1
|
Zohaib HM, Saqlain M, Khan MA, Masood S, Gul I, Irfan M, Li H. Exploring enantioselective recognition of dTMP-Co-bpe coordination polymer for natural amino acids using molecular simulations and circular dichroism. Dalton Trans 2024; 53:13076-13086. [PMID: 39034765 DOI: 10.1039/d4dt01245c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The 1D homochiral coordination polymer (CP-1) {[Co(dTMP)(bpe)2(H2O)3]·9H2O}n was constructed by using 2'-deoxy thymidine 5'-monophosphate disodium salt (dTMP·2Na), and auxiliary ligand bpe (1,2-bis(4-pyridyl)ethene) and characterized by single-crystal XRD, PXRD, IR, UV-visible, CD and TGA analyses. Molecular simulations revealed the selective chiral behaviour of CP-1 towards phenylalanine and histidine, as indicated by their higher binding free energies compared to other amino acids. Theoretical parameters were also compared with experimental UV-visible verdicts. Notably, the D-enantiomers of phenylalanine and histidine demonstrated strong bonding abilities and optimal configurations for probing and distinguishing them from their L-counterparts. These findings led to propositions suggesting that the dissimilarities between these D and L amino acid forms and their binding orientations with CP-1 may contribute to alterations in the CD signal. CP-1 exhibited a robust inherent circular dichroism (CD) signal in aqueous solutions, modulated by the presence of specific amino acids, namely D/L phenylalanine and D/L histidine. Leveraging the measurement of CD signal intensity, a sensor capable of detecting unmodified amino acids has been developed. Unlike previously reported approaches that relied on complex chemical reactions between initially CD-silent molecules and probed amino acids, this new method offers a more straightforward means of amplifying the CD signal. Consequently, this change facilitates a more accurate differentiation between the enantiomers of these specific amino acids compared to others.
Collapse
Affiliation(s)
- Hafiz Muhammad Zohaib
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Madiha Saqlain
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Maroof Ahmad Khan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Collaborative Innovation Center of Marine Science and Technology, Hainan University, 570228 Haikou, P. R. China
| | - Sara Masood
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ijaz Gul
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, China
| | - Muhammad Irfan
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
2
|
Kartsova L, Maliushevska A. Determination of amino acids and peptides without their pre-column derivatization by capillary electrophoresis with ultraviolet and contactless conductivity detection. An overview. J Sep Sci 2024; 47:e2400352. [PMID: 39189592 DOI: 10.1002/jssc.202400352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/20/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
This review provides an overview of recent works focusing on the determination of amino acids (AAs) and peptides using capillary electrophoresis with contactless conductivity detection and ultraviolet (UV) detection, which is the most widespread detection in capillary electromigration techniques, without pre-capillary derivatization. Available options for the UV detection of these analytes, such as indirect detection, complexation with transition metal ions, and in-capillary derivatization are described. Developments in the field of direct detection of UV-absorbing AAs and peptides as well as progress in chiral separation are described. A separate section is dedicated to using on-line sample preconcentration methods combined with capillary electrophoresis-UV.
Collapse
Affiliation(s)
- Liudmila Kartsova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | | |
Collapse
|
3
|
Li Y, Miao S, Tan J, Zhang Q, Chen DDY. Capillary Electrophoresis: A Three-Year Literature Review. Anal Chem 2024; 96:7799-7816. [PMID: 38598751 DOI: 10.1021/acs.analchem.4c00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Yueyang Li
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Siyu Miao
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jiahua Tan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
4
|
Wang X, Luo P, Wang X, Peng H, Zhou G, Peng J. Fabrication of ionic liquid functionalized silica with different anions and the application in mixed-mode and chiral chromatography. Talanta 2024; 270:125547. [PMID: 38101029 DOI: 10.1016/j.talanta.2023.125547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
To realize the potential of ionic liquid functionalized silica to prepare mixed-mode and chiral stationary phases, two ionic liquid silane reagents with different anions were synthesized via a high-efficiency click reaction. Then they were decorated onto the surface of silica by a one-step bonding reaction. The functionalized silica was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and elemental analysis (EA). Two stationary phases provided satisfactory performance when compared with a commercial mixed-mode column. Notably, Sil-C10Im-D-BCS with D-3-bromocamphor-8-sulfonate (D-BCS) as anion presented chiral separation capacity towards 1,2,3,4-Tetrahydro-1-naphthol. The separation mechanism was investigated through multiple pathways, and the results revealed that the prepared stationary phases can retain and separate solutes through multiple interactions, like hydrophobic effect, ion exchange, hydrogen-bond interaction, etc. Quantum chemical calculation (QC) was employed to obtain the optimized structures and the binding energy of anions to cations. The results provided some insights into the retention mechanism from a molecular perspective. This work demonstrated the superiority of ionic liquid functionalized silica as mixed-mode stationary phases and the potential of chiral ionic liquid as chiral selectors.
