1
|
Cheng L, Wang Z, Li R, Qiang M, Yang C, Yang G, Xie Y, Yuan R, Xu Y. The global burden, trends and cross-country inequalities of female breast and gynaecologic cancers: A population based study. BJOG 2024. [PMID: 39099410 DOI: 10.1111/1471-0528.17925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE To analyse the global burden, trends and cross-country inequalities of female breast and gynaecologic cancers (FeBGCs). DESIGN Population-Based Study. SETTING Data sourced from the Global Burden of Disease Study 2019. POPULATION Individuals diagnosed with FeBGCs. METHODS Age-standardised mortality rates (ASMRs), age-standardised Disability-Adjusted Life Years (DALYs) rates (ASDRs) and their 95% uncertainty interval (UI) described the burden. Estimated annual percentage changes (EAPCs) and their confidence interval (CI) of age-standardised rates (ASRs) illustrated trends. Social inequalities were quantified using the Slope Index of Inequality (SII) and Concentration Index. MAIN OUTCOME MEASURES The main outcome measures were the burden of FeBGCs and the trends in its inequalities over time. RESULTS In 2019, the ASDRs per 100 000 females were as follows: breast cancer: 473.83 (95% UI: 437.30-510.51), cervical cancer: 210.64 (95% UI: 177.67-234.85), ovarian cancer: 124.68 (95% UI: 109.13-138.67) and uterine cancer: 210.64 (95% UI: 177.67-234.85). The trends per year from 1990 to 2019 were expressed as EAPCs of ASDRs and these: for Breast cancer: -0.51 (95% CI: -0.57 to -0.45); Cervical cancer: -0.95 (95% CI: -0.99 to -0.89); Ovarian cancer: -0.08 (95% CI: -0.12 to -0.04); and Uterine cancer: -0.84 (95% CI: -0.93 to -0.75). In the Social Inequalities Analysis (1990-2019) the SII changed from 689.26 to 607.08 for Breast, from -226.66 to -239.92 for cervical, from 222.45 to 228.83 for ovarian and from 74.61 to 103.58 for uterine cancer. The concentration index values ranged from 0.2 to 0.4. CONCLUSIONS The burden of FeBGCs worldwide showed a downward trend from 1990 to 2019. Countries or regions with higher Socio-demographic Index (SDI) bear a higher DALYs burden of breast, ovarian and uterine cancers, while those with lower SDI bear a heavier burden of cervical cancer. These inequalities increased over time.
Collapse
Affiliation(s)
- Liangxing Cheng
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
- Research Office, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhihong Wang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Min Qiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chen Yang
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Guoer Yang
- Clinical Big Data Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yingying Xie
- Department of Scientific Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ruixia Yuan
- Clinical Big Data Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yungang Xu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
2
|
Cai R, Khan S, Chen X, Li H, Tan J, Tian Y, Zhao S, Yin Z, Liu T, Jin D, Guo J. Aspongopus chinensis ach-miR-276a-3p induces breast cancer cell cycle arrest by targeting APPL2 to regulate the CDK2-Rb-E2F1 signaling pathway. Toxicol Appl Pharmacol 2024; 484:116877. [PMID: 38431228 DOI: 10.1016/j.taap.2024.116877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Breast cancer, the most common cancer, presents a significant challenge to the health and longevity of women. Aspongopus chinensis Dallas is an insect with known anti-breast cancer properties. However, the anti-breast cancer effects and underlying mechanisms have not been elucidated. Exogenous microRNAs (miRNAs), which are derived from plants and animals, have been revealed to have notable capacities for controlling the proliferation of cancerous cells. To elucidate the inhibitory effects of miRNAs derived from A. chinensis and the regulatory mechanism involved in the growth of breast cancer cells, miRNA sequencing was initially employed to screen for miRNAs both in A. chinensis hemolymph and decoction and in mouse serum and tumor tissue after decoction gavage. Subsequently, the experiments were performed to assess the suppressive effect of ach-miR-276a-3p, the miRNA screened out from a previous study, on the proliferation of MDA-MB-231 and MDA-MB-468 breast cancer cell lines in vitro and in vivo. Finally, the regulatory mechanism of ach-miR-276a-3p in MDA-MB-231 and MDA-MB-468 breast cancer cells was elucidated. The results demonstrated that ach-miR-276a-3p notably inhibited breast cancer cell proliferation, migration, colony formation, and invasion and induced cell cycle arrest at the G0/G1 phase. Moreover, the ach-miR-276a-3p mimics significantly reduced the tumor volume and weight in xenograft tumor mice. Furthermore, ach-miR-276a-3p could induce cell cycle arrest by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway. In summary, ach-miR-276a-3p, derived from A. chinensis, has anti-breast cancer activity by targeting APPL2 and regulating the CDK2-Rb-E2F1 signaling pathway and can serve as a promising candidate anticancer agent.
