Republic of China
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou National Laboratory, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Abu-Shmais AA, Vukovich MJ, Wasdin PT, Suresh YP, Marinov TM, Rush SA, Gillespie RA, Sankhala RS, Choe M, Joyce MG, Kanekiyo M, McLellan JS, Georgiev IS. Antibody sequence determinants of viral antigen specificity. mBio 2024; 15:e0156024. [PMID: 39264172 PMCID: PMC11481873 DOI: 10.1128/mbio.01560-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Throughout life, humans experience repeated exposure to viral antigens through infection and vaccination, resulting in the generation of diverse, antigen-specific antibody repertoires. A paramount feature of antibodies that enables their critical contributions in counteracting recurrent and novel pathogens, and consequently fostering their utility as valuable targets for therapeutic and vaccine development, is the exquisite specificity displayed against their target antigens. Yet, there is still limited understanding of the determinants of antibody-antigen specificity, particularly as a function of antibody sequence. In recent years, experimental characterization of antibody repertoires has led to novel insights into fundamental properties of antibody sequences but has been largely decoupled from at-scale antigen specificity analysis. Here, using the LIBRA-seq technology, we generated a large data set mapping antibody sequence to antigen specificity for thousands of B cells, by screening the repertoires of a set of healthy individuals against 20 viral antigens representing diverse pathogens of biomedical significance. Analysis uncovered virus-specific patterns in variable gene usage, gene pairing, somatic hypermutation, as well as the presence of convergent antiviral signatures across multiple individuals, including the presence of public antibody clonotypes. Notably, our results showed that, for B-cell receptors originating from different individuals but leveraging an identical combination of heavy and light chain variable genes, there is a specific CDRH3 identity threshold above which B cells appear to exclusively share the same antigen specificity. This finding provides a quantifiable measure of the relationship between antibody sequence and antigen specificity and further defines experimentally grounded criteria for defining public antibody clonality.IMPORTANCEThe B-cell compartment of the humoral immune system plays a critical role in the generation of antibodies upon new and repeated pathogen exposure. This study provides an unprecedented level of detail on the molecular characteristics of antibody repertoires that are specific to each of the different target pathogens studied here and provides empirical evidence in support of a 70% CDRH3 amino acid identity threshold in pairs of B cells encoded by identical IGHV:IGL(K)V genes, as a means of defining public clonality and therefore predicting B-cell antigen specificity in different individuals. This is of exceptional importance when leveraging public clonality as a method to annotate B-cell receptor data otherwise lacking antigen specificity information. Understanding the fundamental rules of antibody-antigen interactions can lead to transformative new approaches for the development of antibody therapeutics and vaccines against current and emerging viruses.
Collapse
Affiliation(s)
- Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Perry T. Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yukthi P. Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Toma M. Marinov
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Scott A. Rush
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajeshwer S. Sankhala
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Misook Choe
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - M. Gordon Joyce
- Emerging Infectious Disease Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Luo M, Zhou R, Tang B, Liu H, Chen B, Liu N, Mo Y, Zhang P, Lee YL, Ip JD, Wing-Ho Chu A, Chan WM, Man HO, Chen Y, To KKW, Yuen KY, Dang S, Chen Z. Ultrapotent class I neutralizing antibodies post Omicron breakthrough infection overcome broad SARS-CoV-2 escape variants. EBioMedicine 2024; 108:105354. [PMID: 39341153 PMCID: PMC11470419 DOI: 10.1016/j.ebiom.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The spread of emerging SARS-CoV-2 immune escape sublineages, especially JN.1 and KP.2, has resulted in new waves of COVID-19 globally. The evolving memory B cell responses elicited by the parental Omicron variants to subvariants with substantial antigenic drift remain incompletely investigated. METHODS Using the single B cell antibody cloning technology, we isolated single memory B cells, delineated the B cell receptor repertoire and conducted the pseudovirus-based assay for recovered neutralizing antibodies (NAb) screening. We analyzed the cryo-EM structures of top broadly NAbs (bnAbs) and evaluated their in vivo efficacy (golden Syrian hamster model). FINDINGS By investigating the evolution of human B cell immunity, we discovered a new panel of bnAbs arising from vaccinees after Omicron BA.2/BA.5 breakthrough infections. Two lead bnAbs neutralized major Omicron subvariants including JN.1 and KP.2 with IC50 values less than 10 ng/mL, representing ultrapotent receptor binding domain (RBD)-specific class I bnAbs. They belonged to the IGHV3-53/3-66 clonotypes instead of evolving from the pre-existing vaccine-induced IGHV1-58/IGKV3-20 bnAb ZCB11. Despite sequence diversity, they targeted previously unrecognized, highly conserved conformational epitopes in the receptor binding motif (RBM) for ultrapotent ACE2 blockade. The lead bnAb ZCP3B4 not only protected the lungs of hamsters intranasally challenged with BA.5.2, BQ.1.1 and XBB.1.5 but also prevented their contact transmission. INTERPRETATION Our findings demonstrated that class I bnAbs have evolved an ultrapotent mode of action protecting against highly transmissible and broad Omicron escape variants, and their epitopes are potential targets for novel bnAbs and vaccine development. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Mengxiao Luo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China
| | - Bingjie Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Hang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Bohao Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Na Liu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yufei Mo
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Pengfei Zhang
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Ye Lim Lee
- Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jonathan Daniel Ip
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Allen Wing-Ho Chu
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Wan-Mui Chan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Hiu-On Man
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Yuting Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kelvin Kai-Wang To
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China; HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, 518057, People's Republic of China.
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China; Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, People's Republic of China; Centre for Virology, Vaccinology and Therapeutics, Health@InnoHK, The University of Hong Kong, Hong Kong SAR, People's Republic of China; State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
5
|
Hsiao YC, Wallweber HA, Alberstein RG, Lin Z, Du C, Etxeberria A, Aung T, Shang Y, Seshasayee D, Seeger F, Watkins AM, Hansen DV, Bohlen CJ, Hsu PL, Hötzel I. Rapid affinity optimization of an anti-TREM2 clinical lead antibody by cross-lineage immune repertoire mining. Nat Commun 2024; 15:8382. [PMID: 39333507 PMCID: PMC11437124 DOI: 10.1038/s41467-024-52442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/07/2024] [Indexed: 09/29/2024] Open
Abstract
We describe a process for rapid antibody affinity optimization by repertoire mining to identify clones across B cell clonal lineages based on convergent immune responses where antigen-specific clones with the same heavy (VH) and light chain germline segment pairs, or parallel lineages, bind a single epitope on the antigen. We use this convergence framework to mine unique and distinct VH lineages from rat anti-triggering receptor on myeloid cells 2 (TREM2) antibody repertoire datasets with high diversity in the third complementarity-determining loop region (CDR H3) to further affinity-optimize a high-affinity agonistic anti-TREM2 antibody while retaining critical functional properties. Structural analyses confirm a nearly identical binding mode of anti-TREM2 variants with subtle but significant structural differences in the binding interface. Parallel lineage repertoire mining is uniquely tailored to rationally explore the large CDR H3 sequence space in antibody repertoires and can be easily and generally applied to antibodies discovered in vivo.
Collapse
Affiliation(s)
- Yi-Chun Hsiao
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | | | | | - Zhonghua Lin
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Changchun Du
- Department of Biochemical and Cellular Pharmacology, Genentech, South San Francisco, CA, USA
| | | | - Theint Aung
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Yonglei Shang
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
- Amberstone Biosciences, Irvine, CA, USA
| | - Dhaya Seshasayee
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA
| | - Franziska Seeger
- Prescient Design, a Genentech Accelerator, South San Francisco, CA, USA
| | - Andrew M Watkins
- Prescient Design, a Genentech Accelerator, South San Francisco, CA, USA
| | - David V Hansen
- Department of Neuroscience, Genentech, South San Francisco, CA, USA
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | | | - Peter L Hsu
- Department of Structural Biology, Genentech, South San Francisco, CA, USA
| | - Isidro Hötzel
- Department of Antibody Engineering, Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
6
|
Zia A, Orozco A, Fang ISY, Tang AM, Mendoza Viruega AS, Dong S, Leung LYT, Devraj VM, Oludada OE, Ehrhardt GRA. High throughput long-read sequencing of circulating lymphocytes of the evolutionarily distant sea lamprey reveals diversity and common elements of the variable lymphocyte receptor B (VLRB) repertoire. Front Immunol 2024; 15:1427075. [PMID: 39170622 PMCID: PMC11335541 DOI: 10.3389/fimmu.2024.1427075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The leucine-rich repeat-based variable lymphocyte receptor B (VLRB) antibody system of jawless vertebrates is capable of generating an antibody repertoire equal to or exceeding the diversity of antibody repertoires of jawed vertebrates. Unlike immunoglobulin-based immune repertoires, the VLRB repertoire diversity is characterized by variable lengths of VLRB encoding transcripts, rendering conventional immunoreceptor repertoire sequencing approaches unsuitable for VLRB repertoire sequencing. Here we demonstrate that long-read single-molecule real-time (SMRT) sequencing (PacBio) approaches permit the efficient large-scale assessment of the VLRB repertoire. We present a computational pipeline for sequence data processing and provide the first repertoire-based analysis of VLRB protein characteristics including properties of its subunits and regions of diversity within each structural leucine-rich repeat subunit. Our study provides a template to explore changes in the VLRB repertoire during immune responses and to establish large scale VLRB repertoire databases for computational approaches aimed at isolating monoclonal VLRB reagents for biomedical research and clinical applications.
Collapse
Affiliation(s)
| | - Ariel Orozco
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Irene S. Y. Fang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Aspen M. Tang
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Shilan Dong
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Vijaya M. Devraj
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
7
|
Abu-Shmais AA, Miller RJ, Janke AK, Wolters RM, Holt CM, Raju N, Carnahan RH, Crowe JE, Mousa JJ, Georgiev IS. Potent HPIV3-neutralizing IGHV5-51 Antibodies Identified from Multiple Individuals Show L Chain and CDRH3 Promiscuity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1450-1456. [PMID: 38488511 PMCID: PMC11018509 DOI: 10.4049/jimmunol.2300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 04/17/2024]
Abstract
Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.
