1
|
Gritti F, Chen EY, Datta SS. Harnessing an elastic flow instability to improve the kinetic performance of chromatographic columns. J Chromatogr A 2024; 1735:465326. [PMID: 39236358 DOI: 10.1016/j.chroma.2024.465326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Despite decades of research and development, the optimal efficiency of slurry-packed HPLC columns is still hindered by inherent long-range flow heterogeneity from the wall to the central bulk region of these columns. Here, we show an example of how this issue can be addressed through the straightforward addition of a semidilute amount (500 ppm) of a large, flexible, synthetic polymer (18 MDa partially hydrolyzed polyacrylamide, HPAM) to the mobile phase (1% NaCl aqueous solution, hereafter referred to as "brine") during operation of a 4.6 mm × 300 mm column packed with 10μm BEHTM 125 Å particles. Addition of the polymer imparts elasticity to the mobile phase, causing the flow in the interparticle pore space to become unstable above a threshold flow rate. We verify the development of this elastic flow instability using pressure drop measurements of the friction factor versus Reynolds number. In prior work, we showed that this flow instability is characterized by large spatiotemporal fluctuations in the pore-scale flow velocities that may promote analyte dispersion across the column. Axial dispersion measurements of the quasi non-retained tracer thiourea confirm this possibility: they reveal that operating above the onset of the instability improves column efficiency by greater than 100%. These experiments thereby suggest that elastic flow instabilities can be harnessed to mitigate the negative impact of trans-column flow heterogeneities on the efficiency of slurry-packed HPLC columns. While this approach has its own inherent limitations and constraints, our results lay the groundwork for future targeted development of polymers that can impart elasticity when dissolved in commonly used liquid chromatography mobile phases, and can thereby generate elastic flow instabilities to help improve the resolution of HPLC columns.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, 34 Maple Street, Milford, MA, 01757, USA.
| | - Emily Y Chen
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, NJ, 08544, USA.
| |
Collapse
|
2
|
Tallarek U, Hlushkou D, Steinhoff A, Höltzel A. Multiscale simulation of liquid chromatography: Effective diffusion in macro-mesoporous beds and the B-term of the plate height equation. J Chromatogr A 2024; 1738:465468. [PMID: 39481179 DOI: 10.1016/j.chroma.2024.465468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
We performed multiscale simulations of analyte sorption and diffusion in hierarchical porosity models of monolithic silica columns for reversed-phase liquid chromatography to investigate how the mean mesopore size of the chromatographic bed and the analyte-specific interaction with the chromatographic interface influence the analyte diffusivity at various length scales. The reproduced experimental conditions comprised the retention of six analyte compounds of low to moderate solute polarity on a silica-based, endcapped, C18 stationary phase with water‒acetonitrile and water-methanol mobile phases whose elution strength was varied via the volumetric solvent ratio. Detailed information about the analyte-specific interfacial dynamics received from molecular dynamics simulations was incorporated through appropriate linker schemes into Brownian dynamics diffusion simulations in three hierarchical porosity models received from physical reconstructions of silica monoliths with a mean macropore size of 1.23 µm and mean mesopore sizes of 12.3, 21.3, or 25.7 nm. The mean mesopore size was found to have a similar influence on the effective mesopore diffusivity as the analyte polarity and the mobile-phase elution strength, which together determine the analyte residence time on a column. A smaller mesopore size attenuated the increase of the effective mesopore diffusivity with increasing mobile-phase elution strength significantly. The effective bed diffusivity was limited by the analyte residence time rather than by morphological details of the mesopore space. The stronger an analyte was retained by the chromatographic interface inside the mesopores, the slower became the mass transfer between the pore space hierarchies and the lower was the effective bed diffusivity. The B-terms of the plate height equation were finally generated with the bed diffusivities and phase-based retention factors derived from the hierarchical porosity models using additional information about the stationary-phase limit obtained from the analysis of analyte-bonded phase contacts. The B-terms highlight analyte- and mobile phase-specific behavior relevant to isocratic and gradient elution conditions in chromatographic practice. In particular, U-shaped B-term curves are observed due to the dominating contribution of the retention factor and the bed diffusivity to the B-term at low and high elution strength of the mobile phase, respectively.