Collapse
Affiliation(s)
- Xiang Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Pan Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xingrui Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Huanjun Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Guangming Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Jingdong Peng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
5
|
Ma X, Fan Z, Tang Z, Cai L. Investigation on improvement of enantioseparation based on clindamycin phosphate by chiral deep eutectic solvents in capillary electrophoresis. J Sep Sci 2024; 47:e2300847. [PMID: 38356235 DOI: 10.1002/jssc.202300847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/16/2024]
Abstract
In this work, the potential synergetic effect between deep eutectic solvents and an antibiotic chiral selector (clindamycin phosphate) for enantioseparation was investigated in capillary electrophoresis. We synthesized a series of deep eutectic solvents with choline chloride as hydrogen bond acceptor and three α-hydroxyl acids (l-lactic acid, l-malic acid, and l-tartaric acid) as hydrogen bond donors. Compared to the single clindamycin phosphate separation system, significantly improved separations of model drugs were observed in several synergetic systems. Compared to deep eutectic solvents with a single hydrogen bond donor, deep eutectic solvents with mixed-type hydrogen bond donors were superior. The influences of several key parameters including the type and proportion of organic modifier, clindamycin phosphate concentrations, deep eutectic solvents concentrations, and buffer pH were investigated in detail. The mechanism of the enhanced separations in deep eutectic solvents systems was investigated by means of electroosmotic flow analysis, nuclear magnetic resonance analysis, and molecular modeling. It was the first time that the synergetic systems between deep eutectic solvents and antibiotic chiral selector were established in capillary electrophoresis, and these deep eutectic solvents were demonstrated to have a good synergetic effect with clindamycin phosphate for enantioseparation.
Collapse
Affiliation(s)
- Xiaofei Ma
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Zhenyu Fan
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Zhiyuan Tang
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Liangliang Cai
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong, P. R. China
| |
Collapse
|
6
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Fanali C, Della Posta S, Gentili A, Chankvetadze B, Fanali S. Recent developments in electromigration techniques related to pharmaceutical and biomedical analysis - A review. J Pharm Biomed Anal 2023; 235:115647. [PMID: 37625282 DOI: 10.1016/j.jpba.2023.115647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023]
Abstract
The analysis of pharmaceutical compounds is an important research topic as the use of different drugs affects people's daily life for the treatment of diseases. In addition to the widespread use of the internet, counterfeit drugs have appeared in the market. The development of modern analytical techniques, reliable, precise, sensitive, and rapid methods, has provided powerful means of analysis used in various fields such as drug production, quality control, determination of impurities and/or metabolites, biochemistry, pharmacokinetics, etc. Analytical techniques so far used in the pharmaceutical analysis include high-performance liquid chromatography (HPLC), gas chromatography (GC), super/sub-critical fluid chromatography (SFC), and capillary electromigration techniques such as capillary electrophoresis (CE) and rather rarely capillary electrochromatography (CEC). CE has some advantages over other techniques, e.g., very high efficiency, reduced costs (use of minute volumes of solvents and samples), the possibility to use different separation mechanisms, etc. In this review paper, the main features and limitations of the capillary electromigration techniques (especially CE) are discussed. Some selected applications of CE to the analysis of pharmaceutical compounds published in the period 2021-2023 (May) are reported.
Collapse
Affiliation(s)
- Chiara Fanali
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Rome, Italy.
| | - Susanna Della Posta
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | - Salvatore Fanali
- Scientific Board of the Ph.D. School in Nanosciences and Advanced Technologies, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Liu H, Chen J, Chen M, Wang J, Qiu H. Recent development of chiral ionic liquids for enantioseparation in liquid chromatography and capillary electrophoresis: A review. Anal Chim Acta 2023; 1274:341496. [PMID: 37455089 DOI: 10.1016/j.aca.2023.341496] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023]
Abstract
Ionic liquids (ILs), which are salts in a molten state below 100 °C, have become a hot topic of research in various fields because of their negligible vapour pressure, high thermal stability, and tunable viscosity. Chiral ionic liquids (CILs) can be applied in chromatography and capillary electrophoresis fields to improve the performance of enantiomeric separation, such as chiral stationary phases (CSPs) and mobile phase additives in high-performance liquid chromatography (HPLC); CSPs in gas chromatography (GC); and background electrolyte additives (BGE), chiral ligands and chiral selectors (CSs) in capillary electrophoresis (CE). This review focuses on the applications of CILs in HPLC and CE for the separation of enantiomers in the past five years. The mechanism for separating enantiomers was explained, and the prospect of the application of CILs in chiral liquid chromatography (LC) and CE analysis was also discussed.
Collapse
Affiliation(s)
- Huifeng Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Mingli Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
9
|
Affiliation(s)
- Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.,Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Chiral ionic liquids synthesis and their applications in racemic drug separation and analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Density, viscosity and electrical conductivity of four amino acid based ionic liquids derived from L-Histidine, L-Lysine, L-Serine, and Glycine. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Sázelová P, Šolínová V, Schimperková T, Jiráček J, Kašička V. Chiral analysis of ‐alanyl‐
d,l
‐tyrosine and its derivatives and estimation of binding constants of their complexes with 2‐hydroxypropyl‐β‐cyclodextrin by capillary electrophoresisS. J Sep Sci 2022; 45:3328-3338. [DOI: 10.1002/jssc.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/02/2022] [Accepted: 04/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Petra Sázelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 542/2, 166 10 Prague 6 Czechia
| | - Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 542/2, 166 10 Prague 6 Czechia
| | - Tereza Schimperková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 542/2, 166 10 Prague 6 Czechia
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 542/2, 166 10 Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 542/2, 166 10 Prague 6 Czechia
| |
Collapse
|
13
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|