Collapse
Affiliation(s)
- Renlian Cai
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, PR China
| | - Samiullah Khan
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Xumei Chen
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Haiyin Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, PR China
| | - Ying Tian
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, PR China
| | - Shuai Zhao
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Zhiyong Yin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Tongxian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China
| | - Daochao Jin
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China.
| | - Jianjun Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
3
|
Liga S, Paul C, Moacă EA, Péter F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024; 16:223. [PMID: 38399277 PMCID: PMC10892933 DOI: 10.3390/pharmaceutics16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania;
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
- Research Institute for Renewable Energies, Politehnica University Timișoara, Gavril Muzicescu 138, 300501 Timișoara, Romania
| |
Collapse
|
4
|
Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S127-S147. [PMID: 38621748 DOI: 10.1134/s0006297924140086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 04/17/2024]
Abstract
The strategies of future medicine are aimed to modernize and integrate quality approaches including early molecular-genetic profiling, identification of new therapeutic targets and adapting design for clinical trials, personalized drug screening (PDS) to help predict and individualize patient treatment regimens. In the past decade, organoid models have emerged as an innovative in vitro platform with the potential to realize the concept of patient-centered medicine. Organoids are spatially restricted three-dimensional clusters of cells ex vivo that self-organize into complex functional structures through genetically programmed determination, which is crucial for reconstructing the architecture of the primary tissue and organs. Currently, there are several strategies to create three-dimensional (3D) tumor systems using (i) surgically resected patient tissue (PDTOs, patient-derived tumor organoids) or (ii) single tumor cells circulating in the patient's blood. Successful application of 3D tumor models obtained by co-culturing autologous tumor organoids (PDTOs) and peripheral blood lymphocytes have been demonstrated in a number of studies. Such models simulate a 3D tumor architecture in vivo and contain all cell types characteristic of this tissue, including immune system cells and stem cells. Components of the tumor microenvironment, such as fibroblasts and immune system cells, affect tumor growth and its drug resistance. In this review, we analyzed the evolution of tumor models from two-dimensional (2D) cell cultures and laboratory animals to 3D tissue-specific tumor organoids, their significance in identifying mechanisms of antitumor response and drug resistance, and use of these models in drug screening and development of precision methods in cancer treatment.
Collapse
Affiliation(s)
- Natalia V Rassomakhina
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Astemir R Likhov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
5
|
Ma X, Zhang X, Wang X, Wang C, Ma Y. The role of kaempferol in gynaecological malignancies: progress and perspectives. Front Pharmacol 2023; 14:1310416. [PMID: 38143502 PMCID: PMC10748757 DOI: 10.3389/fphar.2023.1310416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Kaempferol, a flavonoid derived from various herbs such as cocoyam, propolis, and grapefruit, has garnered interest due to its numerous pharmacological benefits, including anti-inflammatory, antioxidant, and anti-diabetic properties. Kaempferol has been shown to possess notable anti-tumour bioactivity, indicating potential for treating gynaecological malignancies. To date, numerous studies have demonstrated the potential of kaempferol to induce tumour cell apoptosis, inhibit proliferation, and prevent metastasis and invasion in several gynaecological malignancies, including breast, ovarian and endometrial cancers. However, there is currently insufficient research investigating the efficacy of kaempferol for the treatment of gynaecological malignancies, and a lack of systematic review of its mechanism of action. Therefore, this review is founded on a literature analysis of the anticancer effects of kaempferol on gynaecological malignancies. The goal is to provide valuable reference material for scientific researchers and medical practitioners.
Collapse
Affiliation(s)
- Xijun Ma
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Congan Wang
- Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan, China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|