Collapse
Affiliation(s)
- Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| | - Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Andreas Steinhoff
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
3
|
Gritti F, Hlushkou D, Tallarek U. Multiple-open-tubular column enabling transverse diffusion. Part 3: Simulation of solute dispersion along a real three dimensional-printed column with quadratic channels. J Chromatogr A 2023; 1693:463860. [PMID: 36822037 DOI: 10.1016/j.chroma.2023.463860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Multiple-open-tubular columns enabling transverse diffusion (MOTTD) consist of straight and parallel flow-through channels separated by a mesoporous stationary phase. In Part 1, a stochastic model of band broadening along MOTTD columns accounting for longitudinal diffusion, trans-channel velocity bias, and mass transfer resistance in the stationary phase was derived to demonstrate the intrinsic advantage of MOTTD columns over classical particulate columns. In Part 2, the model was refined for the critical contribution of the channel-to-channel polydispersity and applied to address the best trade-off between analysis speed and performance. In this Part 3, a MOTTD column with a square array of quadratic channels is fabricated by 3D-printing (combining polymer stereolithography with photolithography using photomasks) to deliver unprecedently small apparent channel diameters of 117.6 ± 5.0 μm. The colors in the microscopy photographs of the actual 3D-printed channels are binarized to delimitate the mobile phase volume from the stationary phase volume. The same numerical simulations as those in Part 2 are then performed for two MOTTD columns (external porosity ϵe=31.7%, same apparent channel diameter 117.6 μm): one containing 16 virtual perfect quadratic channels and the other 16 real 3D-printed channels. The reduced velocities (or Peclet numbers) are varied over a wide range from 0.2 to 5000 and the zone retention factors were fixed at k1=1.04, 5, and 25. The results demonstrate that smoothing the edges of the targeted quadratic channels by the 3D-printed technique is advantageous in terms of solute dispersion. It outperforms the negative effect of the channel-to-channel polydispersity which is mitigated by transverse diffusion of the analyte in the stationary phase. For Peclet numbers larger than 50, the HETP of the 3D-printed MOTTD column is found 7%, 15%, and 16% smaller than that of the MOTTD column consisting of a square array of perfect quadratic channels. This confirms the known effect of channel geometry on solute dispersion in microfluidic systems. Flow channels in fabricated MOTTD columns are preferred to be circular so that the distribution of transverse diffusion lengths across the open channels remains as tight as possible. Finally, the general theory of nonuniform columns of Giddings reveals that the polydispersity of the cross-sectional area (RSD 8.4%) along a single 3D-printed channel has no negative impact on solute dispersion in MOTTD columns. Overall, MOTTD columns could become a serious alternative technology to conventional particulate columns. This implies a novel fabrication process that delivers circular channel diameters smaller than 10 μm, cross-sectional area polydispersity no larger than 25%, external porosities in a range from 15% (high speed separations) to 75% (high performance separations), and conventional mesoporous silica as the stationary phase. It adresses new synthesis routes based on either organic fibers or tubular micelle templating agents in suspension with silica gel solutions.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, 34 Maple Street, Milford, MA, 01757, USA.
| | - Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| |
Collapse
|
4
|
Schneider D, Hwang S, Haase J, Miersemann E, Kärger J. Quantitating Diffusion Enhancement in Pore Hierarchies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11565-11572. [PMID: 36107750 DOI: 10.1021/acs.langmuir.2c01157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A microporous continuum traversed by a set of mutually perpendicular channels is considered to be a model for a hierarchically porous system of the mesoporous zeolite type. Transient profiles of molecular uptake as determined by kinetic Monte Carlo (kMC) simulation are found to be in excellent agreement with the result attained by the application of the two-region model (the Kärger model) of molecular diffusion. In particular, it is found that, in the two limiting cases referred to as fast exchange and slow exchange, there exist two simple analytical expressions for the rate of molecular uptake and hence for the quantification of transport enhancement in comparison with the purely microporous adsorbent. In the general case, transport enhancement is simply recognized by the reciprocal addition of the expressions in the two limiting cases.
