1
|
Porrazzo A, Cipressa F, De Gregorio A, De Pittà C, Sales G, Ciapponi L, Morciano P, Esposito G, Tabocchini MA, Cenci G. Low dose rate γ-irradiation protects fruit fly chromosomes from double strand breaks and telomere fusions by reducing the esi-RNA biogenesis factor Loquacious. Commun Biol 2022; 5:905. [PMID: 36057690 PMCID: PMC9440893 DOI: 10.1038/s42003-022-03885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
It is still continuously debated whether the low-dose/dose-rate (LDR) of ionizing radiation represents a hazard for humans. Model organisms, such as fruit flies, are considered valuable systems to reveal insights into this issue. We found that, in wild-type Drosophila melanogaster larval neuroblasts, the frequency of Chromosome Breaks (CBs), induced by acute γ-irradiation, is considerably reduced when flies are previously exposed to a protracted dose of 0.4 Gy delivered at a dose rate of 2.5 mGy/h. This indicates that this exposure, which is associated with an increased expression of DNA damage response proteins, induces a radioadaptive response (RAR) that protects Drosophila from extensive DNA damage. Interestingly, the same exposure reduces the frequency of telomere fusions (TFs) from Drosophila telomere capping mutants suggesting that the LDR can generally promote a protective response on chromatin sites that are recognized as DNA breaks. Deep RNA sequencing revealed that RAR is associated with a reduced expression of Loquacious D (Loqs-RD) gene that encodes a well-conserved dsRNA binding protein required for esiRNAs biogenesis. Remarkably, loss of Loqs mimics the LDR-mediated chromosome protection as it decreases the IR-induced CBs and TFs frequency. Thus, our molecular characterization of RAR identifies Loqs as a key factor in the cellular response to LDR and in the epigenetic routes involved in radioresistance. Chronic low y-radiation exposure to Drosophila cells decreases chromosome breaks induced by high-dose irradiation and telomere dysfunction by reducing the esiRNA biogenesis factor Loquacious D.
Collapse
Affiliation(s)
- A Porrazzo
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy.,Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy
| | - F Cipressa
- Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy.,Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - A De Gregorio
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - C De Pittà
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | - G Sales
- Dipartimento di Biologia, Università di Padova, Padua, Italy
| | - L Ciapponi
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy
| | - P Morciano
- INFN-Laboratori Nazionali del Gran Sasso, 67100, Assergi, Italy
| | - G Esposito
- Istituto Superiore di Sanita' ISS, Rome, Italy.,INFN-Roma 1, Rome, Italy
| | | | - G Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin", Sapienza Università di Roma, Rome, Italy. .,Fondazione Cenci Bolognetti/ Istituto Pasteur Italia, Rome, Italy.
| |
Collapse
|
2
|
Porrazzo A, Esposito G, Grifoni D, Cenci G, Morciano P, Tabocchini MA. Reduced Environmental Dose Rates Are Responsible for the Increased Susceptibility to Radiation-Induced DNA Damage in Larval Neuroblasts of Drosophila Grown inside the LNGS Underground Laboratory. Int J Mol Sci 2022; 23:ijms23105472. [PMID: 35628279 PMCID: PMC9143493 DOI: 10.3390/ijms23105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
A large amount of evidence from radiobiology studies carried out in Deep Underground Laboratories support the view that environmental radiation may trigger biological mechanisms that enable both simple and complex organisms to cope with genotoxic stress. In line with this, here we show that the reduced radiation background of the LNGS underground laboratory renders Drosophila neuroblasts more sensitive to ionizing radiation-induced (but not to spontaneous) DNA breaks compared to fruit flies kept at the external reference laboratory. Interestingly, we demonstrate that the ionizing radiation sensitivity of flies kept at the LNGS underground laboratory is rescued by increasing the underground gamma dose rate to levels comparable to the low-LET reference one. This finding provides the first direct evidence that the modulation of the DNA damage response in a complex multicellular organism is indeed dependent on the environmental dose rate.
Collapse
Affiliation(s)
- Antonella Porrazzo
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, 00185 Rome, Italy; (A.P.); (G.C.)
| | - Giuseppe Esposito
- Centro Nazionale per le Tecnologie Innovative in Sanità Pubblica (TISP), Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
- Correspondence: (G.E.); (P.M.)
| | - Daniela Grifoni
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze Della Vita e Dell’ambiente, Università Dell’aquila, 67100 L’Aquila, Italy;
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza Università di Roma, 00185 Rome, Italy; (A.P.); (G.C.)
- Fondazione Cenci Bolognetti, Istituto Pasteur, 00185 Rome, Italy
| | - Patrizia Morciano
- Laboratori Nazionali del Gran Sasso (LNGS), INFN, Assergi, 67100 L’Aquila, Italy
- Correspondence: (G.E.); (P.M.)
| | - Maria Antonella Tabocchini
- Centro Nazionale per le Tecnologie Innovative in Sanità Pubblica (TISP), Istituto Superiore di Sanità (ISS), 00161 Rome, Italy;
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma 1, 00185 Rome, Italy
| |
Collapse
|
3
|
Li F, Lo TY, Miles L, Wang Q, Noristani HN, Li D, Niu J, Trombley S, Goldshteyn JI, Wang C, Wang S, Qiu J, Pogoda K, Mandal K, Brewster M, Rompolas P, He Y, Janmey PA, Thomas GM, Li S, Song Y. The Atr-Chek1 pathway inhibits axon regeneration in response to Piezo-dependent mechanosensation. Nat Commun 2021; 12:3845. [PMID: 34158506 PMCID: PMC8219705 DOI: 10.1038/s41467-021-24131-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Atr is a serine/threonine kinase, known to sense single-stranded DNA breaks and activate the DNA damage checkpoint by phosphorylating Chek1, which inhibits Cdc25, causing cell cycle arrest. This pathway has not been implicated in neuroregeneration. We show that in Drosophila sensory neurons removing Atr or Chek1, or overexpressing Cdc25 promotes regeneration, whereas Atr or Chek1 overexpression, or Cdc25 knockdown impedes regeneration. Inhibiting the Atr-associated checkpoint complex in neurons promotes regeneration and improves synapse/behavioral recovery after CNS injury. Independent of DNA damage, Atr responds to the mechanical stimulus elicited during regeneration, via the mechanosensitive ion channel Piezo and its downstream NO signaling. Sensory neuron-specific knockout of Atr in adult mice, or pharmacological inhibition of Atr-Chek1 in mammalian neurons in vitro and in flies in vivo enhances regeneration. Our findings reveal the Piezo-Atr-Chek1-Cdc25 axis as an evolutionarily conserved inhibitory mechanism for regeneration, and identify potential therapeutic targets for treating nervous system trauma.
Collapse
Affiliation(s)
- Feng Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsz Y Lo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leann Miles
- The Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harun N Noristani
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Dan Li
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jingwen Niu
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
| | - Shannon Trombley
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica I Goldshteyn
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chuxi Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shuchao Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jingyun Qiu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Kalpana Mandal
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan Brewster
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ye He
- The City University of New York, Graduate Center - Advanced Science Research Center, Neuroscience Initiative, New York, NY, USA
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gareth M Thomas
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Shuxin Li
- Shriners Hospitals Pediatric Research Center (Center for Neurorehabilitation and Neural Repair), Temple University School of Medicine, Philadelphia, PA, USA
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Wang XF, Yang SA, Gong S, Chang CH, Portilla JM, Chatterjee D, Irianto J, Bao H, Huang YC, Deng WM. Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model. Dev Cell 2021; 56:1976-1988.e4. [PMID: 34146466 DOI: 10.1016/j.devcel.2021.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Ploidy variation is a cancer hallmark and is frequently associated with poor prognosis in high-grade cancers. Using a Drosophila solid-tumor model where oncogenic Notch drives tumorigenesis in a transition-zone microenvironment in the salivary gland imaginal ring, we find that the tumor-initiating cells normally undergo endoreplication to become polyploid. Upregulation of Notch signaling, however, induces these polyploid transition-zone cells to re-enter mitosis and undergo tumorigenesis. Growth and progression of the transition-zone tumor are fueled by a combination of polyploid mitosis, endoreplication, and depolyploidization. Both polyploid mitosis and depolyploidization are error prone, resulting in chromosomal copy-number variation and polyaneuploidy. Comparative RNA-seq and epistasis analysis reveal that the DNA-damage response genes, also active during meiosis, are upregulated in these tumors and are required for the ploidy-reduction division. Together, these findings suggest that polyploidy and associated cell-cycle variants are critical for increased tumor-cell heterogeneity and genome instability during cancer progression.
Collapse
Affiliation(s)
- Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Sheng-An Yang
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shangyu Gong
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Juan Martin Portilla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Hongcun Bao
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University Louisiana Center Research Center, New Orleans, LA 70112, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
5
|
On K, Crevel G, Cotterill S, Itoh M, Kato Y. Drosophila telomere capping protein HOAP interacts with DSB sensor proteins Mre11 and Nbs. Genes Cells 2021; 26:219-229. [PMID: 33556205 DOI: 10.1111/gtc.12836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
In eukaryotes, specific DNA-protein structures called telomeres exist at linear chromosome ends. Telomere stability is maintained by a specific capping protein complex. This capping complex is essential for the inhibition of the DNA damage response (DDR) at telomeres and contributes to genome integrity. In Drosophila, the central factors of telomere capping complex are HOAP and HipHop. Furthermore, a DDR protein complex Mre11-Rad50-Nbs (MRN) is known to be important for the telomere association of HOAP and HipHop. However, whether MRN interacts with HOAP and HipHop, and the telomere recognition mechanisms of HOAP and HipHop are poorly understood. Here, we show that Nbs interacts with Mre11 and transports the Mre11-Rad50 complex from the cytoplasm to the nucleus. In addition, we report that HOAP interacts with both Mre11 and Nbs. The N-terminal region of HOAP is essential for its co-localization with HipHop. Finally, we reveal that Nbs interacts with the N-terminal region of HOAP.