Collapse
Affiliation(s)
- Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rose J. Miller
- Department of Infectious Diseases, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Alexis K. Janke
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
| | - Rachael M. Wolters
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt
University Medical Center; Nashville, TN 37232, USA
| | - Nagarajan Raju
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University
Medical Center, Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University
Medical Center, Nashville, TN 37232, USA
| | - Jarrod J. Mousa
- Department of Infectious Diseases, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Center for Vaccines and Immunology, College of
Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin
College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical
Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology and
Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and
Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt
University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt
University, Nashville, TN 37232, USA
- Program in Computational Microbiology and
Immunology, Vanderbilt University Medical Center; Nashville, TN, 37232, USA
| |
Collapse
|
8
|
Tan TJC, Verma AK, Odle A, Lei R, Meyerholz DK, Matreyek KA, Perlman S, Wong LYR, Wu NC. Evidence of antigenic drift in the fusion machinery core of SARS-CoV-2 spike. Proc Natl Acad Sci U S A 2024; 121:e2317222121. [PMID: 38557175 PMCID: PMC11009667 DOI: 10.1073/pnas.2317222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines.
Collapse
Affiliation(s)
- Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Department of Pediatrics, University of Iowa, Iowa City, IA52242
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ07103
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
9
|
Balashova D, van Schaik BDC, Stratigopoulou M, Guikema JEJ, Caniels TG, Claireaux M, van Gils MJ, Musters A, Anang DC, de Vries N, Greiff V, van Kampen AHC. Systematic evaluation of B-cell clonal family inference approaches. BMC Immunol 2024; 25:13. [PMID: 38331731 PMCID: PMC11370117 DOI: 10.1186/s12865-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The reconstruction of clonal families (CFs) in B-cell receptor (BCR) repertoire analysis is a crucial step to understand the adaptive immune system and how it responds to antigens. The BCR repertoire of an individual is formed throughout life and is diverse due to several factors such as gene recombination and somatic hypermutation. The use of Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using next generation sequencing enabled the generation of full BCR repertoires that also include rare CFs. The reconstruction of CFs from AIRR-seq data is challenging and several approaches have been developed to solve this problem. Currently, most methods use the heavy chain (HC) only, as it is more variable than the light chain (LC). CF reconstruction options include the definition of appropriate sequence similarity measures, the use of shared mutations among sequences, and the possibility of reconstruction without preliminary clustering based on V- and J-gene annotation. In this study, we aimed to systematically evaluate different approaches for CF reconstruction and to determine their impact on various outcome measures such as the number of CFs derived, the size of the CFs, and the accuracy of the reconstruction. The methods were compared to each other and to a method that groups sequences based on identical junction sequences and another method that only determines subclones. We found that after accounting for data set variability, in particular sequencing depth and mutation load, the reconstruction approach has an impact on part of the outcome measures, including the number of CFs. Simulations indicate that unique junctions and subclones should not be used as substitutes for CF and that more complex methods do not outperform simpler methods. Also, we conclude that different approaches differ in their ability to correctly reconstruct CFs when not considering the LC and to identify shared CFs. The results showed the effect of different approaches on the reconstruction of CFs and highlighted the importance of choosing an appropriate method.
Collapse
Affiliation(s)
- Daria Balashova
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Barbera D C van Schaik
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Maria Stratigopoulou
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Pathology, Lymphoma and Myeloma Center Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Tom G Caniels
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Marit J van Gils
- Amsterdam UMC location University of Amsterdam, Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Anne Musters
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Dornatien C Anang
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Niek de Vries
- Amsterdam UMC location University of Amsterdam, Experimental Immunology, Meibergdreef 9, Amsterdam, Netherlands
- Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Antoine H C van Kampen
- Amsterdam UMC location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, Amsterdam, Netherlands.
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands.
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands.
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Wei J, Li J, Zong F, Xiao ZX, Cao Y. Computational Analysis of B-Cell Receptor (BCR) Immune Repertoires with Abalign. Curr Protoc 2024; 4:e1002. [PMID: 38406972 DOI: 10.1002/cpz1.1002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The widespread application of high-throughput sequencing technology has generated massive sequences of B-cell receptor (BCR) immune repertoires. Computational analysis of these data has gained significant attention due to the increasing importance of immunotherapy and precision medicine. It not only reveals the diversity and dynamic changes in immune responses, contributing to the study of associated diseases, but also provides valuable information for immunodiagnostics and drug development. Recently, we introduced a BCR-specific multiple sequence alignment (MSA) method along with a comprehensive platform software called Abalign, which stands out as an excellent choice for analyzing BCR immune repertoires due to its unique high-throughput processing capability. It offers ultra-fast MSA functionality and a wide range of analytical features, including BCR/antibody extraction, clonal grouping, lineage tree construction, mutation profiling, diversity statistics, VJ gene assignment, antibody humanization, and more. Importantly, users can perform these analyses using the graphical user interface without any programming skills or scripts. In this article, we present a series of protocols that integrate Abalign's analysis modules into a cohesive workflow. This step-by-step workflow provides detailed instructions for software installation, data preparation, and comprehensive analysis of BCR immune repertoires. This workflow facilitates the efficient acquisition of comprehensive results in profiling BCR immune repertoires, offering insights into the impacts of infectious diseases, allergies, autoimmune disorders, tumor immunology, and antibody drugs. Abalign is freely available at http://cao.labshare.cn/abalign/. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Resource preparation Basic Protocol 2: Analyzing BCR immune repertoires Support Protocol 1: Aiding antibody humanization Support Protocol 2: Constructing B-cell lineage trees Alternate Protocol: Running with Linux command line Basic Protocol 3: Comparing BCR immune repertoires.
Collapse
Affiliation(s)
- Jiachen Wei
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Junxian Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fanjie Zong
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
11
|
Wall SC, Suryadevara N, Kim C, Shiakolas AR, Holt CM, Irbe EB, Wasdin PT, Suresh YP, Binshtein E, Chen EC, Zost SJ, Canfield E, Crowe JE, Thompson-Arildsen MA, Sheward DJ, Carnahan RH, Georgiev IS. SARS-CoV-2 antibodies from children exhibit broad neutralization and belong to adult public clonotypes. Cell Rep Med 2023; 4:101267. [PMID: 37935199 PMCID: PMC10694659 DOI: 10.1016/j.xcrm.2023.101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/17/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.
Collapse
Affiliation(s)
- Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emma B Irbe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Perry T Wasdin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yukthi P Suresh
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elaine C Chen
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth Canfield
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mary Ann Thompson-Arildsen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Kumar S, Singh S, Chatterjee A, Bajpai P, Sharma S, Katpara S, Lodha R, Dutta S, Luthra K. Recognition determinants of improved HIV-1 neutralization by a heavy chain matured pediatric antibody. iScience 2023; 26:107579. [PMID: 37649696 PMCID: PMC10462834 DOI: 10.1016/j.isci.2023.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
The structural and characteristic features of HIV-1 broadly neutralizing antibodies (bnAbs) from chronically infected pediatric donors are currently unknown. Herein, we characterized a heavy chain matured HIV-1 bnAb 44m, identified from a pediatric elite-neutralizer. Interestingly, in comparison to its wild-type AIIMS-P01 bnAb, 44m exhibited moderately higher level of somatic hypermutations of 15.2%. The 44m neutralized 79% of HIV-1 heterologous viruses (n = 58) tested, with a geometric mean IC50 titer of 0.36 μg/mL. The cryo-EM structure of 44m Fab in complex with fully cleaved glycosylated native-like BG505.SOSIP.664.T332N gp140 envelope trimer at 4.4 Å resolution revealed that 44m targets the V3-glycan N332-supersite and GDIR motif to neutralize HIV-1 with improved potency and breadth, plausibly attributed by a matured heavy chain as compared to that of wild-type AIIMS-P01. This study further improves our understanding on pediatric HIV-1 bnAbs and structural basis of broad HIV-1 neutralization by 44m may be useful blueprint for vaccine design in future.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Swarandeep Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Arnab Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shaifali Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanket Katpara
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Kalpana Luthra
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
13
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. Structure 2023; 31:801-811.e5. [PMID: 37167972 PMCID: PMC10171968 DOI: 10.1016/j.str.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Understanding the molecular features of neutralizing epitopes is important for developing vaccines/therapeutics against emerging SARS-CoV-2 variants. We describe three monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during the first wave of the pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, poorly neutralized Beta, and failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these mAbs in complex with trimeric spike protein showed that all three mAbs bivalently bind spike with two mAbs targeting class 1 and one targeting a class 4 receptor binding domain epitope. The immunogenetic makeup, structure, and function of these mAbs revealed specific molecular interactions associated with the potent multi-variant binding/neutralization efficacy. This knowledge shows how mutational combinations can affect the binding or neutralization of an antibody, which in turn relates to the efficacy of immune responses to emerging SARS-CoV-2 escape variants.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Lilin Lai
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India; Department of Pediatrics, Division of Infectious Diseases, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA.
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Basu M, Fucile C, Piepenbrink MS, Bunce CA, Man LX, Liesveld J, Rosenberg AF, Keefer MC, Kobie JJ. Mixed Origins: HIV gp120-Specific Memory Develops from Pre-Existing Memory and Naive B Cells Following Vaccination in Humans. AIDS Res Hum Retroviruses 2023; 39:350-366. [PMID: 36762930 PMCID: PMC10398743 DOI: 10.1089/aid.2022.0104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
The most potent and broad HIV envelope (Env)-specific antibodies often when reverted to their inferred germline versions representing the naive B cell receptor, fail to bind Env, suggesting that the initial responding B cell population not only exclusively comprises a naive population, but also a pre-existing cross-reactive antigen-experienced B cell pool that expands following Env exposure. Previously we isolated gp120-reactive monoclonal antibodies (mAbs) from participants in HVTN 105, an HIV vaccine trial. Using deep sequencing, focused on immunoglobulin G (IgG), IgA, and IgM, VH-lineage tracking, we identified four of these mAb lineages in pre-immune peripheral blood. We also looked through the ∼7 month postvaccination bone marrow, and interestingly, several of these lineages that were found in prevaccination blood were still persistent in the postvaccination bone marrow, including the CD138+ long-lived plasma cell compartment. The majority of the pre-immune lineage members included IgM, however, IgG and IgA members were also prevalent and exhibited somatic hypermutation. These results suggest that vaccine-induced gp120-specific antibody lineages originate from both naive and cross-reactive memory B cells. ClinicalTrials.gov NCT02207920.