Collapse
Affiliation(s)
- D Schneider
- Innovation Center Computer Assisted Surgery (ICCAS), Institute at the Medical Faculty, Leipzig University, Semmelweisstraße 14, 04103 Leipzig, Germany
| | - S Hwang
- Faculty of Physics and Earth Sciences, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
| | - J Haase
- Faculty of Physics and Earth Sciences, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
- Saxon Academy of Sciences and Humanities in Leipzig, Structural Commission "Propagation in Nature, Technology and Society" 04107 Leipzig, Karl-Tauchnitz-Straße 1, Germany
| | - E Miersemann
- Saxon Academy of Sciences and Humanities in Leipzig, Structural Commission "Propagation in Nature, Technology and Society" 04107 Leipzig, Karl-Tauchnitz-Straße 1, Germany
- Faculty of Mathematics and Informatics, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany
| | - J Kärger
- Faculty of Physics and Earth Sciences, Leipzig University, Linnéstrasse 5, 04103 Leipzig, Germany
- Saxon Academy of Sciences and Humanities in Leipzig, Structural Commission "Propagation in Nature, Technology and Society" 04107 Leipzig, Karl-Tauchnitz-Straße 1, Germany
| |
Collapse
|
5
|
Taming Taylor-Aris dispersion through chaotic advection. J Chromatogr A 2022; 1673:463110. [DOI: 10.1016/j.chroma.2022.463110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
|
6
|
Misiura A, Shen H, Tauzin L, Dutta C, Bishop LDC, Carrejo NC, Zepeda O J, Ramezani S, Moringo NA, Marciel AB, Rossky PJ, Landes CF. Single-Molecule Dynamics Reflect IgG Conformational Changes Associated with Ion-Exchange Chromatography. Anal Chem 2021; 93:11200-11207. [PMID: 34346671 DOI: 10.1021/acs.analchem.1c01799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conformational changes of antibodies and other biologics can decrease the effectiveness of pharmaceutical separations. Hence, a detailed mechanistic picture of antibody-stationary phase interactions that occur during ion-exchange chromatography (IEX) can provide critical insights. This work examines antibody conformational changes and how they perturb antibody motion and affect ensemble elution profiles. We combine IEX, three-dimensional single-protein tracking, and circular dichroism spectroscopy to investigate conformational changes of a model antibody, immunoglobulin G (IgG), as it interacts with the stationary phase as a function of salt conditions. The results indicate that the absence of salt enhances electrostatic attraction between IgG and the stationary phase, promotes surface-induced unfolding, slows IgG motion, and decreases elution from the column. Our results reveal previously unreported details of antibody structural changes and their influence on macroscale elution profiles.
Collapse
Affiliation(s)
- Anastasiia Misiura
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Hao Shen
- Department of Chemistry and Biochemistry, Kent State University, 800 E Summit Street, Kent, Ohio 44240, United States
| | - Lawrence Tauzin
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Nicole C Carrejo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Jorge Zepeda O
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Shahryar Ramezani
- Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Nicholas A Moringo
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Amanda B Marciel
- Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Peter J Rossky
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States.,Smalley-Curl Institute, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Experimental investigation and CFD simulation of cavity flow effects on liquids mixing in vortex-based microfluidic chips: Quantitative visualization and optimization by response surface method (RSM). BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00109-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Gritti F, Hlushkou D, Tallarek U. Multiple-open-tubular column enabling transverse diffusion. Part 2: Channel size distribution and structure optimization. J Chromatogr A 2021; 1642:462033. [PMID: 33714774 DOI: 10.1016/j.chroma.2021.462033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 11/17/2022]
Abstract
Multiple-open-tubular columns enabling transverse diffusion (MOTTD) are made of straight, parallel, and cylindrical flow channels separated by a mesoporous stationary phase. In Part 1, a model of band broadening along MOTTD columns accounting for longitudinal diffusion, the trans-channel velocity bias, and mass transfer resistance in the stationary phase was proposed and validated. In this Part 2, the model is completed by considering the impact of short-range inter-channel velocity biases on the MOTTD plate number. These velocity biases are caused by the wide distribution of the channel diameters. Different ratios, ρ, of the average inner diameter, 2<rc>, of the flow channels to their closest center-to-center distance d (d= 5 μm, ρ= 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9) with a relative standard deviation (RSD) increasing from 0 to 50% are considered. The zone retention factor k1 was increased from 1 to 25. The complete model of band broadening is validated after adjustment to dispersion data obtained by 1) the lattice-Boltzmann method for modeling fluid flow, 2) a random-walk particle-tracking (RWPT) technique to address advective-diffusive transport, and 3) by considering two distinct populations of flow channels (inner radii rc,1=<rc>(1-RSD) and rc,2=<rc>(1+RSD)) arranged at the nodes of a hexagonal compact array. The completed model of band broadening in MOTTD columns reveals that the RSD of the channel diameters has only a moderate impact on the optimum plate number of MOTTD columns: the relative increase of the minimum plate height do not exceed 30% even for the largest RSDs. However, when the mass transfer of the analyte is governed by its slow rate of transverse diffusion across the MOTTD column, the plate height can be increased by up to 100% at high average velocities. Regarding the best trade-off between analysis speed and column performance at a fixed pressure drop of 400 bar, irrespective of the zone retention factor and RSD of the distribution of the channel diameters, the fastest analyses are recommended for MOTTD columns having a small structural parameter ρ. In contrast, for the longest analysis times, the largest values of ρ are required to maximize the performance of MOTTD columns.
