1
|
Dos Santos Lima M, da Silva Monteiro LI, de Brito Araújo Carvalho AJ, Bastos DC, Pimentel TC, Magnani M. A robust method for quantifying 42 phenolic compounds by RP-HPLC/DAD: Columns performance and characterization of Brazilian Citrus peels. Food Chem 2024; 460:140807. [PMID: 39146719 DOI: 10.1016/j.foodchem.2024.140807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
Reliable analytical methods are the basis for the elucidation of phenolic compounds in foods. This study aimed to optimize and validate a method for determining 42 phenolics using reverse-phase (RP) high-performance liquid chromatography (HPLC) coupled to diode-array-detector-DAD. The performance of two RP columns was evaluated. The 150x4.6 mm 3-μm column showed superior separation quality, whereas 35 of the 42 phenolics showed a separation resolution ≥1.5. The method's linearity, precision (coefficient variation< 3.09%), recovery (87.5-103.2%), specificity, limits of detection (0.04-0.25 mg/L), and quantification (0.06-0.25 mg/L) had acceptable ranges. Thirty phenolics were quantified in Citrus peels, mainly flavanones, flavanols, flavonols, and phenolic acids, highlighting the high values of hesperidin (535-35070 mg/kg) and naringin (26-36466 mg/kg). Lemon peels named 'Lisboa,' 'Thaiti,' 'Thaiti-2000', and 'Thaiti-2001' presented the main phenolics associated with antioxidant capacity. The presented method was robust for determining 42 phenolic compounds, offering a new approach for bioactive compound quantification in food matrices.
Collapse
Affiliation(s)
- Marcos Dos Santos Lima
- Instituto Federal do Sertão Pernambucano, Campus Petrolina, Departamento de Tecnologia em Alimentos, - Laboratório de Tecnologia de Bebidas, Jardim São Paulo -CEP 56314-520, Petrolina, PE, Brazil.; Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Castelo Branco III - CEP 58059-900, João Pessoa, PB, Brazil..
| | - Larissa Iris da Silva Monteiro
- Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciência e Tecnologia dos Alimentos, Castelo Branco III - CEP 58059-900, João Pessoa, PB, Brazil..
| | - Ana Júlia de Brito Araújo Carvalho
- Instituto Federal do Sertão Pernambucano, Campus Petrolina, Departamento de Tecnologia em Alimentos, - Laboratório de Tecnologia de Bebidas, Jardim São Paulo -CEP 56314-520, Petrolina, PE, Brazil..
| | - Débora Costa Bastos
- Empresa Brasileira de Pesquisa Agropecuária - Embrapa Semiárido. Rodovia BR 428, Km 152, CP 23, CEP 56302-970, Petrolina, PE, Brazil..
| | | | - Marciane Magnani
- Laboratory of Microbial Process in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
2
|
De Cristofaro M, Lenzi A, Ghimenti S, Biagini D, Bertazzo G, Vivaldi FM, Armenia S, Pugliese NR, Masi S, Di Francesco F, Lomonaco T. Decoding the Challenges: navigating Intact Peptide Mass Spectrometry-Based Analysis for Biological Applications. Crit Rev Anal Chem 2024:1-23. [PMID: 39556023 DOI: 10.1080/10408347.2024.2427140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Quantitative analysis of peptides in biological fluids offers a high diagnostic and prognostic tool to reflect the pathophysiological condition of the patient. Recently, methods based on liquid chromatography coupled with mass spectrometry (LC-MS) for the quantitative determination of intact peptides have been replacing traditionally used ligand-binding assays, which suffer from cross-reactivity issues. The use of "top-down" analysis of peptides is rapidly increasing since it does not undergo incomplete or non-reproducible digestion like "bottom-up" approaches. However, the low abundance of peptides and their peculiar characteristics, as well as the complexity of biological fluids, make their quantification challenging. Herein, the analytical pitfalls that may be encountered during the development of an LC-MS method for the analysis of intact peptides in biological fluids are discussed. Challenges in the pre-analytical phase, stability after sampling and sample processing, significantly impact the accuracy of peptide quantification. Emerging techniques, such as microextractions, are becoming crucial for improved sample cleanup and enrichment of target analytes. A comparison between the roles of high-resolution and low-resolution mass spectrometry in the quantification of intact peptides, as well as the introduction of supercharging reagents to enhance ionization, will be discussed.