Collapse
Affiliation(s)
- Madhubanti Basu
- Infectious Diseases Division and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Christopher Fucile
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael S. Piepenbrink
- Infectious Diseases Division and University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Catherine A. Bunce
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - Li-Xing Man
- Department of Otolaryngology Head and Neck Surgery, and University of Rochester, Rochester, New York, USA
| | - Jane Liesveld
- Division of Hematology/Oncology, University of Rochester, Rochester, New York, USA
| | - Alexander F. Rosenberg
- Informatics Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael C. Keefer
- Infectious Diseases Division, University of Rochester, Rochester, New York, USA
| | - James J. Kobie
- Infectious Diseases Division and University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
15
|
Swanson O, Martin Beem JS, Rhodes B, Wang A, Barr M, Chen H, Parks R, Saunders KO, Haynes BF, Wiehe K, Azoitei ML. Identification of CDRH3 loops in the B cell receptor repertoire that can be engaged by candidate immunogens. PLoS Pathog 2023; 19:e1011401. [PMID: 37196027 PMCID: PMC10228794 DOI: 10.1371/journal.ppat.1011401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/30/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023] Open
Abstract
A major goal for the development of vaccines against rapidly mutating viruses, such as influenza or HIV, is to elicit antibodies with broad neutralization capacity. However, B cell precursors capable of maturing into broadly neutralizing antibodies (bnAbs) can be rare in the immune repertoire. Due to the stochastic nature of B cell receptor (BCR) rearrangement, a limited number of third heavy chain complementary determining region (CDRH3) sequences are identical between different individuals. Thus, in order to successfully engage broadly neutralizing antibody precursors that rely on their CDRH3 loop for antigen recognition, immunogens must be able to tolerate sequence diversity in the B cell receptor repertoire across an entire vaccinated population. Here, we present a combined experimental and computational approach to identify BCRs in the human repertoire with CDRH3 loops predicted to be engaged by a target immunogen. For a given antibody/antigen pair, deep mutational scanning was first used to measure the effect of CDRH3 loop substitution on binding. BCR sequences, isolated experimentally or generated in silico, were subsequently evaluated to identify CDRH3 loops expected to be bound by the candidate immunogen. We applied this method to characterize two HIV-1 germline-targeting immunogens and found differences in the frequencies with which they are expected to engage target B cells, thus illustrating how this approach can be used to evaluate candidate immunogens towards B cell precursors engagement and to inform immunogen optimization strategies for more effective vaccine design.
Collapse
Affiliation(s)
- Olivia Swanson
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Joshua S. Martin Beem
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Brianna Rhodes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Avivah Wang
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Maggie Barr
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Haiyan Chen
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
- Department of Immunology, Duke University, Durham, North Carolina, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| | - Mihai L. Azoitei
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, United States of America
- Department of Medicine, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
16
|
Chen EC, Gilchuk P, Zost SJ, Ilinykh PA, Binshtein E, Huang K, Myers L, Bonissone S, Day S, Kona CR, Trivette A, Reidy JX, Sutton RE, Gainza C, Diaz S, Williams JK, Selverian CN, Davidson E, Saphire EO, Doranz BJ, Castellana N, Bukreyev A, Carnahan RH, Crowe JE. Systematic analysis of human antibody response to ebolavirus glycoprotein shows high prevalence of neutralizing public clonotypes. Cell Rep 2023; 42:112370. [PMID: 37029928 PMCID: PMC10556194 DOI: 10.1016/j.celrep.2023.112370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Understanding the human antibody response to emerging viral pathogens is key to epidemic preparedness. As the size of the B cell response to a pathogenic-virus-protective antigen is poorly defined, we perform deep paired heavy- and light-chain sequencing in Ebola virus glycoprotein (EBOV-GP)-specific memory B cells, allowing analysis of the ebolavirus-specific antibody repertoire both genetically and functionally. This approach facilitates investigation of the molecular and genetic basis for the evolution of cross-reactive antibodies by elucidating germline-encoded properties of antibodies to EBOV and identification of the overlap between antibodies in the memory B cell and serum repertoire. We identify 73 public clonotypes of EBOV, 20% of which encode antibodies with neutralization activity and capacity to protect mice in vivo. This comprehensive analysis of the public and private antibody repertoire provides insight into the molecular basis of the humoral immune response to EBOV GP, which informs the design of vaccines and improved therapeutics.
Collapse
Affiliation(s)
- Elaine C Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Philipp A Ilinykh
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kai Huang
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Samuel Day
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Chandrahaas R Kona
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher Gainza
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Summer Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Alexander Bukreyev
- Galveston National Laboratory, Galveston, TX 77550, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
17
|
Ruiz Ortega M, Spisak N, Mora T, Walczak AM. Modeling and predicting the overlap of B- and T-cell receptor repertoires in healthy and SARS-CoV-2 infected individuals. PLoS Genet 2023; 19:e1010652. [PMID: 36827454 PMCID: PMC10075420 DOI: 10.1371/journal.pgen.1010652] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/05/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Adaptive immunity's success relies on the extraordinary diversity of protein receptors on B and T cell membranes. Despite this diversity, the existence of public receptors shared by many individuals gives hope for developing population-wide vaccines and therapeutics. Using probabilistic modeling, we show many of these public receptors are shared by chance in healthy individuals. This predictable overlap is driven not only by biases in the random generation process of receptors, as previously reported, but also by their common functional selection. However, the model underestimates sharing between repertoires of individuals infected with SARS-CoV-2, suggesting strong specific antigen-driven convergent selection. We exploit this discrepancy to identify COVID-associated receptors, which we validate against datasets of receptors with known viral specificity. We study their properties in terms of sequence features and network organization, and use them to design an accurate diagnostic tool for predicting SARS-CoV-2 status from repertoire data.
Collapse
Affiliation(s)
- María Ruiz Ortega
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Natanael Spisak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Thierry Mora
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| | - Aleksandra M. Walczak
- Laboratoire de physique de l’École Normale Supérieure, CNRS, PSL University, Sorbonne Université, and Université de Paris, Paris, France
| |
Collapse
|
18
|
Pennell M, Rodriguez OL, Watson CT, Greiff V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol 2023; 44:7-21. [PMID: 36470826 DOI: 10.1016/j.it.2022.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
19
|
He B, Liu S, Xu M, Hu Y, Lv K, Wang Y, Ma Y, Zhai Y, Yue X, Liu L, Lu H, Zhou S, Li P, Mai G, Huang X, Li C, Chen S, Ye S, Zhao P, Yang Y, Li X, Jie Y, Shi M, Yang J, Shu Y, Chen YQ. Comparative global B cell receptor repertoire difference induced by SARS-CoV-2 infection or vaccination via single-cell V(D)J sequencing. Emerg Microbes Infect 2022; 11:2007-2020. [PMID: 35899581 PMCID: PMC9377262 DOI: 10.1080/22221751.2022.2105261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023]
Abstract
Dynamic changes of the paired heavy and light chain B cell receptor (BCR) repertoire provide an essential insight into understanding the humoral immune response post-SARS-CoV-2 infection and vaccination. However, differences between the endogenous paired BCR repertoire kinetics in SARS-CoV-2 infection and previously recovered/naïve subjects treated with the inactivated vaccine remain largely unknown. We performed single-cell V(D)J sequencing of B cells from six healthy donors with three shots of inactivated SARS-CoV-2 vaccine (BBIBP-CorV), five people who received the BBIBP-CorV vaccine after having recovered from COVID-19, five unvaccinated COVID-19 recovered patients and then integrated with public data of B cells from four SARS-CoV-2-infected subjects. We discovered that BCR variable (V) genes were more prominently used in the SARS-CoV-2 exposed groups (both in the group with active infection and in the group that had recovered) than in the vaccinated groups. The VH gene that expanded the most after SARS-CoV-2 infection was IGHV3-33, while IGHV3-23 in the vaccinated groups. SARS-CoV-2-infected group enhanced more BCR clonal expansion and somatic hypermutation than the vaccinated healthy group. A small proportion of public clonotypes were shared between the SARS-CoV-2 infected, vaccinated healthy, and recovered groups. Moreover, several public antibodies had been identified against SARS-CoV-2 spike protein. We comprehensively characterize the paired heavy and light chain BCR repertoire from SARS-CoV-2 infection to vaccination, providing further guidance for the development of the next-generation precision vaccine.
Collapse
Affiliation(s)
- Bing He
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yong Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Xinyu Yue
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Hongjie Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Siwei Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Pengbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Guoqin Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Xiaoping Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Chenhang Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Shifeng Chen
- Department of Respiratory and Critical Care Medicine, The 74(th) Group Army Hospital, Guangzhou, People’s Republic of China
| | - Shupei Ye
- SSL Central Hospital of Dongguan City, Dongguan, People’s Republic of China
| | - Pingsen Zhao
- Laboratory for Diagnosis of Clinical Microbiology and Infection, Medical Research Center, Yuebei People’s Hospital, Shantou University Medical College, Shaoguan, People’s Republic of China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xinhua Li
- Department of Infectious Diseases and Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Mang Shi
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Jingyi Yang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People’s Republic of China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
- b School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- k Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, People’s Republic of China
| |
Collapse
|
20
|
Ismanto HS, Xu Z, Saputri DS, Wilamowski J, Li S, Nugraha DK, Horiguchi Y, Okada M, Arase H, Standley DM. Landscape of infection enhancing antibodies in COVID-19 and healthy donors. Comput Struct Biotechnol J 2022; 20:6033-6040. [PMCID: PMC9635252 DOI: 10.1016/j.csbj.2022.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Jan Wilamowski
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Songling Li
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Dendi K. Nugraha
- Deparment of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
| | - Yasuhiko Horiguchi
- Deparment of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Masato Okada
- Deparment of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of Oncogene Research, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of Immunochemistry, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Department of System Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
- Corresponding author at: Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita 565-0871, Japan.
| |
Collapse
|
21
|
Jaffe DB, Shahi P, Adams BA, Chrisman AM, Finnegan PM, Raman N, Royall AE, Tsai F, Vollbrecht T, Reyes DS, Hepler NL, McDonnell WJ. Functional antibodies exhibit light chain coherence. Nature 2022; 611:352-357. [PMID: 36289331 PMCID: PMC9607724 DOI: 10.1038/s41586-022-05371-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/21/2022] [Indexed: 11/08/2022]
Abstract
The vertebrate adaptive immune system modifies the genome of individual B cells to encode antibodies that bind particular antigens1. In most mammals, antibodies are composed of heavy and light chains that are generated sequentially by recombination of V, D (for heavy chains), J and C gene segments. Each chain contains three complementarity-determining regions (CDR1-CDR3), which contribute to antigen specificity. Certain heavy and light chains are preferred for particular antigens2-22. Here we consider pairs of B cells that share the same heavy chain V gene and CDRH3 amino acid sequence and were isolated from different donors, also known as public clonotypes23,24. We show that for naive antibodies (those not yet adapted to antigens), the probability that they use the same light chain V gene is around 10%, whereas for memory (functional) antibodies, it is around 80%, even if only one cell per clonotype is used. This property of functional antibodies is a phenomenon that we call light chain coherence. We also observe this phenomenon when similar heavy chains recur within a donor. Thus, although naive antibodies seem to recur by chance, the recurrence of functional antibodies reveals surprising constraint and determinism in the processes of V(D)J recombination and immune selection. For most functional antibodies, the heavy chain determines the light chain.