Collapse
Affiliation(s)
- Fabrice Gritti
- Waters Corporation, Instrument/Core Research/Fundamental, 34 Maple Street, Milford, MA, 01757, USA.
| | - Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, Marburg 35032, Germany
| |
Collapse
|
9
|
Wahab MF, Roy D, Armstrong DW. The theory and practice of ultrafast liquid chromatography: A tutorial. Anal Chim Acta 2020; 1151:238170. [PMID: 33608081 DOI: 10.1016/j.aca.2020.12.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 11/30/2022]
Abstract
Modern high-throughput experimentation and challenging analytical problems of academic/industrial research have put the responsibility on separation scientists to develop new fast separation approaches. With the availability of high-pressure pumps, small particles with hydrolytically stable surface chemistries, reduced extra-column band broadening, and low volume detectors with fast signal processing, it is now feasible to do sub-minute to sub-second chromatography. Herein, the fundamental theoretical principles of ultrafast chromatography, along with practical solutions, are reviewed. Approaches for rapid separations in packed beds, narrow open tubular columns, and monoliths are demonstrated, along with the challenges that were faced. The instrumentation requirements (pumps, injection systems, detectors, column packing process) for using short columns ranging from 0.5 to 5 cm are examined, followed by real applications. One of the main problems in ultrafast chromatography is partial or complete peak overlap. As per Gidding's statistical overlap theory, peak overlap cannot be avoided for a completely random sample for a column with a given peak capacity. Signal processing techniques based on Fourier transform deconvolution of band broadening, power laws, derivatives, and iterative curve fitting are explained to help improve the chromatographic resolution. An example of ten peaks separated in under a second is shown and discussed. Other ultrafast separations in supercritical fluid chromatography or capillary electrophoresis are briefly mentioned to provide a complete understanding of this emerging field.
Collapse
Affiliation(s)
- M Farooq Wahab
- Department of Chemistry & Biochemistry, University of Texas at Arlington, TX, USA.
| | - Daipayan Roy
- Department of Chemistry & Biochemistry, University of Texas at Arlington, TX, USA
| | - Daniel W Armstrong
- Department of Chemistry & Biochemistry, University of Texas at Arlington, TX, USA.
| |
Collapse
|
10
|
Tallarek U, Hochstrasser J, Ziegler F, Huang X, Kübel C, Buchmeiser MR. Olefin Ring‐closing Metathesis under Spatial Confinement: Morphology−Transport Relationships. ChemCatChem 2020. [DOI: 10.1002/cctc.202001495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ulrich Tallarek
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35032 Marburg Germany
| | - Janika Hochstrasser
- Department of Chemistry Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35032 Marburg Germany
| | - Felix Ziegler
- Institute of Polymer Chemistry Universität Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| | - Xiaohui Huang
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
| | - Christian Kübel
- Institute of Nanotechnology and Karlsruhe Nano Micro Facility Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 D-76344 Eggenstein-Leopoldshafen Germany
- Department of Materials and Earth Sciences Technische Universität Darmstadt Alarich-Weiss-Strasse 2 D-64287 Darmstadt Germany
| | - Michael R. Buchmeiser
- Institute of Polymer Chemistry Universität Stuttgart Pfaffenwaldring 55 D-70569 Stuttgart Germany
| |
Collapse
|
11
|
Felletti S, De Luca C, Lievore G, Chenet T, Chankvetadze B, Farkas T, Cavazzini A, Catani M. Shedding light on mechanisms leading to convex-upward van Deemter curves on a cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral stationary phase. J Chromatogr A 2020; 1630:461532. [PMID: 32950816 DOI: 10.1016/j.chroma.2020.461532] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
An unusual convex-upward van Deemter curve was observed for the more retained enantiomer of a chiral sulfoxide (2-(benzylsulfinyl)benzamide) on a cellulose tris(4-chloro-3-methylphenylcarbamate)-based chiral stationary phase (CSP), prepared on silica particles of 1000 Å pore size. In contrast, the firstly eluted enantiomer of the same molecule exhibited the traditional convex-downward van Deemter curve. A detailed kinetic and thermodynamic investigation has revealed that this unusual phenomenon, which however has already been observed in chiral chromatography, originates when the adsorption of the compound is very strong and the solid-phase diffusion negligible. Experimentally, the intraparticle diffusion of the more retained enantiomer of the sulfoxide was found to be one order of magnitude smaller than that of the first eluted one. Overall, this translates into very little longitudinal diffusion (b-term of van Deemter curve) accompanied by high solid-liquid mass transfer resistance (c-term). Finally the comparison with another, differently-substituted chiral sulfoxide (whose enantiomers both exhibit traditional van Deemter curve behavior) has allowed to correlate these findings to the specific characteristics of the molecule.