Collapse
Affiliation(s)
- Kinyo On
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | - Gilles Crevel
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Masanobu Itoh
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| | - Yasuko Kato
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
6
|
Winbush A, Singh ND. Genomics of Recombination Rate Variation in Temperature-Evolved Drosophila melanogaster Populations. Genome Biol Evol 2020; 13:6008691. [PMID: 33247719 PMCID: PMC7851596 DOI: 10.1093/gbe/evaa252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Meiotic recombination is a critical process that ensures proper segregation of chromosome homologs through DNA double-strand break repair mechanisms. Rates of recombination are highly variable among various taxa, within species, and within genomes with far-reaching evolutionary and genomic consequences. The genetic basis of recombination rate variation is therefore crucial in the study of evolutionary biology but remains poorly understood. In this study, we took advantage of a set of experimental temperature-evolved populations of Drosophila melanogaster with heritable differences in recombination rates depending on the temperature regime in which they evolved. We performed whole-genome sequencing and identified several chromosomal regions that appear to be divergent depending on temperature regime. In addition, we identify a set of single-nucleotide polymorphisms and associated genes with significant differences in allele frequency when the different temperature populations are compared. Further refinement of these gene candidates emphasizing those expressed in the ovary and associated with DNA binding reveals numerous potential candidate genes such as Hr38, EcR, and mamo responsible for observed differences in recombination rates in these experimental evolution lines thus providing insight into the genetic basis of recombination rate variation.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
| | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, USA
- Corresponding author: E-mail:
| |
Collapse
|
7
|
Landmann C, Pierre-Elies P, Goutte-Gattat D, Montembault E, Claverie MC, Royou A. The Mre11-Rad50-Nbs1 complex mediates the robust recruitment of Polo to DNA lesions during mitosis in Drosophila. J Cell Sci 2020; 133:jcs244442. [PMID: 32487663 DOI: 10.1242/jcs.244442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
The DNA damage sensor Mre11-Rad50-Nbs1 complex and Polo kinase are recruited to DNA lesions during mitosis. However, their mechanism of recruitment is elusive. Here, using live-cell imaging combined with micro-irradiation of single chromosomes, we analyze the dynamics of Polo and Mre11 at DNA lesions during mitosis in Drosophila These two proteins display distinct kinetics. Whereas Polo kinetics at double-strand breaks (DSBs) are Cdk1-driven, Mre11 promptly but briefly associates with DSBs regardless of the phase of mitosis and re-associates with DSBs in the proceeding interphase. Mechanistically, Polo kinase activity is required for its own recruitment and that of the mitotic proteins BubR1 and Bub3 to DSBs. Moreover, depletion of Rad50 severely impaired Polo kinetics at mitotic DSBs. Conversely, ectopic tethering of Mre11 to chromatin was sufficient to recruit Polo. Our study highlights a novel pathway that links the DSB sensor Mre11-Rad50-Nbs1 complex and Polo kinase to initiate a prompt, decisive response to the presence of DNA damage during mitosis.
Collapse
Affiliation(s)
- Cedric Landmann
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Priscillia Pierre-Elies
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Damien Goutte-Gattat
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Emilie Montembault
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Marie-Charlotte Claverie
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | - Anne Royou
- CNRS, UMR5095, University of Bordeaux, European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| |
Collapse
|
8
|
Cacchione S, Cenci G, Raffa GD. Silence at the End: How Drosophila Regulates Expression and Transposition of Telomeric Retroelements. J Mol Biol 2020; 432:4305-4321. [PMID: 32512004 DOI: 10.1016/j.jmb.2020.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 01/26/2023]
Abstract
The maintenance of chromosome ends in Drosophila is an exceptional phenomenon because it relies on the transposition of specialized retrotransposons rather than on the activity of the enzyme telomerase that maintains telomeres in almost every other eukaryotic species. Sequential transpositions of Het-A, TART, and TAHRE (HTT) onto chromosome ends produce long head-to-tail arrays that are reminiscent to the long arrays of short repeats produced by telomerase in other organisms. Coordinating the activation and silencing of the HTT array with the recruitment of telomere capping proteins favors proper telomere function. However, how this coordination is achieved is not well understood. Like other Drosophila retrotransposons, telomeric elements are regulated by the piRNA pathway. Remarkably, HTT arrays are both source of piRNA and targets of gene silencing thus making the regulation of Drosophila telomeric transposons a unique event among eukaryotes. Herein we will review the genetic and molecular mechanisms underlying the regulation of HTT transcription and transposition and will discuss the possibility of a crosstalk between piRNA-mediated regulation, telomeric chromatin establishment, and telomere protection.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy; Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy.
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
9
|
NBS1 interacts with HP1 to ensure genome integrity. Cell Death Dis 2019; 10:951. [PMID: 31836699 PMCID: PMC6911104 DOI: 10.1038/s41419-019-2185-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Heterochromatin Protein 1 (HP1) and the Mre11-Rad50-Nbs1 (MRN) complex are conserved factors that play crucial role in genome stability and integrity. Despite their involvement in overlapping cellular functions, ranging from chromatin organization, telomere maintenance to DNA replication and repair, a tight functional relationship between HP1 and the MRN complex has never been elucidated. Here we show that the Drosophila HP1a protein binds to the MRN complex through its chromoshadow domain (CSD). In addition, loss of any of the MRN members reduces HP1a levels indicating that the MRN complex acts as regulator of HP1a stability. Moreover, overexpression of HP1a in nbs (but not in rad50 or mre11) mutant cells drastically reduces DNA damage associated with the loss of Nbs suggesting that HP1a and Nbs work in concert to maintain chromosome integrity in flies. We have also found that human HP1α and NBS1 interact with each other and that, similarly to Drosophila, siRNA-mediated inhibition of NBS1 reduces HP1α levels in human cultured cells. Surprisingly, fibroblasts from Nijmegen Breakage Syndrome (NBS) patients, carrying the 657del5 hypomorphic mutation in NBS1 and expressing the p26 and p70 NBS1 fragments, accumulate HP1α indicating that, differently from NBS1 knockout cells, the presence of truncated NBS1 extends HP1α turnover and/or promotes its stability. Remarkably, an siRNA-mediated reduction of HP1α in NBS fibroblasts decreases the hypersensitivity to irradiation, a characteristic of the NBS syndrome. Overall, our data provide an unanticipated evidence of a close interaction between HP1 and NBS1 that is essential for genome stability and point up HP1α as a potential target to counteract chromosome instability in NBS patient cells.
Collapse
|
10
|
Harpprecht L, Baldi S, Schauer T, Schmidt A, Bange T, Robles MS, Kremmer E, Imhof A, Becker PB. A Drosophila cell-free system that senses DNA breaks and triggers phosphorylation signalling. Nucleic Acids Res 2019; 47:7444-7459. [PMID: 31147711 PMCID: PMC6698661 DOI: 10.1093/nar/gkz473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 11/23/2022] Open
Abstract
Preblastoderm Drosophila embryo development is characterized by fast cycles of nuclear divisions. Extracts from these embryos can be used to reconstitute complex chromatin with high efficiency. We now discovered that this chromatin assembly system contains activities that recognize unprotected DNA ends and signal DNA damage through phosphorylation. DNA ends are initially bound by Ku and MRN complexes. Within minutes, the phosphorylation of H2A.V (homologous to γH2A.X) initiates from DNA breaks and spreads over tens of thousands DNA base pairs. The γH2A.V phosphorylation remains tightly associated with the damaged DNA and does not spread to undamaged DNA in the same reaction. This first observation of long-range γH2A.X spreading along damaged chromatin in an in vitro system provides a unique opportunity for mechanistic dissection. Upon further incubation, DNA ends are rendered single-stranded and bound by the RPA complex. Phosphoproteome analyses reveal damage-dependent phosphorylation of numerous DNA-end-associated proteins including Ku70, RPA2, CHRAC16, the exonuclease Rrp1 and the telomer capping complex. Phosphorylation of spindle assembly checkpoint components and of microtubule-associated proteins required for centrosome integrity suggests this cell-free system recapitulates processes involved in the regulated elimination of fatally damaged syncytial nuclei.