Collapse
|
22
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.24.513517. [PMID: 36324804 DOI: 10.1101/2022.10.13.512091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Lilin Lai
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
- Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Grace Mantus
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
23
|
Patel A, Kumar S, Lai L, Chakravarthy C, Valanparambil R, Reddy ES, Gottimukkala K, Bajpai P, Raju DR, Edara VV, Davis-Gardner ME, Linderman S, Dixit K, Sharma P, Mantus G, Cheedarla N, Verkerke HP, Frank F, Neish AS, Roback JD, Davis CW, Wrammert J, Ahmed R, Suthar MS, Sharma A, Murali-Krishna K, Chandele A, Ortlund EA. Molecular basis of SARS-CoV-2 Omicron variant evasion from shared neutralizing antibody response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.10.24.513517. [PMID: 36324804 PMCID: PMC9628201 DOI: 10.1101/2022.10.24.513517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.
Collapse
Affiliation(s)
- Anamika Patel
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Lilin Lai
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Chennareddy Chakravarthy
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rajesh Valanparambil
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Kusuma School of Biological Sciences, Indian Institute of Technology, New Delhi, 110016, India
| | - Kamalvishnu Gottimukkala
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Dinesh Ravindra Raju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Georgia Tech, Atlanta, GA 30332, USA
| | - Venkata Viswanadh Edara
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Meredith E. Davis-Gardner
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Susanne Linderman
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Kritika Dixit
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pragati Sharma
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Grace Mantus
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hans P. Verkerke
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA,Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| | - Filipp Frank
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew S. Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John D. Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Carl W. Davis
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jens Wrammert
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Department of Microbiology and Immunology, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Amit Sharma
- Structural Parasitology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Department of Pediatrics, Emory National Primate Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA,Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology, New Delhi, 110067, India,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Correspondence: (E.A.O.), (A.C.), (K.M.K.), (A.S.)
| |
Collapse
|
24
|
Xu Z, Ismanto HS, Zhou H, Saputri DS, Sugihara F, Standley DM. Advances in antibody discovery from human BCR repertoires. FRONTIERS IN BIOINFORMATICS 2022; 2:1044975. [PMID: 36338807 PMCID: PMC9631452 DOI: 10.3389/fbinf.2022.1044975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Antibodies make up an important and growing class of compounds used for the diagnosis or treatment of disease. While traditional antibody discovery utilized immunization of animals to generate lead compounds, technological innovations have made it possible to search for antibodies targeting a given antigen within the repertoires of B cells in humans. Here we group these innovations into four broad categories: cell sorting allows the collection of cells enriched in specificity to one or more antigens; BCR sequencing can be performed on bulk mRNA, genomic DNA or on paired (heavy-light) mRNA; BCR repertoire analysis generally involves clustering BCRs into specificity groups or more in-depth modeling of antibody-antigen interactions, such as antibody-specific epitope predictions; validation of antibody-antigen interactions requires expression of antibodies, followed by antigen binding assays or epitope mapping. Together with innovations in Deep learning these technologies will contribute to the future discovery of diagnostic and therapeutic antibodies directly from humans.
Collapse
Affiliation(s)
- Zichang Xu
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hendra S. Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Hao Zhou
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Dianita S. Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Department Systems Immunology, Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
25
|
Waltari E, Nafees S, McCutcheon KM, Wong J, Pak JE. AIRRscape: An interactive tool for exploring B-cell receptor repertoires and antibody responses. PLoS Comput Biol 2022; 18:e1010052. [PMID: 36126074 PMCID: PMC9524643 DOI: 10.1371/journal.pcbi.1010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/30/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022] Open
Abstract
The sequencing of antibody repertoires of B-cells at increasing coverage and depth has led to the identification of vast numbers of immunoglobulin heavy and light chains. However, the size and complexity of these Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) datasets makes it difficult to perform exploratory analyses. To aid in data exploration, we have developed AIRRscape, an R Shiny-based interactive web browser application that enables B-cell receptor (BCR) and antibody feature discovery through comparisons among multiple repertoires. Using AIRR-seq data as input, AIRRscape starts by aggregating and sorting repertoires into interactive and explorable bins of germline V-gene, germline J-gene, and CDR3 length, providing a high-level view of the entire repertoire. Interesting subsets of repertoires can be quickly identified and selected, and then network topologies of CDR3 motifs can be generated for further exploration. Here we demonstrate AIRRscape using patient BCR repertoires and sequences of published monoclonal antibodies to investigate patterns of humoral immunity to three viral pathogens: SARS-CoV-2, HIV-1, and DENV (dengue virus). AIRRscape reveals convergent antibody sequences among datasets for all three pathogens, although HIV-1 antibody datasets display limited convergence and idiosyncratic responses. We have made AIRRscape available as a web-based Shiny application, along with code on GitHub to encourage its open development and use by immuno-informaticians, virologists, immunologists, vaccine developers, and other scientists that are interested in exploring and comparing multiple immune receptor repertoires.
Collapse
Affiliation(s)
- Eric Waltari
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail: (EW); (JEP)
| | - Saba Nafees
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | | | - Joan Wong
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| | - John E. Pak
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
- * E-mail: (EW); (JEP)
| |
Collapse
|
26
|
Park JC, Noh J, Jang S, Kim KH, Choi H, Lee D, Kim J, Chung J, Lee DY, Lee Y, Lee H, Yoo DK, Lee AC, Byun MS, Yi D, Han SH, Kwon S, Mook-Jung I. Association of B cell profile and receptor repertoire with the progression of Alzheimer's disease. Cell Rep 2022; 40:111391. [PMID: 36130492 DOI: 10.1016/j.celrep.2022.111391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/04/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Reports have revealed that the peripheral immune system is linked to neuropathology; however, little is known about the contribution of B lymphocytes in AD. For this longitudinal study, 133 participants are included at baseline and second-year follow-up. Also, we analyze B cell receptor (BCR) repertoire data generated from a public dataset of three normal and 10 AD samples and perform BCR repertoire profiling and pairwise sharing analysis. As a result, longitudinal increase in B lymphocytes is associated with increased cerebral amyloid deposition and hyperactivates induced pluripotent stem cell-derived microglia with loss-of-function for beta-amyloid clearance. Patients with AD share similar class-switched BCR sequences with identical isotypes, despite the high somatic hypermutation rate. Thus, BCR repertoire profiling can lead to the development of individualized immune-based therapeutics and treatment. We provide evidence of both quantitative and qualitative changes in B lymphocytes during AD pathogenesis.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Sukjin Jang
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hayoung Choi
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral Medicine, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea; Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Amos Chungwon Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Soo Byun
- Department of Psychiatry, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Dahyun Yi
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Sun-Ho Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea; BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul 08826, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea; Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Neuroscience Research Institute, Medical Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
27
|
Lee H, Yoo DK, Han J, Kim KH, Noh J, Lee Y, Lee E, Kwon S, Chung J. Optimization of peripheral blood volume for in silico reconstitution of the human B cell receptor repertoire. FEBS Open Bio 2022; 12:1634-1643. [PMID: 35866358 PMCID: PMC9433817 DOI: 10.1002/2211-5463.13467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
B cells recognize antigens via membrane‐expressed B‐cell receptors (BCR) and antibodies. Similar human BCR sequences are frequently found at a significantly higher frequency than that theoretically calculated. Patients infected with SARS‐CoV2 and HIV or with autoimmune diseases share very similar BCRs. Therefore, in silico reconstitution of BCR repertoires and identification of stereotypical BCR sequences related to human pathology have diagnostic potential. Furthermore, monitoring changes of clinically significant BCR sequences and isotype conversion has prognostic potential. For BCR repertoire analysis, peripheral blood (PB) is the most convenient source. However, the optimal human PB volume for in silico reconstitution of the BCR repertoire has not been studied in detail. Here, we sampled 5, 10, and 20 mL PB from the left arm and 40 mL PB from the right arm of two volunteers, reconstituted in silico PB BCR repertoires, and compared their composition. In both volunteers, PB sampling over 20 mL resulted in slight increases in functional unique sequences (FUSs) or almost no increase in repertoire diversity. All FUSs with a frequency above 0.08% or 0.03% in the 40 mL PB BCR repertoire were detected even in the 5 mL PB BCR repertoire from each volunteer. FUSs with a higher frequency were more likely to be found in BCR repertoires from reduced PB volume, and those coexisting in two repertoires showed a statistically significant correlation in frequency irrespective of sampled anatomical site. The correlation was more significant in higher‐frequency FUSs. These observations support the potential of BCR repertoire analysis for diagnosis.