Collapse
Affiliation(s)
- Simona Felletti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Chiara De Luca
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulio Lievore
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Tatiana Chenet
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| | - Tivadar Farkas
- Phenomenex Inc., 411 Madrid Ave., Torrance, CA 90501, United States
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy.
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|
12
|
Gritti F, Hlushkou D, Tallarek U. Multiple-open-tubular column enabling transverse diffusion. Part 1: Band broadening model for accurate mass transfer predictions. J Chromatogr A 2020; 1625:461325. [DOI: 10.1016/j.chroma.2020.461325] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
|
13
|
Gritti F, Hochstrasser J, Svidrytski A, Hlushkou D, Tallarek U. Morphology-transport relationships in liquid chromatography: Application to method development in size exclusion chromatography. J Chromatogr A 2020; 1620:460991. [DOI: 10.1016/j.chroma.2020.460991] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
|
14
|
Hochstrasser J, Svidrytski A, Höltzel A, Priamushko T, Kleitz F, Wang W, Kübel C, Tallarek U. Morphology-transport relationships for SBA-15 and KIT-6 ordered mesoporous silicas. Phys Chem Chem Phys 2020; 22:11314-11326. [PMID: 32406894 DOI: 10.1039/d0cp01861a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quantitative morphology-transport relationships are derived for ordered mesoporous silicas through direct numerical simulation of hindered diffusion in realistic geometrical models of the pore space obtained from physical reconstruction by electron tomography. We monitor accessible porosity and effective diffusion coefficients resulting from steric and hydrodynamic interactions between passive tracers and the pore space confinement as a function of λ = dtracer/dmeso (ratio of tracer diameter to mean mesopore diameter) in SBA-15 (dmeso = 9.1 nm) and KIT-6 (dmeso = 10.5 nm) silica samples. For λ = 0, the pointlike tracers reproduce the true diffusive tortuosities. For 0 ≤λ < 0.5, the derived hindrance factor quantifies the extent to which diffusion of finite-size tracers through the materials is hindered compared with free diffusion in the bulk liquid. The hindrance factor connects the transport properties of the ordered silicas to their mesopore space morphologies and enables quantitative comparison with random mesoporous silicas. Key feature of the ordered silicas is a narrow, symmetric mesopore size distribution (∼10% relative standard deviation), which engenders a sharper decline of the accessible-porosity window with increasing λ than observed for random silicas with their wide, asymmetric mesopore size distributions. As support structures, ordered mesoporous silicas should offer benefits for applications where spatial confinement effects and molecular size-selectivity are of prime importance. On the other hand, random mesoporous silicas enable higher diffusivities for λ > 0.3, because the larger pores carry most of the diffusive flux and keep pathways open when smaller pores have closed off.