Collapse
Affiliation(s)
- Lisa Harpprecht
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Sandro Baldi
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
| | - Tamas Schauer
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Bioinformatics Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas Schmidt
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Protein Analysis Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Tanja Bange
- Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany
| | - Maria S Robles
- Institute of Medical Psychology, LMU Munich, 80336 Munich, Germany
| | - Elisabeth Kremmer
- Institute of Molecular Immunology, German Research Center for Environmental Health, 81377 Munich, Germany
| | - Axel Imhof
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
- Protein Analysis Unit, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science Munich, LMU Munich, 81377 Munich, Germany
- To whom correspondence should be addressed. Tel: +49 89 2180 75427; Fax: +49 89 2180 75425;
| |
Collapse
|
11
|
A new role for Drosophila Aurora-A in maintaining chromosome integrity. Chromosoma 2019; 128:41-52. [PMID: 30612150 DOI: 10.1007/s00412-018-00687-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Aurora-A is a conserved mitotic kinase overexpressed in many types of cancer. Growing evidence shows that Aurora-A plays a crucial role in DNA damage response (DDR) although this aspect has been less characterized. We isolated a new aur-A mutation, named aur-A949, in Drosophila, and we showed that it causes chromosome aberrations (CABs). In addition, aur-A949 mutants were sensitive to X-ray treatment and showed impaired γ-H2Av foci dissolution kinetics. To identify the pathway in which Aur-A works, we conducted an epistasis analysis by evaluating CAB frequencies in double mutants carrying aur-A949 mutation combined to mutations in genes related to DNA damage response (DDR). We found that mutations in tefu (ATM) and in the histone variant H2Av were epistatic over aur-A949 indicating that Aur-A works in DDR and that it is required for γ-H2Av foci dissolution. More interestingly, we found that a mutation in lig4, a gene belonging to the non-homologous end joining (NHEJ) repair pathway, was epistatic over aur-A949. Based on studies in other systems, which show that phosphorylation is important to target Lig4 for degradation, we hypothesized that in aur-A949 mutant cells, there is a persistence of Lig4 that could be, in the end, responsible for CABs. Finally, we observed a synergistic interaction between Aur-A and the homologous recombination (HR) repair system component Rad 51 in the process that converts chromatid deletions into isochromatid deletions. Altogether, these data indicate that Aur-A depletion can elicit chromosome damage. This conclusion should be taken into consideration, since some anticancer therapies are aimed at reducing Aurora-A expression.
Collapse
|
12
|
Multiple Arginine Residues Are Methylated in Drosophila Mre11 and Required for Survival Following Ionizing Radiation. G3-GENES GENOMES GENETICS 2018; 8:2099-2106. [PMID: 29695495 PMCID: PMC5982836 DOI: 10.1534/g3.118.200298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mre11 is a key player for DNA double strand break repair. Previous studies have shown that mammalian Mre11 is methylated at multiple arginines in its C-terminal Glycine-Arginine-Rich motif (GAR) by protein arginine methyltransferase PRMT1. Here, we found that the Drosophila Mre11 is methylated at arginines 559, 563, 565, and 569 in the GAR motif by DART1, the Drosophila homolog of PRMT1. Mre11 interacts with DART1 in S2 cells, and this interaction does not require the GAR motif. Arginines methylated Mre11 localizes exclusively in the nucleus as soluble nuclear protein or chromatin-binding protein. To study the in vivo functions of methylation, we generated the single Arg-Ala and all Arginines mutated flies. We found these mutants were sensitive to ionizing radiation. Furthermore, Arg-Ala mutated flies had no irradiation induced G2/M checkpoint defect in wing disc and eye disc. Thus, we provided evidence that arginines in Drosophila Mre11 are methylated by DART1 methytransferase and flies loss of arginine methylation are sensitive to irradiation.
Collapse
|
13
|
Bressy C, Majhen D, Raddi N, Jdey W, Cornilleau G, Zig L, Guirouilh-Barbat J, Lopez BS, Bawa O, Opolon P, Grellier E, Benihoud K. Combined therapy of colon carcinomas with an oncolytic adenovirus and valproic acid. Oncotarget 2017; 8:97344-97360. [PMID: 29228615 PMCID: PMC5722567 DOI: 10.18632/oncotarget.22107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/04/2017] [Indexed: 12/27/2022] Open
Abstract
The anti-tumor potential of oncolytic adenoviruses (CRAds) has been demonstrated in preclinical and clinical studies. While these agents failed to eradicate tumors when used as a monotherapy, they may be more effective if combined with conventional treatments such as radiotherapy or chemotherapy. This study seeks to evaluate the combination of a CRAd bearing a ∆24 deletion in E1A with valproic acid (VPA), a histone deacetylase inhibitor, for the treatment of human colon carcinomas. This combination led to a strong inhibition of cell growth both in vitro and in vivo compared to treatment with CRAd or VPA alone. This effect did not stem from a better CRAd replication and production in the presence of VPA. Inhibition of cell proliferation and cell death were induced by the combined treatment. Moreover, whereas cells treated only with CRAd displayed a polyploidy (> 4N population), this phenotype was increased in cells treated with both CRAd and VPA. In addition, the increase in polyploidy triggered by combined treatment with CRAd and VPA was associated with the enhancement of H2AX phosphorylation (γH2AX), a hallmark of DNA damage, but also with a decrease of several DNA repair proteins. Finally, viral replication (or E1A expression) was shown to play a key role in the observed effects since no enhancement of polyploidy nor increase in γH2AX were found following cell treatment with a replication-deficient Ad and VPA. Taken together, our results suggest that CRAd and VPA could be used in combination for the treatment of colon carcinomas.
Collapse
Affiliation(s)
- Christian Bressy
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Dragomira Majhen
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Najat Raddi
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Wael Jdey
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Gaétan Cornilleau
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Léna Zig
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Josée Guirouilh-Barbat
- Laboratoire Recombinaison-Réparation et Cancer, UMR 8200 CNRS Stabilité Génétique et Oncogenèse, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Bernard S Lopez
- Laboratoire Recombinaison-Réparation et Cancer, UMR 8200 CNRS Stabilité Génétique et Oncogenèse, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Olivia Bawa
- Unité de pathologie expérimentale de l'IRCIV, Gustave Roussy, Villejuif 94805, France
| | - Paule Opolon
- Unité de pathologie expérimentale de l'IRCIV, Gustave Roussy, Villejuif 94805, France
| | - Elodie Grellier
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| | - Karim Benihoud
- Vectorologie et Thérapeutiques Anticancéreuses, UMR 8203 CNRS, Université Paris-Sud, Gustave Roussy, Université Paris-Saclay, Villejuif 94805, France
| |
Collapse
|
14
|
Chromosome Healing Is Promoted by the Telomere Cap Component Hiphop in Drosophila. Genetics 2017; 207:949-959. [PMID: 28942425 DOI: 10.1534/genetics.117.300317] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022] Open
Abstract
The addition of a new telomere onto a chromosome break, a process termed healing, has been studied extensively in organisms that utilize telomerase to maintain their telomeres. In comparison, relatively little is known about how new telomeres are constructed on broken chromosomes in organisms that do not use telomerase. Chromosome healing was studied in somatic and germline cells of Drosophila melanogaster, a nontelomerase species. We observed, for the first time, that broken chromosomes can be healed in somatic cells. In addition, overexpression of the telomere cap component Hiphop increased the survival of somatic cells with broken chromosomes, while the cap component HP1 did not, and overexpression of the cap protein HOAP decreased their survival. In the male germline, Hiphop overexpression greatly increased the transmission of healed chromosomes. These results indicate that Hiphop can stimulate healing of a chromosome break. We suggest that this reflects a unique function of Hiphop: it is capable of seeding formation of a new telomeric cap on a chromosome end that lacks a telomere.
Collapse
|
15
|
Lee YCG, Leek C, Levine MT. Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila. Mol Biol Evol 2017; 34:467-482. [PMID: 27836984 PMCID: PMC6307840 DOI: 10.1093/molbev/msw248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| | - Courtney Leek
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
| | - Mia T Levine
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA
- Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Sekelsky J. DNA Repair in Drosophila: Mutagens, Models, and Missing Genes. Genetics 2017; 205:471-490. [PMID: 28154196 PMCID: PMC5289830 DOI: 10.1534/genetics.116.186759] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The numerous processes that damage DNA are counterbalanced by a complex network of repair pathways that, collectively, can mend diverse types of damage. Insights into these pathways have come from studies in many different organisms, including Drosophila melanogaster Indeed, the first ideas about chromosome and gene repair grew out of Drosophila research on the properties of mutations produced by ionizing radiation and mustard gas. Numerous methods have been developed to take advantage of Drosophila genetic tools to elucidate repair processes in whole animals, organs, tissues, and cells. These studies have led to the discovery of key DNA repair pathways, including synthesis-dependent strand annealing, and DNA polymerase theta-mediated end joining. Drosophila appear to utilize other major repair pathways as well, such as base excision repair, nucleotide excision repair, mismatch repair, and interstrand crosslink repair. In a surprising number of cases, however, DNA repair genes whose products play important roles in these pathways in other organisms are missing from the Drosophila genome, raising interesting questions for continued investigations.
Collapse
Affiliation(s)
- Jeff Sekelsky
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
17
|
Lustig AJ. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins. Front Genet 2016; 7:10. [PMID: 26904098 PMCID: PMC4748036 DOI: 10.3389/fgene.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA
| |
Collapse
|
18
|
Abstract
Drosophila telomeres are maintained by transposition to chromosome ends of the HeT-A, TART and TAHRE retrotransposons, collectively designated as HTT. Although all Drosophila telomeres terminate with HTT arrays and are capped by the terminin complex, they differ in the type of subtelomeric chromatin. The HTT sequences of YS, YL, XR, and 4L are juxtaposed to constitutive heterochromatin, while the HTTs of the other telomeres are linked to either the TAS repeat-associated chromatin (XL, 2L, 2R, 3L, 3R) or to the specialized 4R chromatin. We found that mutations in pendolino (peo) cause (telomeric fusions) that preferentially involve the heterochromatin-associated telomeres (Ha-telomeres), a telomeric fusion pattern never observed in the other 10 telomere-capping mutants characterized so far. Peo, is homologous to the E2 variant ubiquitin-conjugating enzymes and is required for DNA replication. Our analyses lead us to hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in Ha-telomeres. These data provide the first demonstration that subtelomeres can affect telomere fusion.