Collapse
Affiliation(s)
- Hyunho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea
| | - Duck Kyun Yoo
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jerome Han
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Hyun Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jinsung Noh
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea
| | - Yonghee Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea
| | - Eunjae Lee
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Korea.,BK21+ Creative Research Engineer Development for IT, Seoul National University, Seoul, 08826, Korea.,Bio-MAX Institute, Seoul National University, Seoul, 08826, Korea
| | - Junho Chung
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Biomedical Science, Seoul National University College of Medicine, Seoul, 03080, Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| |
Collapse
|
28
|
Wang Y, Yuan M, Lv H, Peng J, Wilson IA, Wu NC. A large-scale systematic survey reveals recurring molecular features of public antibody responses to SARS-CoV-2. Immunity 2022; 55:1105-1117.e4. [PMID: 35397794 PMCID: PMC8947961 DOI: 10.1016/j.immuni.2022.03.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/15/2022] [Accepted: 03/23/2022] [Indexed: 11/26/2022]
Abstract
Global research to combat the COVID-19 pandemic has led to the isolation and characterization of thousands of human antibodies to the SARS-CoV-2 spike protein, providing an unprecedented opportunity to study the antibody response to a single antigen. Using the information derived from 88 research publications and 13 patents, we assembled a dataset of ∼8,000 human antibodies to the SARS-CoV-2 spike protein from >200 donors. By analyzing immunoglobulin V and D gene usages, complementarity-determining region H3 sequences, and somatic hypermutations, we demonstrated that the common (public) responses to different domains of the spike protein were quite different. We further used these sequences to train a deep-learning model to accurately distinguish between the human antibodies to SARS-CoV-2 spike protein and those to influenza hemagglutinin protein. Overall, this study provides an informative resource for antibody research and enhances our molecular understanding of public antibody responses.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Huibin Lv
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
29
|
Chang AJ, Baron S, Hoffman J, Hicar MD. Clonal expansion and markers of directed mutation of IGHV4-34 B cells in plasmablasts during Kawasaki disease. Mol Immunol 2022; 145:67-77. [PMID: 35303530 PMCID: PMC9166636 DOI: 10.1016/j.molimm.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/18/2022] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
Kawasaki disease (KD) is the leading cause of acquired heart disease in children. The cause remains unknown; however, epidemiologic and demographic data support a single preceding infectious agent may lead to KD. A variety of pathophysiologic responses have been proposed, including direct invasion of the coronary arteries, a superantigen response, and a post-infectious autoimmune phenomenon. A role for B cell responses during KD are supported by numerous findings including B cell specific markers identified in genome wide association studies. We have recently published data showing children with KD have similar plasmablast (PB) responses to children with infections. Since during other infections, cells expressing antibodies against the preceding infection are enriched in PBs, we sought to explore the specific antibodies encoded by PBs during KD. In one child we see a massive expansion in IGHV4-34 utilizing antibodies, which has been associated with autoimmunity in the past. We further explored this expansion of IGHV4-34 utilization during the peripheral PB rise with next generation sequencing (NGS) analysis and utilizing newer techniques of chromium chip single cell separation (10x Genomics®). We also utilized peptide array screening to attempt to identify an antigen to the most prolific clones.
Collapse
Affiliation(s)
| | - Sarah Baron
- University at Buffalo, Department of Pediatrics, USA
| | | | - Mark D Hicar
- University at Buffalo, Department of Pediatrics, USA.
| |
Collapse
|
30
|
Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection. Virol Sin 2022; 37:370-379. [PMID: 35247647 PMCID: PMC9243603 DOI: 10.1016/j.virs.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
Advancements in high-throughput sequencing (HTS) of antibody repertoires (Ig-Seq) have unprecedentedly improved our ability to characterize the antibody repertoires on a large scale. However, currently, only a few studies explored the influence of chronic HIV-1 infection on human antibody repertoires and many of them reached contradictory conclusions, possibly limited by inadequate sequencing depth and throughput. To better understand how HIV-1 infection would impact humoral immune system, in this study, we systematically analyzed the differences between the IgM (HIV-IgM) and IgG (HIV-IgG) heavy chain repertoires of HIV-1 infected patients, as well as between antibody repertoires of HIV-1 patients and healthy donors (HH). Notably, the public unique clones accounted for only a negligible proportion between the HIV-IgM and HIV-IgG repertoires libraries, and the diversity of unique clones in HIV-IgG remarkably reduced. In aspect of somatic mutation rates of CDR1 and CDR2, the HIV-IgG repertoire was higher than HIV-IgM. Besides, the average length of CDR3 region in HIV-IgM was significant longer than that in the HH repertoire, presumably caused by the great number of novel VDJ rearrangement patterns, especially a massive use of IGHJ6. Moreover, some of the B cell clonotypes had numerous clones, and somatic variants were detected within the clonotype lineage in HIV-IgG, indicating HIV-1 neutralizing activities. The in-depth characterization of HIV-IgG and HIV-IgM repertoires enriches our knowledge in the profound effect of HIV-1 infection on human antibody repertoires and may have practical value for the discovery of therapeutic antibodies. Ultra-deep sequencing of both IgM and IgG repertoires in chronic HIV-1 infection. VDJ gene rearrangement patterns can be dramatically changed by HIV-1 infection. Multiple mechanisms cause the high complexity of HIV-1-experienced antibodies. Discovery of promising neutralizing HIV-1 antibodies from antibody repertoires.
Collapse
|
31
|
Murji AA, Raju N, Qin JS, Kaldine H, Janowska K, Fechter EF, Mapengo R, Scheepers C, Setliff I, Acharya P, Morris L, Georgiev IS. Sequence and functional characterization of a public HIV-specific antibody clonotype. iScience 2022; 25:103564. [PMID: 34984325 PMCID: PMC8692997 DOI: 10.1016/j.isci.2021.103564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 12/01/2021] [Indexed: 01/15/2023] Open
Abstract
Public antibody clonotypes shared among multiple individuals have been identified for several pathogens. However, little is known about the determinants of antibody "publicness". Here, we characterize the sequence and functional properties of antibodies from a public clonotype targeting the CD4 binding site on HIV-1 Env. Our results showed that HIV-1 specificity for the public antibodies studied here, comprising sequences from three individuals, was modulated by the VH, but not VL, germline gene. Non-native pairing of public heavy and light chains from different individuals suggested functional complementation of sequences within this public antibody clonotype. The strength of antigen recognition appeared to be dependent on the specific antibody light chain used, but not on other sequence features such as native-antibody or germline sequence identity. Understanding the determinants of antibody clonotype "publicness" can provide insights into the fundamental rules of host-pathogen interactions at the population level, with implications for clonotype-specific vaccine development.
Collapse
Affiliation(s)
- Amyn A. Murji
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Juliana S. Qin
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Haajira Kaldine
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Katarzyna Janowska
- Division of Structural Biology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Rutendo Mapengo
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Cathrine Scheepers
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Priyamvada Acharya
- Division of Structural Biology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lynn Morris
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban 4041, South Africa
| | - Ivelin S. Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Robinson SA, Raybould MIJ, Schneider C, Wong WK, Marks C, Deane CM. Epitope profiling using computational structural modelling demonstrated on coronavirus-binding antibodies. PLoS Comput Biol 2021; 17:e1009675. [PMID: 34898603 PMCID: PMC8700021 DOI: 10.1371/journal.pcbi.1009675] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/23/2021] [Accepted: 11/22/2021] [Indexed: 12/30/2022] Open
Abstract
Identifying the epitope of an antibody is a key step in understanding its function and its potential as a therapeutic. Sequence-based clonal clustering can identify antibodies with similar epitope complementarity, however, antibodies from markedly different lineages but with similar structures can engage the same epitope. We describe a novel computational method for epitope profiling based on structural modelling and clustering. Using the method, we demonstrate that sequence dissimilar but functionally similar antibodies can be found across the Coronavirus Antibody Database, with high accuracy (92% of antibodies in multiple-occupancy structural clusters bind to consistent domains). Our approach functionally links antibodies with distinct genetic lineages, species origins, and coronavirus specificities. This indicates greater convergence exists in the immune responses to coronaviruses than is suggested by sequence-based approaches. Our results show that applying structural analytics to large class-specific antibody databases will enable high confidence structure-function relationships to be drawn, yielding new opportunities to identify functional convergence hitherto missed by sequence-only analysis. Antibodies are a key component of the immune system that combat pathogens by binding to a defined region of their molecular surface (known as an ‘epitope’). The ability to map which antibodies target the same epitopes is crucial when designing non-competing antibody therapeutics or predicting the influence of pathogen mutation on population immunity. While one can use laboratory experiments to deduce when pairs of antibodies engage the same epitope, such experiments are very expensive and time consuming if used to compare on the order of thousands of antibodies. In this work, we report a new computational algorithm (SPACE) that clusters antibodies that target the same epitope based on their predicted 3D structure, as binding site structure is a property often conserved between binders complementary to the same epitope. Unlike existing antibody epitope profiling tools which assume two antibodies must share a high sequence identity/similar genetic basis to engage the same region, our orthogonal method can detect broader patterns of convergent evolution across binders to different pathogen strains, and between antibodies with different genetic and even species origins.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Antibody Specificity
- Antigen-Antibody Complex/chemistry
- Antigen-Antibody Complex/genetics
- Antigen-Antibody Reactions/genetics
- Antigen-Antibody Reactions/immunology
- Antigens, Viral/chemistry
- COVID-19/immunology
- COVID-19/virology
- Computational Biology
- Coronavirus/chemistry
- Coronavirus/genetics
- Coronavirus/immunology
- Databases, Chemical
- Epitope Mapping
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Humans
- Mice
- Models, Molecular
- Pandemics
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Single-Domain Antibodies/immunology
Collapse
Affiliation(s)
- Sarah A Robinson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Constantin Schneider
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Wing Ki Wong
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Claire Marks
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, United Kingdom
| |
Collapse
|
33
|
Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J Virol 2021; 96:e0160021. [PMID: 34878902 PMCID: PMC8865482 DOI: 10.1128/jvi.01600-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A comprehensive study of the B cell response against SARS-CoV-2 could be significant for understanding the immune response and developing therapeutical antibodies and vaccines. To define the dynamics and characteristics of the antibody repertoire following SARS-CoV-2 infection, we analyzed the mRNA transcripts of immunoglobulin heavy chain (IgH) repertoires of 24 peripheral blood samples collected between 3 and 111 days after symptom onset from 10 COVID-19 patients. Massive clonal expansion of naive B cells with limited somatic hypermutation (SHM) was observed in the second week after symptom onset. The proportion of low-SHM IgG clones strongly correlated with spike-specific IgG antibody titers, highlighting the significant activation of naive B cells in response to a novel virus infection. The antibody isotype switching landscape showed a transient IgA surge in the first week after symptom onset, followed by a sustained IgG elevation that lasted for at least 3 months. SARS-CoV-2 infection elicited poly-germ line reactive antibody responses. Interestingly, 17 different IGHV germ line genes recombined with IGHJ6 showed significant clonal expansion. By comparing the IgH repertoires that we sequenced with the 774 reported SARS-CoV-2–reactive monoclonal antibodies (MAbs), 13 shared spike-specific IgH clusters were found. These shared spike-specific IgH clusters are derived from the same lineage of several recently published neutralizing MAbs, including CC12.1, CC12.3, C102, REGN10977, and 4A8. Furthermore, identical spike-specific IgH sequences were found in different COVID-19 patients, suggesting a highly convergent antibody response to SARS-CoV-2. Our analysis based on sequencing antibody repertoires from different individuals revealed key signatures of the systemic B cell response induced by SARS-CoV-2 infection. IMPORTANCE Although the canonical delineation of serum antibody responses following SARS-CoV-2 infection has been well established, the dynamics of antibody repertoire at the mRNA transcriptional level has not been well understood, especially the correlation between serum antibody titers and the antibody mRNA transcripts. In this study, we analyzed the IgH transcripts and characterized the B cell clonal expansion and differentiation, isotype switching, and somatic hypermutation in COVID-19 patients. This study provided insights at the repertoire level for the B cell response after SARS-CoV-2 infection.