Collapse
Affiliation(s)
- Janika Hochstrasser
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wu SL, Chen CM, Kuo JH, Wey MY. Synthesis of carbon nanotubes with controllable diameter by chemical vapor deposition of methane using Fe@Al2O3 core–shell nanocomposites. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Svidrytski A, Hlushkou D, Tallarek U. Relationship between bed heterogeneity, chord length distribution, and longitudinal dispersion in particulate beds. J Chromatogr A 2019; 1600:167-173. [DOI: 10.1016/j.chroma.2019.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 10/27/2022]
|
17
|
Gritti F, Gilar M. Impact of frit dispersion on gradient performance in high-throughput liquid chromatography. J Chromatogr A 2019; 1591:110-119. [DOI: 10.1016/j.chroma.2019.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 01/19/2023]
|
18
|
Gritti F. A stochastic view on column efficiency. J Chromatogr A 2018; 1540:55-67. [DOI: 10.1016/j.chroma.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/20/2022]
|
19
|
Reich SJ, Svidrytski A, Hlushkou D, Stoeckel D, Kübel C, Höltzel A, Tallarek U. Hindrance Factor Expression for Diffusion in Random Mesoporous Adsorbents Obtained from Pore-Scale Simulations in Physical Reconstructions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b04840] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefan-Johannes Reich
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Artur Svidrytski
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Dzmitry Hlushkou
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Daniela Stoeckel
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
- Institute of Physical Chemistry, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 58, 35392 Gießen, Germany
| | - Christian Kübel
- Institute
of Nanotechnology and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Alexandra Höltzel
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Ulrich Tallarek
- Department
of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
20
|
Catani M, Felletti S, Ismail OH, Gasparrini F, Pasti L, Marchetti N, De Luca C, Costa V, Cavazzini A. New frontiers and cutting edge applications in ultra high performance liquid chromatography through latest generation superficially porous particles with particular emphasis to the field of chiral separations. Anal Bioanal Chem 2018; 410:2457-2465. [DOI: 10.1007/s00216-017-0842-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 11/28/2022]
|
21
|
On the relationship between radial structure heterogeneities and efficiency of chromatographic columns. J Chromatogr A 2018; 1533:112-126. [DOI: 10.1016/j.chroma.2017.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Accepted: 09/23/2017] [Indexed: 11/18/2022]
|
22
|
Intraparticle and interstitial flow in wide-pore superficially porous and fully porous particles. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Hwang S, Parditka B, Cserháti C, Erdélyi Z, Gläser R, Haase J, Kärger J, Schmidt W, Chmelik C. IR Microimaging of Direction-Dependent Uptake in MFI-Type Crystals. CHEM-ING-TECH 2017. [DOI: 10.1002/cite.201700128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungtaik Hwang
- Leipzig University; Faculty of Physics and Earth Sciences; Linnéstrasse 5 04103 Leipzig Germany
| | - Bence Parditka
- University of Debrecen; Department of Solid State Physics; P.O. Box 400 4002 Debrecen Hungary
| | - Csaba Cserháti
- University of Debrecen; Department of Solid State Physics; P.O. Box 400 4002 Debrecen Hungary
| | - Zoltán Erdélyi
- University of Debrecen; Department of Solid State Physics; P.O. Box 400 4002 Debrecen Hungary
| | - Roger Gläser
- Leipzig University; Institute of Chemical Technology; Linnéstrasse 3 04103 Leipzig Germany
| | - Jürgen Haase
- Leipzig University; Faculty of Physics and Earth Sciences; Linnéstrasse 5 04103 Leipzig Germany
| | - Jörg Kärger
- Leipzig University; Faculty of Physics and Earth Sciences; Linnéstrasse 5 04103 Leipzig Germany
| | - Wolfgang Schmidt
- Max-Planck-Institut für Kohlenforschung; Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Christian Chmelik
- Leipzig University; Faculty of Physics and Earth Sciences; Linnéstrasse 5 04103 Leipzig Germany
| |
Collapse
|
24
|
Ahmed A, Skinley K, Herodotou S, Zhang H. Core-shell microspheres with porous nanostructured shells for liquid chromatography. J Sep Sci 2017; 41:99-124. [DOI: 10.1002/jssc.201700850] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | - Haifei Zhang
- Department of Chemistry; University of Liverpool; Liverpool UK
| |
Collapse
|
25
|
Reising AE, Schlabach S, Baranau V, Stoeckel D, Tallarek U. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J Chromatogr A 2017; 1513:172-182. [DOI: 10.1016/j.chroma.2017.07.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/03/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
|
26
|
Nawada S, Dimartino S, Fee C. Dispersion behavior of 3D-printed columns with homogeneous microstructures comprising differing element shapes. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.02.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, Moore SM. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A 2017; 1523:17-39. [PMID: 28599863 DOI: 10.1016/j.chroma.2017.05.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 11/28/2022]
Abstract
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed.