Collapse
Affiliation(s)
- Marta Marzullo
- a Department of Biology and Biotechnology ; University of Rome ; Sapienza , Italy
| | - Maurizio Gatti
- a Department of Biology and Biotechnology ; University of Rome ; Sapienza , Italy.,b IBPM CNR, University of Rome ; Rome , Italy
| |
Collapse
|
19
|
Overcash JM, Aryan A, Myles KM, Adelman ZN. Understanding the DNA damage response in order to achieve desired gene editing outcomes in mosquitoes. Chromosome Res 2015; 23:31-42. [PMID: 25596822 DOI: 10.1007/s10577-014-9450-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mosquitoes are high-impact disease vectors with the capacity to transmit pathogenic agents that cause diseases such as malaria, yellow fever, chikungunya, and dengue. Continued growth in knowledge of genetic, molecular, and physiological pathways in mosquitoes allows for the development of novel control methods and for the continued optimization of existing ones. The emergence of site-specific nucleases as genomic engineering tools promises to expedite research of crucial biological pathways in these disease vectors. The utilization of these nucleases in a more precise and efficient manner is dependent upon knowledge and manipulation of the DNA repair pathways utilized by the mosquito. While progress has been made in deciphering DNA repair pathways in some model systems, research into the nature of the hierarchy of mosquito DNA repair pathways, as well as in mechanistic differences that may exist, is needed. In this review, we will describe progress in the use of site-specific nucleases in mosquitoes, along with the hierarchy of DNA repair in the context of mosquito chromosomal organization and structure, and how this knowledge may be manipulated to achieve precise chromosomal engineering in mosquitoes.
Collapse
Affiliation(s)
- Justin M Overcash
- Fralin Life Science Institute and Department of Entomology, Virginia Tech, 305 Fralin Life Science Institute, 360 West Campus Dr., Blacksburg, VA, 24061, USA
| | | | | | | |
Collapse
|
20
|
Cenci G, Ciapponi L, Marzullo M, Raffa GD, Morciano P, Raimondo D, Burla R, Saggio I, Gatti M. The Analysis of Pendolino (peo) Mutants Reveals Differences in the Fusigenic Potential among Drosophila Telomeres. PLoS Genet 2015; 11:e1005260. [PMID: 26110638 PMCID: PMC4481407 DOI: 10.1371/journal.pgen.1005260] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/04/2015] [Indexed: 01/08/2023] Open
Abstract
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping. Telomeres are specialized structures that protect chromosome ends from incomplete replication, degradation and end-to-end fusion. Abnormalities in telomere structure or maintenance can promote a variety of human diseases including premature aging and cancer. Although all human telomeres contain the same DNA sequences, they differ from each other in the subtelomeric regions or subtelomeres. Recent work has shown that human subtelomeres control telomere replication and that abnormalities in these structures can lead to localized chromosome instability and disease. However, the relationships between subtelomeres and telomeres are currently poorly understood. Here, we have addressed this problem using the fruit fly Drosophila melanogaster as model system. Drosophila subtelomers are very different from each other as they contain different types of chromatin. We have found that mutations in a gene we called pendolino (peo) cause telomeric fusions (TFs) and that these fusions preferentially involve the telomeres associated with a tightly packed form of chromatin called heterochromatin. Interestingly, none of the 10 mutants with TFs so far described in Drosophila shows the pattern of TFs observed in peo mutants. Thus, our data provide the first demonstration that subtelomeres can affect telomere fusion. We believe that these results will stimulate further studies on the role of subtelomeres in the maintenance of genome stability.
Collapse
Affiliation(s)
- Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Marta Marzullo
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Grazia D. Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Patrizia Morciano
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | | | - Romina Burla
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- IBPM CNR, Sapienza—Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza—Università di Roma, Roma, Italy
- Istituto Pasteur Fondazione Cenci Bolognetti, Sapienza—Università di Roma, Roma, Italy
- IBPM CNR, Sapienza—Università di Roma, Roma, Italy
- * E-mail:
| |
Collapse
|
21
|
Appel M, Scholz CJ, Müller T, Dittrich M, König C, Bockstaller M, Oguz T, Khalili A, Antwi-Adjei E, Schauer T, Margulies C, Tanimoto H, Yarali A. Genome-Wide Association Analyses Point to Candidate Genes for Electric Shock Avoidance in Drosophila melanogaster. PLoS One 2015; 10:e0126986. [PMID: 25992709 PMCID: PMC4436303 DOI: 10.1371/journal.pone.0126986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/09/2015] [Indexed: 01/27/2023] Open
Abstract
Electric shock is a common stimulus for nociception-research and the most widely used reinforcement in aversive associative learning experiments. Yet, nothing is known about the mechanisms it recruits at the periphery. To help fill this gap, we undertook a genome-wide association analysis using 38 inbred Drosophila melanogaster strains, which avoided shock to varying extents. We identified 514 genes whose expression levels and/ or sequences co-varied with shock avoidance scores. We independently scrutinized 14 of these genes using mutants, validating the effect of 7 of them on shock avoidance. This emphasizes the value of our candidate gene list as a guide for follow-up research. In addition, by integrating our association results with external protein-protein interaction data we obtained a shock avoidance-associated network of 38 genes. Both this network and the original candidate list contained a substantial number of genes that affect mechanosensory bristles, which are hair-like organs distributed across the fly’s body. These results may point to a potential role for mechanosensory bristles in shock sensation. Thus, we not only provide a first list of candidate genes for shock avoidance, but also point to an interesting new hypothesis on nociceptive mechanisms.
Collapse
Affiliation(s)
- Mirjam Appel
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Claus-Jürgen Scholz
- Laboratory for Microarray Applications, IZKF, University of Würzburg, Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marcus Dittrich
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Institute of Human Genetics, University of Würzburg, Würzburg, Germany
| | - Christian König
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
| | | | - Tuba Oguz
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Afshin Khalili
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Emmanuel Antwi-Adjei
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
| | - Tamas Schauer
- Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Carla Margulies
- Department of Physiological Chemistry, Butenandt Institute and LMU Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hiromu Tanimoto
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ayse Yarali
- Research Group Molecular Systems Biology of Learning, Leibniz Institute of Neurobiology, Magdeburg, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Dubruille R, Loppin B. Protection of Drosophila chromosome ends through minimal telomere capping. J Cell Sci 2015; 128:1969-81. [PMID: 25908850 DOI: 10.1242/jcs.167825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/18/2015] [Indexed: 01/05/2023] Open
Abstract
In Drosophila, telomere-capping proteins have the remarkable capacity to recognize chromosome ends in a sequence-independent manner. This epigenetic protection is essential to prevent catastrophic ligations of chromosome extremities. Interestingly, capping proteins occupy a large telomere chromatin domain of several kilobases; however, the functional relevance of this to end protection is unknown. Here, we investigate the role of the large capping domain by manipulating HOAP (encoded by caravaggio) capping-protein expression in the male germ cells, where telomere protection can be challenged without compromising viability. We show that the exhaustion of HOAP results in a dramatic reduction of other capping proteins at telomeres, including K81 [encoded by ms(3)K81], which is essential for male fertility. Strikingly however, we demonstrate that, although capping complexes are barely detected in HOAP-depleted male germ cells, telomere protection and male fertility are not dramatically affected. Our study thus demonstrates that efficient protection of Drosophila telomeres can be achieved with surprisingly low amounts of capping complexes. We propose that these complexes prevent fusions by acting at the very extremity of chromosomes, reminiscent of the protection conferred by extremely short telomeric arrays in yeast or mammalian systems.
Collapse
Affiliation(s)
- Raphaëlle Dubruille
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Benjamin Loppin
- Centre de Génétique et de Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, Université Claude Bernard Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| |
Collapse
|
23
|
Kusch T. Brca2-Pds5 complexes mobilize persistent meiotic recombination sites to the nuclear envelope. J Cell Sci 2015; 128:717-27. [PMID: 25588834 DOI: 10.1242/jcs.159988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Homologous recombination is required for reciprocal exchange between homologous chromosome arms during meiosis. Only select meiotic recombination events become chromosomal crossovers; the majority of recombination outcomes are noncrossovers. Growing evidence suggests that crossovers are repaired after noncrossovers. Here, I report that persisting recombination sites are mobilized to the nuclear envelope of Drosophila pro-oocytes during mid-pachytene. Their number correlates with the average crossover rate per meiosis. Proteomic and interaction studies reveal that the recombination mediator Brca2 associates with lamin and the cohesion factor Pds5 to secure persistent recombination sites at the nuclear envelope. In Rad51(-/-) females, all persistent DNA breaks are directed to the nuclear envelope. By contrast, a reduction of Pds5 or Brca2 levels abolishes the movement and has a negative impact on crossover rates. The data suggest that persistent meiotic DNA double-strand breaks might correspond to crossovers, which are mobilized to the nuclear envelope for their repair. The identification of Brca2-Pds5 complexes as key mediators of this process provides a first mechanistic explanation for the contribution of lamins and cohesins to meiotic recombination.
Collapse
Affiliation(s)
- Thomas Kusch
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
24
|
Hopfner KP. ATP puts the brake on DNA double-strand break repair: a new study shows that ATP switches the Mre11-Rad50-Nbs1 repair factor between signaling and processing of DNA ends. Bioessays 2014; 36:1170-8. [PMID: 25213441 DOI: 10.1002/bies.201400102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most deleterious forms of DNA damage and can result in cell inviability or chromosomal aberrations. The Mre11-Rad50-Nbs1 (MRN) ATPase-nuclease complex is a central player in the cellular response to DSBs and is implicated in the sensing and nucleolytic processing of DSBs, as well as in DSB signaling by activating the cell cycle checkpoint kinase ATM. ATP binding to Rad50 switches MRN from an open state with exposed Mre11 nuclease sites to a closed state with partially buried nuclease sites. The functional meaning of this switch remained unclear. A new study shows that ATP binding to Rad50 promotes DSB recognition, tethering, and ATM activation, while ATP hydrolysis opens the nuclease active sites to promote processing of DSBs. MRN thus emerges as functional switch that may coordinate the temporal transition from signaling to processing of DSBs.