Collapse
|
34
|
Wang Y, Yuan M, Peng J, Wilson IA, Wu NC. A large-scale systematic survey of SARS-CoV-2 antibodies reveals recurring molecular features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.26.470157. [PMID: 34873599 PMCID: PMC8647650 DOI: 10.1101/2021.11.26.470157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past two years, the global research in combating COVID-19 pandemic has led to isolation and characterization of numerous human antibodies to the SARS-CoV-2 spike. This enormous collection of antibodies provides an unprecedented opportunity to study the antibody response to a single antigen. From mining information derived from 88 research publications and 13 patents, we have assembled a dataset of ∼8,000 human antibodies to the SARS-CoV-2 spike from >200 donors. Analysis of antibody targeting of different domains of the spike protein reveals a number of common (public) responses to SARS-CoV-2, exemplified via recurring IGHV/IGK(L)V pairs, CDR H3 sequences, IGHD usage, and somatic hypermutation. We further present a proof-of-concept for prediction of antigen specificity using deep learning to differentiate sequences of antibodies to SARS-CoV-2 spike and to influenza hemagglutinin. Overall, this study not only provides an informative resource for antibody and vaccine research, but fundamentally advances our molecular understanding of public antibody responses to a viral pathogen.
Collapse
Affiliation(s)
- Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
35
|
Hoehn KB, Turner JS, Miller FI, Jiang R, Pybus OG, Ellebedy AH, Kleinstein SH. Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving. eLife 2021; 10:e70873. [PMID: 34787567 PMCID: PMC8741214 DOI: 10.7554/elife.70873] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
| | | | - Ruoyi Jiang
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
| | - Oliver G Pybus
- Department of Zoology, University of OxfordOxfordUnited Kingdom
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of MedicineSt LouisUnited States
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of MedicineSt LouisUnited States
| | - Steven H Kleinstein
- Department of Pathology, Yale School of MedicineNew HavenUnited States
- Department of Immunobiology, Yale School of MedicineNew HavenUnited States
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale UniversityNew HavenUnited States
| |
Collapse
|
36
|
Zhang Y, Chen T, Zeng H, Yang X, Xu Q, Zhang Y, Chen Y, Wang M, Zhu Y, Lan C, Wang Q, Tang H, Zhang Y, Wang C, Xie W, Ma C, Guan J, Guo S, Chen S, Yang W, Wei L, Ren J, Yu X, Zhang Z. RAPID: A Rep-Seq Dataset Analysis Platform With an Integrated Antibody Database. Front Immunol 2021; 12:717496. [PMID: 34484220 PMCID: PMC8414647 DOI: 10.3389/fimmu.2021.717496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
The antibody repertoire is a critical component of the adaptive immune system and is believed to reflect an individual’s immune history and current immune status. Delineating the antibody repertoire has advanced our understanding of humoral immunity, facilitated antibody discovery, and showed great potential for improving the diagnosis and treatment of disease. However, no tool to date has effectively integrated big Rep-seq data and prior knowledge of functional antibodies to elucidate the remarkably diverse antibody repertoire. We developed a Rep-seq dataset Analysis Platform with an Integrated antibody Database (RAPID; https://rapid.zzhlab.org/), a free and web-based tool that allows researchers to process and analyse Rep-seq datasets. RAPID consolidates 521 WHO-recognized therapeutic antibodies, 88,059 antigen- or disease-specific antibodies, and 306 million clones extracted from 2,449 human IGH Rep-seq datasets generated from individuals with 29 different health conditions. RAPID also integrates a standardized Rep-seq dataset analysis pipeline to enable users to upload and analyse their datasets. In the process, users can also select set of existing repertoires for comparison. RAPID automatically annotates clones based on integrated therapeutic and known antibodies, and users can easily query antibodies or repertoires based on sequence or optional keywords. With its powerful analysis functions and rich set of antibody and antibody repertoire information, RAPID will benefit researchers in adaptive immune studies.
Collapse
Affiliation(s)
- Yanfang Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tianjian Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huikun Zeng
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiujia Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qingxian Xu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanxia Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuan Chen
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minhui Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, Hainan General Hospital, Haikou, China.,Hainan Affiliated Hospital of Hainan Medical College, Haikou, China
| | - Yan Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chunhong Lan
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qilong Wang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haipei Tang
- Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chengrui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenxi Xie
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cuiyu Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Junjie Guan
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shixin Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Sen Chen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research, Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Center for Precision Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
37
|
Chen EC, Gilchuk P, Zost SJ, Suryadevara N, Winkler ES, Cabel CR, Binshtein E, Chen RE, Sutton RE, Rodriguez J, Day S, Myers L, Trivette A, Williams JK, Davidson E, Li S, Doranz BJ, Campos SK, Carnahan RH, Thorne CA, Diamond MS, Crowe JE. Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Rep 2021; 36:109604. [PMID: 34411541 PMCID: PMC8352653 DOI: 10.1016/j.celrep.2021.109604] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 08/04/2021] [Indexed: 01/02/2023] Open
Abstract
Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases, as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identify 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, angiotensin-converting enzyme 2 [ACE2]-blocking clone that protects in vivo) and others recognizing non-RBD epitopes that bind the S2 domain. Germline-revertant forms of some public clonotypes bind efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.
Collapse
Affiliation(s)
- Elaine C Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Seth J Zost
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Emma S Winkler
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Carly R Cabel
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rita E Chen
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica Rodriguez
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Samuel Day
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Luke Myers
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Shuaizhi Li
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | - Samuel K Campos
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Curtis A Thorne
- Department of Cellular & Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ 85724, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ 85724, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - James E Crowe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
38
|
Liu H, Pan W, Tang C, Tang Y, Wu H, Yoshimura A, Deng Y, He N, Li S. The methods and advances of adaptive immune receptors repertoire sequencing. Theranostics 2021; 11:8945-8963. [PMID: 34522220 PMCID: PMC8419057 DOI: 10.7150/thno.61390] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
The adaptive immune response is a powerful tool, capable of recognizing, binding to, and neutralizing a vast number of internal and external threats via T or B lymphatic receptors with widespread sets of antigen specificities. The emergence of high-throughput sequencing technology and bioinformatics provides opportunities for research in the fields of life sciences and medicine. The analysis and annotation for immune repertoire data can reveal biologically meaningful information, including immune prediction, target antigens, and effective evaluation. Continuous improvements of the immunological repertoire sequencing methods and analysis tools will help to minimize the experimental and calculation errors and realize the immunological information to meet the clinical requirements. That said, the clinical application of adaptive immune repertoire sequencing requires appropriate experimental methods and standard analytical tools. At the population cell level, we can acquire the overview of cell groups, but the information about a single cell is not obtained accurately. The information that is ignored may be crucial for understanding the heterogeneity of each cell, gene expression and drug response. The combination of high-throughput sequencing and single-cell technology allows us to obtain single-cell information with low-cost and high-throughput. In this review, we summarized the current methods and progress in this area.
Collapse
Affiliation(s)
- Hongmei Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Wenjing Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Congli Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yujie Tang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hu-nan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| | - Nongyue He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
39
|
Zhang Q, Ju B, Ge J, Chan JFW, Cheng L, Wang R, Huang W, Fang M, Chen P, Zhou B, Song S, Shan S, Yan B, Zhang S, Ge X, Yu J, Zhao J, Wang H, Liu L, Lv Q, Fu L, Shi X, Yuen KY, Liu L, Wang Y, Chen Z, Zhang L, Wang X, Zhang Z. Potent and protective IGHV3-53/3-66 public antibodies and their shared escape mutant on the spike of SARS-CoV-2. Nat Commun 2021; 12:4210. [PMID: 34244522 PMCID: PMC8270942 DOI: 10.1038/s41467-021-24514-w] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/07/2021] [Indexed: 12/23/2022] Open
Abstract
Neutralizing antibodies (nAbs) to SARS-CoV-2 hold powerful potentials for clinical interventions against COVID-19 disease. However, their common genetic and biologic features remain elusive. Here we interrogate a total of 165 antibodies from eight COVID-19 patients, and find that potent nAbs from different patients have disproportionally high representation of IGHV3-53/3-66 usage, and therefore termed as public antibodies. Crystal structural comparison of these antibodies reveals they share similar angle of approach to RBD, overlap in buried surface and binding residues on RBD, and have substantial spatial clash with receptor angiotensin-converting enzyme-2 (ACE2) in binding to RBD. Site-directed mutagenesis confirms these common binding features although some minor differences are found. One representative antibody, P5A-3C8, demonstrates extraordinarily protective efficacy in a golden Syrian hamster model against SARS-CoV-2 infection. However, virus escape analysis identifies a single natural mutation in RBD, namely K417N found in B.1.351 variant from South Africa, abolished the neutralizing activity of these public antibodies. The discovery of public antibodies and shared escape mutation highlight the intricate relationship between antibody response and SARS-CoV-2, and provide critical reference for the development of antibody and vaccine strategies to overcome the antigenic variation of SARS-CoV-2.