Collapse
Affiliation(s)
- Laura E Blue
- Process Development, Amgen Inc., Thousand Oaks, CA 91320, USA
| | - Edward G Franklin
- HPLC Research & Development, Restek Corp., Bellefonte, PA 16823, USA
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James P Grinias
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA.
| | - Kaitlin M Grinias
- Department of Product Development & Supply, GlaxoSmithKline, King of Prussia, PA 19406, USA
| | - Daniel B Lunn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
28
|
Reising AE, Godinho JM, Jorgenson JW, Tallarek U. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns. J Chromatogr A 2017; 1504:71-82. [PMID: 28511930 DOI: 10.1016/j.chroma.2017.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 11/30/2022]
Abstract
Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process.
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - James W Jorgenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
29
|
Gritti F. Impact of straight, unconnected, radially-oriented, and tapered mesopores on column efficiency: A theoretical investigation. J Chromatogr A 2017; 1485:70-81. [DOI: 10.1016/j.chroma.2017.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 11/25/2022]
|
30
|
Lambert N, Miyazaki S, Ohira M, Tanaka N, Felinger A. Comparison of the kinetic performance of different columns for fast liquid chromatography, emphasizing the contributions of column end structure. J Chromatogr A 2016; 1473:99-108. [DOI: 10.1016/j.chroma.2016.10.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 01/17/2023]
|
31
|
Enke D, Gläser R, Tallarek U. Sol-Gel and Porous Glass-Based Silica Monoliths with Hierarchical Pore Structure for Solid-Liquid Catalysis. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201600049] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Reising AE, Godinho JM, Hormann K, Jorgenson JW, Tallarek U. Larger voids in mechanically stable, loose packings of 1.3μm frictional, cohesive particles: Their reconstruction, statistical analysis, and impact on separation efficiency. J Chromatogr A 2016; 1436:118-32. [PMID: 26858113 DOI: 10.1016/j.chroma.2016.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 12/23/2022]
Abstract
Lateral transcolumn heterogeneities and the presence of larger voids in a packing (comparable to the particle size) can limit the preparation of efficient chromatographic columns. Optimizing and understanding the packing process provides keys to better packing structures and column performance. Here, we investigate the slurry-packing process for a set of capillary columns packed with C18-modified, 1.3μm bridged-ethyl hybrid porous silica particles. The slurry concentration used for packing 75μm i.d. fused-silica capillaries was increased gradually from 5 to 50mg/mL. An intermediate concentration (20mg/mL) resulted in the best separation efficiency. Three capillaries from the set representing low, intermediate, and high slurry concentrations were further used for three-dimensional bed reconstruction by confocal laser scanning microscopy and morphological analysis of the bed structure. Previous studies suggest increased slurry concentrations will result in higher column efficiency due to the suppression of transcolumn bed heterogeneities, but only up to a critical concentration. Too concentrated slurries favour the formation of larger packing voids (reaching the size of the average particle diameter). Especially large voids, which can accommodate particles from>90% of the particle size distribution, are responsible for a decrease in column efficiency at high slurry concentrations. Our work illuminates the increasing difficulty of achieving high bed densities with small, frictional, cohesive particles. As particle size decreases interparticle forces become increasingly important and hinder the ease of particle sliding during column packing. While an optimal slurry concentration is identified with respect to bed morphology and separation efficiency under conditions in this work, our results suggest adjustments of this concentration are required with regard to particle size, surface roughness, column dimensions, slurry liquid, and external effects utilized during the packing process (pressure protocol, ultrasound, electric fields).
Collapse
Affiliation(s)
- Arved E Reising
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Justin M Godinho
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States
| | - Kristof Hormann
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - James W Jorgenson
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, United States.
| | - Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| |
Collapse
|
33
|
Müllner T, Unger KK, Tallarek U. Characterization of microscopic disorder in reconstructed porous materials and assessment of mass transport-relevant structural descriptors. NEW J CHEM 2016. [DOI: 10.1039/c5nj03346b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Tanaka N, McCalley DV. Core–Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal Chem 2015; 88:279-98. [DOI: 10.1021/acs.analchem.5b04093] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - David V. McCalley
- Centre for Research in Biosciences, University of the West of England, Frenchay, Bristol BS16 1QY, U.K
| |
Collapse
|