Collapse
Affiliation(s)
- Karl-Peter Hopfner
- Department of Biochemistry, Gene Center, Ludwig-Maximilians-University, Munich, Germany; Center for Integrated Protein Science Munich, Gene Center, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
25
|
RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1. Mol Cell Biol 2014; 35:406-16. [PMID: 25384975 DOI: 10.1128/mcb.01044-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Efficient DNA double-strand break (DSB) repair is critical for the maintenance of genome stability. Unrepaired or misrepaired DSBs cause chromosomal rearrangements that can result in severe consequences, such as tumorigenesis. RAD6 is an E2 ubiquitin-conjugating enzyme that plays a pivotal role in repairing UV-induced DNA damage. Here, we present evidence that RAD6 is also required for DNA DSB repair via homologous recombination (HR) by specifically regulating the degradation of heterochromatin protein 1α (HP1α). Our study indicates that RAD6 physically interacts with HP1α and ubiquitinates HP1α at residue K154, thereby promoting HP1α degradation through the autophagy pathway and eventually leading to an open chromatin structure that facilitates efficient HR DSB repair. Furthermore, bioinformatics studies have indicated that the expression of RAD6 and HP1α exhibits an inverse relationship and correlates with the survival rate of patients.
Collapse
|
26
|
Mengoli V, Bucciarelli E, Lattao R, Piergentili R, Gatti M, Bonaccorsi S. The analysis of mutant alleles of different strength reveals multiple functions of topoisomerase 2 in regulation of Drosophila chromosome structure. PLoS Genet 2014; 10:e1004739. [PMID: 25340516 PMCID: PMC4207652 DOI: 10.1371/journal.pgen.1004739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 09/08/2014] [Indexed: 12/14/2022] Open
Abstract
Topoisomerase II is a major component of mitotic chromosomes but its role in the assembly and structural maintenance of chromosomes is rather controversial, as different chromosomal phenotypes have been observed in various organisms and in different studies on the same organism. In contrast to vertebrates that harbor two partially redundant Topo II isoforms, Drosophila and yeasts have a single Topo II enzyme. In addition, fly chromosomes, unlike those of yeast, are morphologically comparable to vertebrate chromosomes. Thus, Drosophila is a highly suitable system to address the role of Topo II in the assembly and structural maintenance of chromosomes. Here we show that modulation of Top2 function in living flies by means of mutant alleles of different strength and in vivo RNAi results in multiple cytological phenotypes. In weak Top2 mutants, meiotic chromosomes of males exhibit strong morphological abnormalities and dramatic segregation defects, while mitotic chromosomes of larval brain cells are not affected. In mutants of moderate strength, mitotic chromosome organization is normal, but anaphases display frequent chromatin bridges that result in chromosome breaks and rearrangements involving specific regions of the Y chromosome and 3L heterochromatin. Severe Top2 depletion resulted in many aneuploid and polyploid mitotic metaphases with poorly condensed heterochromatin and broken chromosomes. Finally, in the almost complete absence of Top2, mitosis in larval brains was virtually suppressed and in the rare mitotic figures observed chromosome morphology was disrupted. These results indicate that different residual levels of Top2 in mutant cells can result in different chromosomal phenotypes, and that the effect of a strong Top2 depletion can mask the effects of milder Top2 reductions. Thus, our results suggest that the previously observed discrepancies in the chromosomal phenotypes elicited by Topo II downregulation in vertebrates might depend on slight differences in Topo II concentration and/or activity.
Collapse
Affiliation(s)
- Valentina Mengoli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Elisabetta Bucciarelli
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Ramona Lattao
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Roberto Piergentili
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| | - Silvia Bonaccorsi
- Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Dipartimento di Biologia e Biotecnologie “C. Darwin”, Sapienza, Università di Roma, Roma, Italy
| |
Collapse
|
27
|
Lee H, McManus CJ, Cho DY, Eaton M, Renda F, Somma MP, Cherbas L, May G, Powell S, Zhang D, Zhan L, Resch A, Andrews J, Celniker SE, Cherbas P, Przytycka TM, Gatti M, Oliver B, Graveley B, MacAlpine D. DNA copy number evolution in Drosophila cell lines. Genome Biol 2014; 15:R70. [PMID: 25262759 PMCID: PMC4289277 DOI: 10.1186/gb-2014-15-8-r70] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/01/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Structural rearrangements of the genome resulting in genic imbalance due to copy number change are often deleterious at the organismal level, but are common in immortalized cell lines and tumors, where they may be an advantage to cells. In order to explore the biological consequences of copy number changes in the Drosophila genome, we resequenced the genomes of 19 tissue-culture cell lines and generated RNA-Seq profiles. RESULTS Our work revealed dramatic duplications and deletions in all cell lines. We found three lines of evidence indicating that copy number changes were due to selection during tissue culture. First, we found that copy numbers correlated to maintain stoichiometric balance in protein complexes and biochemical pathways, consistent with the gene balance hypothesis. Second, while most copy number changes were cell line-specific, we identified some copy number changes shared by many of the independent cell lines. These included dramatic recurrence of increased copy number of the PDGF/VEGF receptor, which is also over-expressed in many cancer cells, and of bantam, an anti-apoptosis miRNA. Third, even when copy number changes seemed distinct between lines, there was strong evidence that they supported a common phenotypic outcome. For example, we found that proto-oncogenes were over-represented in one cell line (S2-DRSC), whereas tumor suppressor genes were under-represented in another (Kc167). CONCLUSION Our study illustrates how genome structure changes may contribute to selection of cell lines in vitro. This has implications for other cell-level natural selection progressions, including tumorigenesis.
Collapse
Affiliation(s)
- Hangnoh Lee
- />National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892 USA
| | - C Joel McManus
- />Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030 USA
- />Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Dong-Yeon Cho
- />Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20892 USA
| | - Matthew Eaton
- />Department of Pharmacology and Cancer Biology, Duke University Medical Center, Levine Science Research Center, 308 Research Drive, Durham, NC 27708 USA
| | - Fioranna Renda
- />Istituto di Biologia e Patologia Molecolari (IBPM) del CNR and Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, 5 Aldo Moro Piazzale, Rome, 00185 Italy
| | - Maria Patrizia Somma
- />Istituto di Biologia e Patologia Molecolari (IBPM) del CNR and Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, 5 Aldo Moro Piazzale, Rome, 00185 Italy
| | - Lucy Cherbas
- />Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405 USA
| | - Gemma May
- />Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030 USA
- />Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213 USA
| | - Sara Powell
- />Department of Pharmacology and Cancer Biology, Duke University Medical Center, Levine Science Research Center, 308 Research Drive, Durham, NC 27708 USA
| | - Dayu Zhang
- />Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405 USA
- />School of Agricultural and Food Science, Zhejiang A&F University, 88 Huan Cheng Bei Road, Lin’an, Zhejiang 311300 China
| | - Lijun Zhan
- />Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030 USA
| | - Alissa Resch
- />Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030 USA
| | - Justen Andrews
- />Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405 USA
| | - Susan E Celniker
- />Department of Genome Dynamics, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Peter Cherbas
- />Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405 USA
| | - Teresa M Przytycka
- />Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20892 USA
| | - Maurizio Gatti
- />Istituto di Biologia e Patologia Molecolari (IBPM) del CNR and Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, 5 Aldo Moro Piazzale, Rome, 00185 Italy
| | - Brian Oliver
- />National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892 USA
| | - Brenton Graveley
- />Department of Genetics and Developmental Biology, Institute for Systems Genomics, University of Connecticut Health Center, 400 Farmington Avenue, Farmington, CT 06030 USA
| | - David MacAlpine
- />Department of Pharmacology and Cancer Biology, Duke University Medical Center, Levine Science Research Center, 308 Research Drive, Durham, NC 27708 USA
| |
Collapse
|
28
|
Cao X, Kong CM, Mathi KM, Lim YP, Cacheux-Rataboul V, Wang X. The use of transformed IMR90 cell model to identify the potential extra-telomeric effects of hTERT in cell migration and DNA damage response. BMC BIOCHEMISTRY 2014; 15:17. [PMID: 25098897 PMCID: PMC4126993 DOI: 10.1186/1471-2091-15-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/29/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomesase, is responsible for telomere maintenance and its reactivation is implicated in almost 90% human cancers. Recent evidences show that hTERT is essential for neoplastic transformation independent of its canonical function. However, the roles of hTERT in the process remain elusive. In the current work, we explore the extra-telomeric role of hTERT in the neoplastic transformation of fibroblast IMR90. RESULTS Here we established transformed IMR90 cells by co-expression of three oncogenic factors, namely, H-Ras, SV40 Large-T antigen and hTERT (RSH). The RSH-transformed cells acquired hallmarks of cancer, such as they can grow under anchorage independent conditions; self-sufficient in growth signals; attenuated response to apoptosis; and possessed recurrent chromosomal abnormalities. Furthermore, the RSH-transformed cells showed enhanced migration capability which was also observed in IMR90 cells expressing hTERT alone, indicating that hTERT plays a role in cell migration, and thus possibly contribute to their metastatic potential during tumor transformation. This notion was further supported by our microarray analysis. In addition, we found that Ku70 were exclusively upregulated in both RSH-transformed IMR90 cells and hTERT-overexpressing IMR90 cells, suggesting the potential role of hTERT in DNA damage response (DDR). CONCLUSIONS Collectively, our study revealed the extra-telomeric effects of hTERT in cell migration and DDR during neoplastic transformation.