Collapse
Affiliation(s)
| | - Alessio Lenzi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Silvia Ghimenti
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Denise Biagini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Giulia Bertazzo
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | | | - Silvia Armenia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Fabio Di Francesco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Tommaso Lomonaco
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Tallarek U, Hlushkou D, Steinhoff A, Höltzel A. Multiscale simulation of liquid chromatography: Effective diffusion in macro-mesoporous beds and the B-term of the plate height equation. J Chromatogr A 2024; 1738:465468. [PMID: 39481179 DOI: 10.1016/j.chroma.2024.465468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
We performed multiscale simulations of analyte sorption and diffusion in hierarchical porosity models of monolithic silica columns for reversed-phase liquid chromatography to investigate how the mean mesopore size of the chromatographic bed and the analyte-specific interaction with the chromatographic interface influence the analyte diffusivity at various length scales. The reproduced experimental conditions comprised the retention of six analyte compounds of low to moderate solute polarity on a silica-based, endcapped, C18 stationary phase with water‒acetonitrile and water-methanol mobile phases whose elution strength was varied via the volumetric solvent ratio. Detailed information about the analyte-specific interfacial dynamics received from molecular dynamics simulations was incorporated through appropriate linker schemes into Brownian dynamics diffusion simulations in three hierarchical porosity models received from physical reconstructions of silica monoliths with a mean macropore size of 1.23 µm and mean mesopore sizes of 12.3, 21.3, or 25.7 nm. The mean mesopore size was found to have a similar influence on the effective mesopore diffusivity as the analyte polarity and the mobile-phase elution strength, which together determine the analyte residence time on a column. A smaller mesopore size attenuated the increase of the effective mesopore diffusivity with increasing mobile-phase elution strength significantly. The effective bed diffusivity was limited by the analyte residence time rather than by morphological details of the mesopore space. The stronger an analyte was retained by the chromatographic interface inside the mesopores, the slower became the mass transfer between the pore space hierarchies and the lower was the effective bed diffusivity. The B-terms of the plate height equation were finally generated with the bed diffusivities and phase-based retention factors derived from the hierarchical porosity models using additional information about the stationary-phase limit obtained from the analysis of analyte-bonded phase contacts. The B-terms highlight analyte- and mobile phase-specific behavior relevant to isocratic and gradient elution conditions in chromatographic practice. In particular, U-shaped B-term curves are observed due to the dominating contribution of the retention factor and the bed diffusivity to the B-term at low and high elution strength of the mobile phase, respectively.
Collapse
Affiliation(s)
- Ulrich Tallarek
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany.
| | - Dzmitry Hlushkou
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Andreas Steinhoff
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Alexandra Höltzel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
4
|
Libert BP, Foster SW, Gates EP, Morse M, Ward G, Lee ML, Grinias JP. Exploring Biopharmaceutical Analysis with Compact Capillary Liquid Chromatography Instrumentation. LC GC EUROPE 2023; 36:24-27. [PMID: 37484870 PMCID: PMC10358286 DOI: 10.56530/lcgc.eu.qq7969g7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
A recent trend in the design of liquid chromatography (LC) instrumentation is the move towards miniaturized and portable systems. These smaller platforms provide wider flexibility in operation, with the opportunity for conducting analysis directly at the point of sample collection rather than transporting the sample to a centralized laboratory facility. For the manufacturing of pharmaceutical and biopharmaceutical products, these platforms can be implemented for process monitoring and product characterization directly in manufacturing environments. This article describes a portable, miniaturized LC instrument coupled to a mass spectrometer (MS) for characterization of a biopharmaceutical monoclonal antibody (mAb).