Collapse
Affiliation(s)
- Qi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Bin Ju
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jiwan Ge
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lin Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Ruoke Wang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Mengqi Fang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Peng Chen
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Bing Zhou
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shuo Song
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sisi Shan
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Baohua Yan
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Senyan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiangyang Ge
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jiazhen Yu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Juanjuan Zhao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China
| | - Haiyan Wang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Li Liu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Qining Lv
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Lili Fu
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Xuanling Shi
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Lei Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China.
| | - Zhiwei Chen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China.
| | - Linqi Zhang
- NexVac Research Center, Comprehensive AIDS Research Center, Beijing Advanced Innovation Center for Structural Biology, School of Medicine, Tsinghua University, Beijing, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China.
- Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, China.
| |
Collapse
|
40
|
Tan TJC, Yuan M, Kuzelka K, Padron GC, Beal JR, Chen X, Wang Y, Rivera-Cardona J, Zhu X, Stadtmueller BM, Brooke CB, Wilson IA, Wu NC. Sequence signatures of two public antibody clonotypes that bind SARS-CoV-2 receptor binding domain. Nat Commun 2021; 12:3815. [PMID: 34155209 PMCID: PMC8217500 DOI: 10.1038/s41467-021-24123-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023] Open
Abstract
Since the COVID-19 pandemic onset, the antibody response to SARS-CoV-2 has been extensively characterized. Antibodies to the receptor binding domain (RBD) on the spike protein are frequently encoded by IGHV3-53/3-66 with a short complementarity-determining region (CDR) H3. Germline-encoded sequence motifs in heavy chain CDRs H1 and H2 have a major function, but whether any common motifs are present in CDR H3, which is often critical for binding specificity, is not clear. Here, we identify two public clonotypes of IGHV3-53/3-66 RBD antibodies with a 9-residue CDR H3 that pair with different light chains. Distinct sequence motifs on CDR H3 are present in the two public clonotypes that seem to be related to differential light chain pairing. Additionally, we show that Y58F is a common somatic hypermutation that results in increased binding affinity of IGHV3-53/3-66 RBD antibodies with a short CDR H3. These results advance understanding of the antibody response to SARS-CoV-2.
Collapse
Affiliation(s)
- Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Kaylee Kuzelka
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gilberto C Padron
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jacob R Beal
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joel Rivera-Cardona
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Beth M Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, USA.
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, USA.
| | - Nicholas C Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
41
|
Yan Q, He P, Huang X, Luo K, Zhang Y, Yi H, Wang Q, Li F, Hou R, Fan X, Li P, Liu X, Liang H, Deng Y, Chen Z, Chen Y, Mo X, Feng L, Xiong X, Li S, Han J, Qu L, Niu X, Chen L. Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly present in the antibody repertoires of COVID-19 patients. Emerg Microbes Infect 2021; 10:1097-1111. [PMID: 33944697 PMCID: PMC8183521 DOI: 10.1080/22221751.2021.1925594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibodies (mAbs) encoded by IGHV3-53 (VH3-53) targeting the spike receptor-binding domain (RBD) have been isolated from different COVID-19 patients. However, the existence and prevalence of shared VH3-53-encoded antibodies in the antibody repertoires is not clear. Using antibody repertoire sequencing, we found that the usage of VH3-53 increased after SARS-CoV-2 infection. A highly shared VH3-53-J6 clonotype was identified in 9 out of 13 COVID-19 patients. This clonotype was derived from convergent gene rearrangements with few somatic hypermutations and was evolutionary conserved. We synthesized 34 repertoire-deduced novel VH3-53-J6 heavy chains and paired with a common IGKV1-9 light chain to produce recombinant mAbs. Most of these recombinant mAbs (23/34) possess RBD binding and virus-neutralizing activities, and recognize ACE2 binding site via the same molecular interface. Our computational analysis, validated by laboratory experiments, revealed that VH3-53 antibodies targeting RBD are commonly present in COVID-19 patients’ antibody repertoires, indicating many people have germline-like precursor sequences to rapidly generate SARS-CoV-2 neutralizing antibodies. Moreover, antigen-specific mAbs can be digitally obtained through antibody repertoire sequencing and computational analysis.
Collapse
Affiliation(s)
- Qihong Yan
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Ping He
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Xiaohan Huang
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Kun Luo
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Yudi Zhang
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Haisu Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Qian Wang
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Feng Li
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ruitian Hou
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,Savaid Medical School, University of Chinese Academy of Science, Beijing, People's Republic of China
| | - Xiaodi Fan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Pingchao Li
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xinglong Liu
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhaoming Chen
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Yunfei Chen
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiaoneng Mo
- Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liqiang Feng
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xiaoli Xiong
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Song Li
- iRepertoire Inc. , Huntsville, AL, USA.,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, People's Republic of China
| | - Jian Han
- iRepertoire Inc. , Huntsville, AL, USA
| | - Linbing Qu
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ling Chen
- Bioland Laboratory, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangzhou Institute of Infectious Disease, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
42
|
Cai F, Chen WH, Wu W, Jones JA, Choe M, Gohain N, Shen X, LaBranche C, Eaton A, Sutherland L, Lee EM, Hernandez GE, Wu NR, Scearce R, Seaman MS, Moody MA, Santra S, Wiehe K, Tomaras GD, Wagh K, Korber B, Bonsignori M, Montefiori DC, Haynes BF, de Val N, Joyce MG, Saunders KO. Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathog 2021; 17:e1009624. [PMID: 34086838 PMCID: PMC8216552 DOI: 10.1371/journal.ppat.1009624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/21/2021] [Accepted: 05/07/2021] [Indexed: 11/19/2022] Open
Abstract
A primary goal of HIV-1 vaccine development is the consistent elicitation of protective, neutralizing antibodies. While highly similar neutralizing antibodies (nAbs) have been isolated from multiple HIV-infected individuals, it is unclear whether vaccination can consistently elicit highly similar nAbs in genetically diverse primates. Here, we show in three outbred rhesus macaques that immunization with Env elicits a genotypically and phenotypically conserved nAb response. From these vaccinated macaques, we isolated four antibody lineages that had commonalities in immunoglobulin variable, diversity, and joining gene segment usage. Atomic-level structures of the antigen binding fragments of the two most similar antibodies showed nearly identical paratopes. The Env binding modes of each of the four vaccine-induced nAbs were distinct from previously known monoclonal HIV-1 neutralizing antibodies, but were nearly identical to each other. The similarities of these antibodies show that the immune system in outbred primates can respond to HIV-1 Env vaccination with a similar structural and genotypic solution for recognizing a particular neutralizing epitope. These results support rational vaccine design for HIV-1 that aims to reproducibly elicit, in genetically diverse primates, nAbs with specific paratope structures capable of binding conserved epitopes.
Collapse
Affiliation(s)
- Fangping Cai
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Weimin Wu
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - Julia A. Jones
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Misook Choe
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Neelakshi Gohain
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Celia LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Esther M. Lee
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Giovanna E. Hernandez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Nelson R. Wu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard Scearce
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael S. Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - M. Anthony Moody
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sampa Santra
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David C. Montefiori
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Natalia de Val
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, United States of America
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, Maryland, United States of America
| | - M. Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
43
|
He B, Liu S, Wang Y, Xu M, Cai W, Liu J, Bai W, Ye S, Ma Y, Hu H, Meng H, Sun T, Li Y, Luo H, Shi M, Du X, Zhao W, Chen S, Yang J, Zhu H, Jie Y, Yang Y, Guo D, Wang Q, Liu Y, Yan H, Wang M, Chen YQ. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq. Signal Transduct Target Ther 2021; 6:195. [PMID: 34001847 PMCID: PMC8127497 DOI: 10.1038/s41392-021-00610-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
B cell response plays a critical role against SARS-CoV-2 infection. However, little is known about the diversity and frequency of the paired SARS-CoV-2 antigen-specific BCR repertoire after SARS-CoV-2 infection. Here, we performed single-cell RNA sequencing and VDJ sequencing using the memory and plasma B cells isolated from five convalescent COVID-19 patients, and analyzed the spectrum and transcriptional heterogeneity of antibody immune responses. Via linking BCR to antigen specificity through sequencing (LIBRA-seq), we identified a distinct activated memory B cell subgroup (CD11chigh CD95high) had a higher proportion of SARS-CoV-2 antigen-labeled cells compared with memory B cells. Our results revealed the diversity of paired BCR repertoire and the non-stochastic pairing of SARS-CoV-2 antigen-specific immunoglobulin heavy and light chains after SARS-CoV-2 infection. The public antibody clonotypes were shared by distinct convalescent individuals. Moreover, several antibodies isolated by LIBRA-seq showed high binding affinity against SARS-CoV-2 receptor-binding domain (RBD) or nucleoprotein (NP) via ELISA assay. Two RBD-reactive antibodies C14646P3S and C2767P3S isolated by LIBRA-seq exhibited high neutralizing activities against both pseudotyped and authentic SARS-CoV-2 viruses in vitro. Our study provides fundamental insights into B cell response following SARS-CoV-2 infection at the single-cell level.