Collapse
Affiliation(s)
| | | | | | | | | | - Xueying Wang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD4, Level 1, 5 Science Drive 2, Singapore 117545, Singapore.
| |
Collapse
|
29
|
Fulcher N, Derboven E, Valuchova S, Riha K. If the cap fits, wear it: an overview of telomeric structures over evolution. Cell Mol Life Sci 2014; 71:847-65. [PMID: 24042202 PMCID: PMC11113737 DOI: 10.1007/s00018-013-1469-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Elisa Derboven
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Sona Valuchova
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
| | - Karel Riha
- Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030 Vienna, Austria
- Central European Institute of Technology, Kamenice 753/5, Brno, Czech Republic
| |
Collapse
|
30
|
Abstract
Telomeres are obligatory chromosomal landmarks that demarcate the ends of linear chromosomes to distinguish them from broken ends and can also serve to organize the genome. In both budding and fission yeast, they cluster at the periphery of the nucleus, potentially to establish a compartment of silent chromatin. To gain insight into telomere organization in higher organisms, we investigated their distribution in interphase nuclei of Drosophila melanogaster. We focused on the syncytial blastoderm, an excellent developmental stage for live imaging due to the synchronous division of the nuclei at this time. We followed the EGFP-labeled telomeric protein HOAP in vivo and found that the 16 telomeres yield four to six foci per nucleus, indicative of clustering. Furthermore, we confirmed clustering in other somatic tissues. Importantly, we observed that HOAP signal intensity in the clusters increases in interphase, potentially due to loading of HOAP to newly replicated telomeres. To determine the rules governing clustering, we used in vivo imaging and fluorescence in situ hybridization to test several predictions. First, we inspected mutant embryos that develop as haploids and found that clustering is not mediated by associations between homologs. Second, we probed specifically for a telomere of novel sequence and found strong evidence against DNA sequence identity and homology as critical factors. Third, we ruled out predominance of intrachromosomal interactions by marking both ends of a chromosome. Based on these results, we propose that clustering is independent of sequence and is likely maintained by an as yet undetermined factor.
Collapse
|
31
|
Effete, a Drosophila chromatin-associated ubiquitin-conjugating enzyme that affects telomeric and heterochromatic position effect variegation. Genetics 2013; 195:147-58. [PMID: 23821599 DOI: 10.1534/genetics.113.153320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Drosophila telomeres are elongated by the transposition of telomere-specific retrotransposons rather than telomerase activity. Proximal to the terminal transposon array, Drosophila chromosomes contain several kilobases of a complex satellite DNA termed telomere-associated sequences (TASs). Reporter genes inserted into or next to the TAS are silenced through a mechanism called telomere position effect (TPE). TPE is reminiscent of the position effect variegation (PEV) induced by Drosophila constitutive heterochromatin. However, most genes that modulate PEV have no effect on TPE, and systematic searches for TPE modifiers have so far identified only a few dominant suppressors. Surprisingly, only a few of the genes required to prevent telomere fusion have been tested for their effect on TPE. Here, we show that with the exception of the effete (eff; also called UbcD1) mutant alleles, none of the tested mutations at the other telomere fusion genes affects TPE. We also found that mutations in eff, which encodes a class I ubiquitin-conjugating enzyme, act as suppressors of PEV. Thus, eff is one of the rare genes that can modulate both TPE and PEV. Immunolocalization experiments showed that Eff is a major constituent of polytene chromosomes. Eff is enriched at several euchromatic bands and interbands, the TAS regions, and the chromocenter. Our results suggest that Eff associates with different types of chromatin affecting their abilities to regulate gene expression.
Collapse
|
32
|
Mishra M, Sharma A, Shukla AK, Pragya P, Murthy RC, de Pomerai D, Dwivedi UN, Chowdhuri DK. Transcriptomic analysis provides insights on hexavalent chromium induced DNA double strand breaks and their possible repair in midgut cells of Drosophila melanogaster larvae. Mutat Res 2013; 747-748:28-39. [PMID: 23628323 DOI: 10.1016/j.mrfmmm.2013.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well known mutagen and carcinogen. Since genomic instability due to generation of double strand breaks (DSBs) is causally linked to carcinogenesis, we tested a hypothesis that Cr(VI) causes in vivo generation of DSBs and elicits DNA damage response. We fed repair proficient Drosophila melanogaster (Oregon R(+)) larvae Cr(VI) (20.0μg/ml) mixed food for 24 and 48h and observed a significant (p<0.05) induction of DSBs in their midgut cells after 48h using neutral Comet assay. Global gene expression profiling in Cr(VI)-exposed Oregon R(+) larvae unveiled mis-regulation of DSBs responsive repair genes both after 24 and 48h. In vivo generation of DSBs in exposed Drosophila was confirmed by an increased pH2Av immunostaining along with the activation of cell cycle regulation genes. Analysis of mis-regulated genes grouped under DSB response by GOEAST indicated the participation of non-homologous end joining (NHEJ) DSB repair pathway. We selected two strains, one mutant (ligIV) and another ku80-RNAi (knockdown of ku80), whose functions are essentially linked to NHEJ-DSB repair pathway. As a proof of principle, we compared the DSBs generation in larvae of these two strains with that of repair proficient Oregon R(+). Along with this, DSBs generation in spn-A and okr [essential genes in homologous recombination repair (HR) pathway] mutants was also tested for the possible involvement of HR-DSB repair. A significantly increased DSBs generation in the exposed ku80-RNAi and ligIV (mutant) larvae because of impaired repair, concomitant with an insignificant DSBs generation in okr and spn-A mutant larvae indicates an active participation of NHEJ repair pathway. The study, first of its kind to our knowledge, while providing evidences for in vivo generation of DSBs in Cr(VI) exposed Drosophila larvae, assumes significance for its relevance to higher organisms due to causal link between DSB generation and Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Manish Mishra
- Embryotoxicology Section and Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research CSIR-IITR, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Impaired resection of meiotic double-strand breaks channels repair to nonhomologous end joining in Caenorhabditis elegans. Mol Cell Biol 2013; 33:2732-47. [PMID: 23671188 DOI: 10.1128/mcb.00055-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repair of double-strand DNA breaks (DSBs) by the homologous recombination (HR) pathway results in crossovers (COs) required for a successful first meiotic division. Mre11 is one member of the MRX/N (Mre11, Rad50, and Xrs2/Nbs1) complex required for meiotic DSB formation and for resection in Saccharomyces cerevisiae. In Caenorhabditis elegans, evidence for the MRX/N role in DSB resection is limited. We report the first separation-of-function allele, mre-11(iow1) in C. elegans, which is specifically defective in meiotic DSB resection but not in formation. The mre-11(iow1) mutants displayed chromosomal fragmentation and aggregation in late prophase I. Recombination intermediates and crossover formation was greatly reduced in mre-11(iow1) mutants. Irradiation-induced DSBs during meiosis failed to be repaired from early to middle prophase I in mre-11(iow1) mutants. In the absence of a functional HR, our data suggest that some DSBs in mre-11(iow1) mutants are repaired by the nonhomologous end joining (NHEJ) pathway, as removing NHEJ partially suppressed the meiotic defects shown by mre-11(iow1). In the absence of NHEJ and a functional MRX/N, meiotic DSBs are channeled to EXO-1-dependent HR repair. Overall, our analysis supports a role for MRE-11 in the resection of DSBs in middle meiotic prophase I and in blocking NHEJ.
Collapse
|
34
|
Raffa GD, Cenci G, Ciapponi L, Gatti M. Organization and Evolution of Drosophila Terminin: Similarities and Differences between Drosophila and Human Telomeres. Front Oncol 2013; 3:112. [PMID: 23675571 PMCID: PMC3650302 DOI: 10.3389/fonc.2013.00112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/24/2013] [Indexed: 11/16/2022] Open
Abstract
Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi, and Ver. These proteins, which are not conserved outside Drosophilidae and closely related Diptera, localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN) complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only at telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.
Collapse
Affiliation(s)
- Grazia D Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma Roma, Italy ; Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza Università di Roma Roma, Italy
| | | | | | | |
Collapse
|
35
|
Elucidating the temporal dynamics of chromatin-associated protein release upon DNA digestion by quantitative proteomic approach. J Proteomics 2012; 75:5493-506. [DOI: 10.1016/j.jprot.2012.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/13/2012] [Accepted: 06/29/2012] [Indexed: 02/03/2023]
|
36
|
High-resolution protein interaction map of the Drosophila melanogaster p38 mitogen-activated protein kinases reveals limited functional redundancy. Mol Cell Biol 2012; 32:3695-706. [PMID: 22801366 DOI: 10.1128/mcb.00232-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Functional redundancy is a pivotal mechanism that supports the robustness of biological systems at a molecular, cellular, and organismal level. The extensive prevalence of redundancy in molecular networks has been highlighted by recent systems biology studies; however, a detailed mechanistic understanding of redundant functions in specific signaling modules is often missing. We used affinity purification of protein complexes coupled to tandem mass spectrometry to generate a high-resolution protein interaction map of the three homologous p38 mitogen-activated protein kinases (MAPKs) in Drosophila and assessed the utility of such a map in defining the extent of common and unique functions. We found a correlation between the depth of integration of individual p38 kinases into the protein interaction network and their functional significance in cultured cells and in vivo. Based on these data, we propose a central role of p38b in the Drosophila p38 signaling module, with p38a and p38c playing more peripheral, auxiliary roles. We also present the first in vivo evidence demonstrating that an evolutionarily conserved complex of p38b with glycogen synthase links stress sensing to metabolic adaptation.