Collapse
|
5
|
Liu B, Li H, Quan K, Chen J, Qiu H. Periodic mesoporous organosilica for chromatographic stationary phases: From synthesis strategies to applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Advances in the Application of Liquid Chromatography in the Detection of Pollutants. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2152615. [PMID: 36060653 PMCID: PMC9439901 DOI: 10.1155/2022/2152615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 12/01/2022]
Abstract
Food is easy to be contaminated because of its complex composition. Therefore, in order to protect people from potential food contaminants, it is very necessary to test for various contaminants in food. Liquid chromatography is widely used in the field of food safety detection. In addition, with the development of liquid chromatography technology, more and more new instruments are combined with liquid chromatography. Compared with traditional liquid chromatography, combined liquid chromatography has great advantages in efficiency and operation. Therefore, it is rapidly promoted in the field of food safety testing. In this paper, the results of the determination of three kinds of food pollutants by different liquid chromatography methods are reviewed, and the indexes are compared and analyzed.
Collapse
|
8
|
Grinias JP, Godinho JM. Liquid Chromatography Column Design and Dimensional Analysis of the van Deemter Equation. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.kh7671g4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The fundamental mechanisms of band broadening are usually introduced to students through the van Deemter equation. Dimensional analysis of this equation can give physical meaning to the equation coefficients and enhance our understanding relative to qualitative descriptions. This approach can also guide improvements to future liquid chromatography (LC) column designs.
Collapse
|
9
|
Zhao L, Che X, Huang Y, Zhu K, Du Y, Gao J, Zhang R, Zhang Y, Ma G. Regulation on both Pore Structure and Pressure-resistant Property of Uniform Agarose Microspheres for High-resolution Chromatography. J Chromatogr A 2022; 1681:463461. [DOI: 10.1016/j.chroma.2022.463461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
10
|
Grybinik S, Bosakova Z. Effect of the type of commercially available mixed-mode stationary phases on the retention of pharmaceutically important acidic and neutral compounds using different compositions of mobile phase. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02960-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Mattarozzi M, Riboni N, Maffini M, Scarpella S, Bianchi F, Careri M. Reversed-phase and weak anion-exchange mixed-mode stationary phase for fast separation of medium-, long- and very long chain free fatty acids by ultra-high-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2021; 1648:462209. [PMID: 34000595 DOI: 10.1016/j.chroma.2021.462209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022]
Abstract
Two commercial stationary phases allowing both reversed phase mechanism and anion-exchange with different selectivity, i.e. CSH C18 and Atlantis PREMIER BEH C18 AX, were tested for the separation of a complex mixture of 21 fatty acids (FAs) encompassing saturated medium-, long- and very long chain FAs, unsaturated long and very long chain FAs, cis/trans isomers, and isomers of odd- and branched-chain FAs. For this purpose, the role of surface area of stationary phase and the effect of pH of the mobile phase on the retention of the analytes were investigated. Separation was performed by ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS). BEH C18 AX was shown to be more versatile and to offer superior retention of these analytes to CSH C18 owing to a higher surface area and anion-exchange capacity up to pH 8.5. The UHPLC system allows shortening analysis time, the chromatographic analysis being accomplished in about 5 min, affording a high throughput of samples without the need for derivatization or ion-pairing reagents compared to techniques based upon gas chromatography approaches or LC. Finally, the application of the BEH C18 AX column using UHPLC-HRMS was demonstrated for the separation and unambiguous identification of FAs of nutritional interest in a dietary supplement sample.
Collapse
Affiliation(s)
- Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Monica Maffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Simona Scarpella
- Waters SPA, Viale T. Edison 110, 20099 Sesto San Giovanni, Milan, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy.
| |
Collapse
|