Collapse
Affiliation(s)
- Bing He
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wei Cai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jia Liu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Wendi Bai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Shupei Ye
- Pulmonary and critical care medicine, The Third People's Hospital of Dongguan City, Dongguan, Guangdong Province, China
| | - Yong Ma
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Hengrui Hu
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Huicui Meng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Tao Sun
- Hangzhou ImmuQuad Biotechnologies, Hangzhou, China.,Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | - Yanling Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Huanle Luo
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Mang Shi
- Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Wenjing Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jingyi Yang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Haipeng Zhu
- Department of Infectious Diseases, The Ninth People's Hospital of Dongguan City, Dongguan, Guangdong Province, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuedong Yang
- School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Deyin Guo
- Infection and Immunity Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen, China.,Genome Analysis Laboratory of the Ministry of Agriculture, Shenzhen, China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huimin Yan
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Manli Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China. .,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
44
|
Zhou X, Ma F, Xie J, Yuan M, Li Y, Shaabani N, Zhao F, Huang D, Wu NC, Lee CCD, Liu H, Li J, Chen Z, Hong Y, Liu WH, Xiao N, Burton DR, Tu H, Li H, Chen X, Teijaro JR, Wilson IA, Xiao C, Huang Z. Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Rep 2021; 35:109109. [PMID: 33932326 PMCID: PMC8064889 DOI: 10.1016/j.celrep.2021.109109] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/07/2021] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is unclear whether individuals with enormous diversity in B cell receptor repertoires are consistently able to mount effective antibody responses against SARS-CoV-2. We analyzed antibody responses in a cohort of 55 convalescent patients and isolated 54 potent neutralizing monoclonal antibodies (mAbs). While most of the mAbs target the angiotensin-converting enzyme 2 (ACE2) binding surface on the receptor binding domain (RBD) of SARS-CoV-2 spike protein, mAb 47D1 binds only to one side of the receptor binding surface on the RBD. Neutralization by 47D1 is achieved independent of interfering RBD-ACE2 binding. A crystal structure of the mAb-RBD complex shows that the IF motif at the tip of 47D1 CDR H2 interacts with a hydrophobic pocket in the RBD. Diverse immunoglobulin gene usage and convergent epitope targeting characterize neutralizing antibody responses to SARS-CoV-2, suggesting that vaccines that effectively present the receptor binding site on the RBD will likely elicit neutralizing antibody responses in a large fraction of the population.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Fengge Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jun Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yunqiao Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Fangzhu Zhao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Deli Huang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chang-Chun D Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiali Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhonghui Chen
- Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Yazhen Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wen-Hsien Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Nengming Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Haijian Tu
- Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Hang Li
- Affiliated Hospital of Putian University, Putian, Fujian 351100, China
| | - Xin Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - John R Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Changchun Xiao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Zhe Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
45
|
From Structural Studies to HCV Vaccine Design. Viruses 2021; 13:v13050833. [PMID: 34064532 PMCID: PMC8147963 DOI: 10.3390/v13050833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a serious and growing public health problem despite recent developments of antiviral therapeutics. To achieve global elimination of HCV, an effective cross-genotype vaccine is needed. The failure of previous vaccination trials to elicit an effective cross-reactive immune response demands better vaccine antigens to induce a potent cross-neutralizing response to improve vaccine efficacy. HCV E1 and E2 envelope (Env) glycoproteins are the main targets for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. Therefore, a molecular-level understanding of the nAb responses against HCV is imperative for the rational design of cross-genotype vaccine antigens. Here we summarize the recent advances in structural studies of HCV Env and Env-nAb complexes and how they improve our understanding of immune recognition of HCV. We review the structural data defining HCV neutralization epitopes and conformational plasticity of the Env proteins, and the knowledge applicable to rational vaccine design.
Collapse
|
46
|
Chen EC, Gilchuk P, Zost SJ, Suryadevara N, Winkler ES, Cabel CR, Binshtein E, Sutton RE, Rodriguez J, Day S, Myers L, Trivette A, Williams JK, Davidson E, Li S, Doranz BJ, Campos SK, Carnahan RH, Thorne CA, Diamond MS, Crowe JE. Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33972937 DOI: 10.1101/2021.05.02.442326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo ), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.
Collapse
|
47
|
Large-scale analysis of 2,152 Ig-seq datasets reveals key features of B cell biology and the antibody repertoire. Cell Rep 2021; 35:109110. [PMID: 33979623 DOI: 10.1016/j.celrep.2021.109110] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibody repertoire sequencing enables researchers to acquire millions of B cell receptors and investigate these molecules at the single-nucleotide level. This power and resolution in studying humoral responses have led to its wide applications. However, most of these studies were conducted with a limited number of samples. Given the extraordinary diversity, assessment of these key features with a large sample set is demanded. Thus, we collect and systematically analyze 2,152 high-quality heavy-chain antibody repertoires. Our study reveals that 52 core variable genes universally contribute to more than 99% of each individual's repertoire; a distal interspersed preferences characterize V gene recombination; the number of public clones between two repertoires follows a linear model, and the positive selection dominates at RGYW motif in somatic hypermutations. Thus, this population-level analysis resolves some critical features of the antibody repertoire and may have significant value to the large cadre of scientists.
Collapse
|
48
|
Wec AZ, Lin KS, Kwasnieski JC, Sinai S, Gerold J, Kelsic ED. Overcoming Immunological Challenges Limiting Capsid-Mediated Gene Therapy With Machine Learning. Front Immunol 2021; 12:674021. [PMID: 33986759 PMCID: PMC8112259 DOI: 10.3389/fimmu.2021.674021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
A key hurdle to making adeno-associated virus (AAV) capsid mediated gene therapy broadly beneficial to all patients is overcoming pre-existing and therapy-induced immune responses to these vectors. Recent advances in high-throughput DNA synthesis, multiplexing and sequencing technologies have accelerated engineering of improved capsid properties such as production yield, packaging efficiency, biodistribution and transduction efficiency. Here we outline how machine learning, advances in viral immunology, and high-throughput measurements can enable engineering of a new generation of de-immunized capsids beyond the antigenic landscape of natural AAVs, towards expanding the therapeutic reach of gene therapy.
Collapse
Affiliation(s)
- Anna Z. Wec
- Applied Biology, Dyno Therapeutics Inc, Cambridge, MA, United States
| | - Kathy S. Lin
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| | | | - Sam Sinai
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| | - Jeff Gerold
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| | - Eric D. Kelsic
- Applied Biology, Dyno Therapeutics Inc, Cambridge, MA, United States
- Data Science, Dyno Therapeutics Inc, Cambridge, MA, United States
| |
Collapse
|
49
|
Pertseva M, Gao B, Neumeier D, Yermanos A, Reddy ST. Applications of Machine and Deep Learning in Adaptive Immunity. Annu Rev Chem Biomol Eng 2021; 12:39-62. [PMID: 33852352 DOI: 10.1146/annurev-chembioeng-101420-125021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immunity is mediated by lymphocyte B and T cells, which respectively express a vast and diverse repertoire of B cell and T cell receptors and, in conjunction with peptide antigen presentation through major histocompatibility complexes (MHCs), can recognize and respond to pathogens and diseased cells. In recent years, advances in deep sequencing have led to a massive increase in the amount of adaptive immune receptor repertoire data; additionally, proteomics techniques have led to a wealth of data on peptide-MHC presentation. These large-scale data sets are now making it possible to train machine and deep learning models, which can be used to identify complex and high-dimensional patterns in immune repertoires. This article introduces adaptive immune repertoires and machine and deep learning related to biological sequence data and then summarizes the many applications in this field, which span from predicting the immunological status of a host to the antigen specificity of individual receptors and the engineering of immunotherapeutics.
Collapse
Affiliation(s)
- Margarita Pertseva
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; .,Life Science Zurich Graduate School, ETH Zurich and University of Zurich, 8006 Zurich, Switzerland
| | - Beichen Gao
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Daniel Neumeier
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| | - Alexander Yermanos
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; .,Department of Pathology and Immunology, University of Geneva, 1205 Geneva, Switzerland.,Department of Biology, Institute of Microbiology and Immunology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland;
| |
Collapse
|
50
|
Yang F, Nielsen SCA, Hoh RA, Röltgen K, Wirz OF, Haraguchi E, Jean GH, Lee JY, Pham TD, Jackson KJL, Roskin KM, Liu Y, Nguyen K, Ohgami RS, Osborne EM, Nadeau KC, Niemann CU, Parsonnet J, Boyd SD. Shared B cell memory to coronaviruses and other pathogens varies in human age groups and tissues. Science 2021; 372:738-741. [PMID: 33846272 PMCID: PMC8139427 DOI: 10.1126/science.abf6648] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
It remains unclear whether B cell repertoires against coronaviruses and other pathogens differ between adults and children and how important these distinctions are. Yang et al. analyzed blood samples from young children and adults, as well as tissues from deceased organ donors, characterizing the B cell receptor (BCR) repertoires specific to six common pathogens and two viruses that they had not seen before: Ebola virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Children had higher frequencies of B cells with convergent BCR heavy chains against previously encountered pathogens and higher frequencies of class-switched convergent B cell clones against SARS-CoV-2 and related coronaviruses. These findings suggest that encounters with coronaviruses in early life may produce cross-reactive memory B cell populations that contribute to divergent COVID-19 susceptibilities. Science, this issue p. 738 Vaccination and infection promote the formation, tissue distribution, and clonal evolution of B cells, which encode humoral immune memory. We evaluated pediatric and adult blood and deceased adult organ donor tissues to determine convergent antigen-specific antibody genes of similar sequences shared between individuals. B cell memory varied for different pathogens. Polysaccharide antigenspecific clones were not exclusive to the spleen. Adults had higher clone frequencies and greater class switching in lymphoid tissues than blood, while pediatric blood had abundant class-switched convergent clones. Consistent with reported serology, prepandemic children had class-switched convergent clones to severe acute respiratory syndrome coronavirus 2 with weak cross-reactivity to other coronaviruses, while adult blood or tissues showed few such clones. These results highlight the prominence of early childhood B cell clonal expansions and cross-reactivity for future responses to novel pathogens.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | | | - Ramona A Hoh
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Katharina Röltgen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Emily Haraguchi
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Grace H Jean
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Tho D Pham
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.,Stanford Blood Center, Stanford University, Stanford, CA 94305, USA
| | | | - Krishna M Roskin
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yi Liu
- Calico Life Sciences, South San Francisco, CA 94080, USA
| | - Khoa Nguyen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Robert S Ohgami
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Eleanor M Osborne
- Sarah Cannon Cancer Center, Tennessee Oncology, Smyrna, TN 37167, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA 94305, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claus U Niemann
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94143, USA.,Department of Surgery, Division of Transplantation, University of California, San Francisco, CA 94143, USA
| | - Julie Parsonnet
- Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Epidemiology and Population Health, Stanford University, Stanford, CA 94305, USA
| | - Scott D Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, USA. .,Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|