Collapse
|
37
|
Bolukbasi E, Vass S, Cobbe N, Nelson B, Simossis V, Dunbar DR, Heck MMS. Drosophila poly suggests a novel role for the Elongator complex in insulin receptor-target of rapamycin signalling. Open Biol 2012; 2:110031. [PMID: 22645656 PMCID: PMC3352090 DOI: 10.1098/rsob.110031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 12/21/2011] [Indexed: 01/06/2023] Open
Abstract
Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptor-target of rapamycin (InR-TOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InR-TOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InR-TOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InR-TOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Margarete M. S. Heck
- University of Edinburgh, Queen's Medical
Research Institute, University/BHF Centre for
Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16
4TJ, UK
| |
Collapse
|
38
|
Kurzhals RL, Titen SWA, Xie HB, Golic KG. Chk2 and p53 are haploinsufficient with dependent and independent functions to eliminate cells after telomere loss. PLoS Genet 2011; 7:e1002103. [PMID: 21655087 PMCID: PMC3107200 DOI: 10.1371/journal.pgen.1002103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/08/2011] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that cells use to monitor telomere integrity, and the array of responses that may be induced, are not fully defined. To date there have been no studies in animals describing the ability of cells to survive and contribute to adult organs following telomere loss. We developed assays to monitor the ability of somatic cells to proliferate and differentiate after telomere loss. Here we show that p53 and Chk2 limit the growth and differentiation of cells that lose a telomere. Furthermore, our results show that two copies of the genes encoding p53 and Chk2 are required for the cell to mount a rapid wildtype response to a missing telomere. Finally, our results show that, while Chk2 functions by activating the p53-dependent apoptotic cascade, Chk2 also functions independently of p53 to limit survival. In spite of these mechanisms to eliminate cells that have lost a telomere, we find that such cells can make a substantial contribution to differentiated adult tissues.
Collapse
Affiliation(s)
- Rebeccah L. Kurzhals
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Simon W. A. Titen
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Heng B. Xie
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kent G. Golic
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
39
|
Edlinger B, Schlögelhofer P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1545-63. [PMID: 21220780 DOI: 10.1093/jxb/erq421] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is an essential process for sexually reproducing organisms, leading to the formation of specialized generative cells. This review intends to highlight current knowledge of early events during meiosis derived from various model organisms, including plants. It will particularly focus on cis- and trans-requirements of meiotic DNA double strand break (DSB) formation, a hallmark event during meiosis and a prerequisite for recombination of genetic traits. Proteins involved in DSB formation in different organisms, emphasizing the known factors from plants, will be introduced and their functions outlined. Recent technical advances in DSB detection and meiotic recombination analysis will be reviewed, as these new tools now allow analysis of early meiotic recombination in plants with incredible accuracy. To anticipate future directions in plant meiosis research, unpublished results will be included wherever possible.
Collapse
Affiliation(s)
- Bernd Edlinger
- University of Vienna, Max F. Perutz Laboratories, Department of Chromosome Biology, Dr. Bohr-Gasse 1, Vienna, Austria
| | | |
Collapse
|
40
|
Dewar JM, Lydall D. Telomere replication: Mre11 leads the way. Mol Cell 2010; 38:777-9. [PMID: 20620949 DOI: 10.1016/j.molcel.2010.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In this issue of Molecular Cell, Faure et al. (2010) establish a critical role for the Mre11 complex in the recruitment of telomerase to leading- but not lagging-strand telomeres of budding yeast.
Collapse
Affiliation(s)
- James M Dewar
- Centre for Integrated Systems Biology of Ageing and Nutrition, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, Tyne-and-Wear NE4 5PL, UK
| | | |
Collapse
|
41
|
HipHop interacts with HOAP and HP1 to protect Drosophila telomeres in a sequence-independent manner. EMBO J 2010; 29:819-29. [PMID: 20057353 DOI: 10.1038/emboj.2009.394] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/08/2009] [Indexed: 12/30/2022] Open
Abstract
Telomeres prevent chromosome ends from being repaired as double-strand breaks (DSBs). Telomere identity in Drosophila is determined epigenetically with no sequence either necessary or sufficient. To better understand this sequence-independent capping mechanism, we isolated proteins that interact with the HP1/ORC-associated protein (HOAP) capping protein, and identified HipHop as a subunit of the complex. Loss of one protein destabilizes the other and renders telomeres susceptible to fusion. Both HipHop and HOAP are enriched at telomeres, where they also interact with the conserved HP1 protein. We developed a model telomere lacking repetitive sequences to study the distribution of HipHop, HOAP and HP1 using chromatin immunoprecipitation (ChIP). We discovered that they occupy a broad region >10 kb from the chromosome end and their binding is independent of the underlying DNA sequence. HipHop and HOAP are both rapidly evolving proteins yet their telomeric deposition is under the control of the conserved ATM and Mre11-Rad50-Nbs (MRN) proteins that modulate DNA structures at telomeres and at DSBs. Our characterization of HipHop and HOAP reveals functional analogies between the Drosophila proteins and subunits of the yeast and mammalian capping complexes, implicating conservation in epigenetic capping mechanisms.
Collapse
|
42
|
Salzler HR, Davidson JM, Montgomery ND, Duronio RJ. Loss of the histone pre-mRNA processing factor stem-loop binding protein in Drosophila causes genomic instability and impaired cellular proliferation. PLoS One 2009; 4:e8168. [PMID: 19997601 PMCID: PMC2781718 DOI: 10.1371/journal.pone.0008168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 11/03/2009] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metazoan replication-dependent histone mRNAs terminate in a conserved stem-loop structure rather than a polyA tail. Formation of this unique mRNA 3' end requires Stem-loop Binding Protein (SLBP), which directly binds histone pre-mRNA and stimulates 3' end processing. The 3' end stem-loop is necessary for all aspects of histone mRNA metabolism, including replication coupling, but its importance to organism fitness and genome maintenance in vivo have not been characterized. METHODOLOGY/PRINCIPAL FINDINGS In Drosophila, disruption of the Slbp gene prevents normal histone pre-mRNA processing and causes histone pre-mRNAs to utilize the canonical 3' end processing pathway, resulting in polyadenylated histone mRNAs that are no longer properly regulated. Here we show that Slbp mutants display genomic instability, including loss of heterozygosity (LOH), increased presence of chromosome breaks, tetraploidy, and changes in position effect variegation (PEV). During imaginal disc growth, Slbp mutant cells show defects in S phase and proliferate more slowly than control cells. CONCLUSIONS/SIGNIFICANCE These data are consistent with a model in which changing the 3' end of histone mRNA disrupts normal replication-coupled histone mRNA biosynthesis and alters chromatin assembly, resulting in genomic instability, inhibition of cell proliferation, and impaired development.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jean M. Davidson
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nathan D. Montgomery
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert J. Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
43
|
Morciano P, Carrisi C, Capobianco L, Mannini L, Burgio G, Cestra G, De Benedetto GE, Corona DFV, Musio A, Cenci G. A conserved role for the mitochondrial citrate transporter Sea/SLC25A1 in the maintenance of chromosome integrity. Hum Mol Genet 2009; 18:4180-8. [PMID: 19654186 DOI: 10.1093/hmg/ddp370] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Histone acetylation plays essential roles in cell cycle progression, DNA repair, gene expression and silencing. Although the knowledge regarding the roles of acetylation of histone lysine residues is rapidly growing, very little is known about the biochemical pathways providing the nucleus with metabolites necessary for physiological chromatin acetylation. Here, we show that mutations in the scheggia (sea)-encoded Sea protein, the Drosophila ortholog of the human mitochondrial citrate carrier Solute carrier 25 A1 (SLC25A1), impair citrate transport from mitochondria to the cytosol. Interestingly, inhibition of sea expression results in extensive chromosome breakage in mitotic cells and induces an ATR-dependent cell cycle arrest associated with a dramatic reduction of global histone acetylation. Notably, loss of SLC25A1 in short interfering RNA (siRNA)-treated human primary fibroblasts also leads to chromosome breaks and histone acetylation defects, suggesting an evolutionary conserved role for Sea/SLC25A1 in the regulation of chromosome integrity. This study therefore provides an intriguing and unexpected link between intermediary metabolism and epigenetic control of genome stability.
Collapse
Affiliation(s)
- Patrizia Morciano
- Dipartimento di Biologia di Base ed Applicata, Università dell'Aquila, 67010 L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Taming the tiger by the tail: modulation of DNA damage responses by telomeres. EMBO J 2009; 28:2174-87. [PMID: 19629039 PMCID: PMC2722249 DOI: 10.1038/emboj.2009.176] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 06/03/2009] [Indexed: 11/09/2022] Open
Abstract
Telomeres are by definition stable and inert chromosome ends, whereas internal chromosome breaks are potent stimulators of the DNA damage response (DDR). Telomeres do not, as might be expected, exclude DDR proteins from chromosome ends but instead engage with many DDR proteins. However, the most powerful DDRs, those that might induce chromosome fusion or cell-cycle arrest, are inhibited at telomeres. In budding yeast, many DDR proteins that accumulate most rapidly at double strand breaks (DSBs), have important functions in physiological telomere maintenance, whereas DDR proteins that arrive later tend to have less important functions. Considerable diversity in telomere structure has evolved in different organisms and, perhaps reflecting this diversity, different DDR proteins seem to have distinct roles in telomere physiology in different organisms. Drawing principally on studies in simple model organisms such as budding yeast, in which many fundamental aspects of the DDR and telomere biology have been established; current views on how telomeres harness aspects of DDR pathways to maintain telomere stability and permit cell-cycle division are discussed.
Collapse
|
45
|
Mre11-Rad50-Nbs complex is required to cap telomeres during Drosophila embryogenesis. Proc Natl Acad Sci U S A 2009; 106:10728-33. [PMID: 19520832 DOI: 10.1073/pnas.0902707106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using Drosophila as a model system, we identified here a stringent requirement for Mre11-Rad50-Nbs (MRN) function in telomere protection during early embryonic development. Animals homozygous for hypomorphic mutations in either mre11 or nbs develop normally with minimal telomere dysfunction. However, they produce inviable embryos that succumb to failure of mitosis caused by covalent fusion of telomeric DNA. Interestingly, the molecular defect is not the absence of MRN interaction or of Mre11 nuclease activities, but the depletion of the maternal pool of Nbs protein in these embryos. Because of Nbs depletion, Mre11 and Rad50 (MR) are excluded from chromatin. This maternal effect lethality in Drosophila is similar to that seen in mice carrying hypomorphic mrn mutations found in human patients, suggesting a common defect in telomere maintenance because of the loss of MRN integrity.
Collapse
|
46
|
Jiang WQ, Zhong ZH, Nguyen A, Henson JD, Toouli CD, Braithwaite AW, Reddel RR. Induction of alternative lengthening of telomeres-associated PML bodies by p53/p21 requires HP1 proteins. ACTA ACUST UNITED AC 2009; 185:797-810. [PMID: 19468068 PMCID: PMC2711592 DOI: 10.1083/jcb.200810084] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Alternative lengthening of telomeres (ALT) is a recombination-mediated process that maintains telomeres in telomerase-negative cancer cells. In asynchronously dividing ALT-positive cell populations, a small fraction of the cells have ALT-associated promyelocytic leukemia nuclear bodies (APBs), which contain (TTAGGG)n DNA and telomere-binding proteins. We found that restoring p53 function in ALT cells caused p21 up-regulation, growth arrest/senescence, and a large increase in cells containing APBs. Knockdown of p21 significantly reduced p53-mediated induction of APBs. Moreover, we found that heterochromatin protein 1 (HP1) is present in APBs, and knockdown of HP1α and/or HP1γ prevented p53-mediated APB induction, which suggests that HP1-mediated chromatin compaction is required for APB formation. Therefore, although the presence of APBs in a cell line or tumor is an excellent qualitative marker for ALT, the association of APBs with growth arrest/senescence and with “closed” telomeric chromatin, which is likely to repress recombination, suggests there is no simple correlation between ALT activity level and the number of APBs or APB-positive cells.
Collapse
Affiliation(s)
- Wei-Qin Jiang
- Cancer Research Unit, Children's Medical Research Institute, Westmead 2145, New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
47
|
Waltes R, Kalb R, Gatei M, Kijas AW, Stumm M, Sobeck A, Wieland B, Varon R, Lerenthal Y, Lavin MF, Schindler D, Dörk T. Human RAD50 deficiency in a Nijmegen breakage syndrome-like disorder. Am J Hum Genet 2009; 84:605-16. [PMID: 19409520 PMCID: PMC2681000 DOI: 10.1016/j.ajhg.2009.04.010] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/13/2009] [Accepted: 04/09/2009] [Indexed: 01/24/2023] Open
Abstract
The MRE11/RAD50/NBN (MRN) complex plays a key role in recognizing and signaling DNA double-strand breaks (DSBs). Hypomorphic mutations in NBN (previously known as NBS1) and MRE11A give rise to the autosomal-recessive diseases Nijmegen breakage syndrome (NBS) and ataxia-telangiectasia-like disorder (ATLD), respectively. To date, no disease due to RAD50 deficiency has been described. Here, we report on a patient previously diagnosed as probably having NBS, with microcephaly, mental retardation, 'bird-like' face, and short stature. At variance with this diagnosis, she never had severe infections, had normal immunoglobulin levels, and did not develop lymphoid malignancy up to age 23 years. We found that she is compound heterozygous for mutations in the RAD50 gene that give rise to low levels of unstable RAD50 protein. Cells from the patient were characterized by chromosomal instability; radiosensitivity; failure to form DNA damage-induced MRN foci; and impaired radiation-induced activation of and downstream signaling through the ATM protein, which is defective in the human genetic disorder ataxia-telangiectasia. These cells were also impaired in G1/S cell-cycle-checkpoint activation and displayed radioresistant DNA synthesis and G2-phase accumulation. The defective cellular phenotype was rescued by wild-type RAD50. In conclusion, we have identified and characterized a patient with a RAD50 deficiency that results in a clinical phenotype that can be classified as an NBS-like disorder (NBSLD).
Collapse
Affiliation(s)
- Regina Waltes
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
- Institute of Radiation Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Reinhard Kalb
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Magtouf Gatei
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Amanda W. Kijas
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
| | - Markus Stumm
- Institute of Human Genetics, Otto von Guericke University, D-39120 Magdeburg, Germany
| | - Alexandra Sobeck
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Britta Wieland
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
- Institute of Radiation Oncology, Hannover Medical School, D-30625 Hannover, Germany
| | - Raymonda Varon
- Institute of Human Genetics, Alexander von Humboldt University, D-13353 Berlin, Germany
| | - Yaniv Lerenthal
- Department of Human Genetics and Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Herston, Queensland 4029, Australia
- University of Queensland, Centre for Clinical Research, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Detlev Schindler
- Department of Human Genetics, Biozentrum, University of Würzburg, D-97074 Würzburg, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
48
|
Abstract
DNA damage or unprotected telomeres can trigger apoptosis via signaling pathways that directly sense abnormal DNA structures and activate the p53 transcription factor. We describe a p53-independent mechanism that acts in parallel to the canonical DNA damage response pathway in Drosophila to induce apoptosis after exposure to ionizing radiation. Following recovery from damage-induced cell cycle arrest, p53 mutant cells activate the JNK pathway and expression of the pro-apoptotic gene hid. Mutations in grp, a cell cycle checkpoint gene, and puc, a negative regulator of the JNK pathway, sensitize p53 mutant cells to ionizing radiation (IR)-induced apoptosis. Induction of chromosome aberrations by DNA damage generates cells with segmental aneuploidy and heterozygous for mutations in ribosomal protein genes. p53-independent apoptosis limits the formation of these aneuploid cells following DNA damage. We propose that reduced copy number of haploinsufficient genes following chromosome damage activates apoptosis and helps maintain genomic integrity.
Collapse
|
49
|
Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 2009; 137:247-58. [PMID: 19361851 DOI: 10.1016/j.cell.2009.02.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 12/17/2008] [Accepted: 02/05/2009] [Indexed: 12/25/2022]
Abstract
In response to replication stress, the Mec1/ATR and SUMO pathways control stalled- and damaged-fork stability. We investigated the S phase response at forks encountering a broken template (termed the terminal fork). We show that double-strand break (DSB) formation can locally trigger dormant origin firing. Irreversible fork resolution at the break does not impede progression of the other fork in the same replicon (termed the sister fork). The Mre11-Tel1/ATM response acts at terminal forks, preventing accumulation of cruciform DNA intermediates that tether sister chromatids and can undergo nucleolytic processing. We conclude that sister forks can be uncoupled during replication and that, after DSB-induced fork termination, replication is rescued by dormant origin firing or adjacent replicons. We have uncovered a Tel1/ATM- and Mre11-dependent response controlling terminal fork integrity. Our findings have implications for those genome instability syndromes that accumulate DNA breaks during S phase and for forks encountering eroding telomeres.
Collapse
|
50
|
Komonyi O, Schauer T, Papai G, Deak P, Boros IM. A product of the bicistronic Drosophila melanogaster gene CG31241, which also encodes a trimethylguanosine synthase, plays a role in telomere protection. J Cell Sci 2009; 122:769-74. [PMID: 19240120 DOI: 10.1242/jcs.035097] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although telomere formation occurs through a different mechanism in Drosophila compared with other organisms, telomere associations result from mutations in homologous genes, indicating the involvement of similar pathways in chromosome end protection. We report here that mutations of the Drosophila melanogaster gene CG31241 lead to high frequency chromosome end fusions. CG31241 is a bicistronic gene that encodes trimethylguanosine synthase (TGS1), which forms the m3G caps of noncoding small RNAs, and a novel protein, DTL. We show that although TGS1 has no role in telomere protection, DTL is localized at specific sites, including the ends of polytene chromosomes, and its loss results in telomere associations. Mutations of ATM- and Rad3-related (ATR) kinase suppress telomere fusions in the absence of DTL. Thus, genetic interactions place DTL in an ATR-related pathway in telomere protection. In contrast to ATR kinase, mutations of ATM (ataxia telangiectasia mutated) kinase, which acts in a partially overlapping pathway of telomere protection, do not suppress formation of telomere associations in the absence of DTL. Thus, uncovering the role of DTL will help to dissect the evolutionary conserved pathway(s) controlling ATM-ATR-related telomere protection.
Collapse
Affiliation(s)
- Orban Komonyi
- Chromatin Research Group of HAS, Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|