1
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Kodan A, Njei LP, Raufman JP. Cholinergic Mechanisms in Gastrointestinal Neoplasia. Int J Mol Sci 2024; 25:5316. [PMID: 38791353 PMCID: PMC11120676 DOI: 10.3390/ijms25105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Acetylcholine-activated receptors are divided broadly into two major structurally distinct classes: ligand-gated ion channel nicotinic and G-protein-coupled muscarinic receptors. Each class encompasses several structurally related receptor subtypes with distinct patterns of tissue expression and post-receptor signal transduction mechanisms. The activation of both nicotinic and muscarinic cholinergic receptors has been associated with the induction and progression of gastrointestinal neoplasia. Herein, after briefly reviewing the classification of acetylcholine-activated receptors and the role that nicotinic and muscarinic cholinergic signaling plays in normal digestive function, we consider the mechanics of acetylcholine synthesis and release by neuronal and non-neuronal cells in the gastrointestinal microenvironment, and current methodology and challenges in measuring serum and tissue acetylcholine levels accurately. Then, we critically evaluate the evidence that constitutive and ligand-induced activation of acetylcholine-activated receptors plays a role in promoting gastrointestinal neoplasia. We focus primarily on adenocarcinomas of the stomach, pancreas, and colon, because these cancers are particularly common worldwide and, when diagnosed at an advanced stage, are associated with very high rates of morbidity and mortality. Throughout this comprehensive review, we concentrate on identifying novel ways to leverage these observations for prognostic and therapeutic purposes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Asha Kodan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
| | - Lea-Pearl Njei
- Department of Biological Science, University of Maryland, Baltimore County, Baltimore, MD 21250, USA;
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.S.M.); (A.S.); (A.K.)
- Veterans Affairs Maryland Healthcare System, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Akumuo RC, Reddy SP, Westwood C, Devarajan K, Barrak D, Reddy SS, Villano AM. Smoking history is associated with reduced efficacy of neoadjuvant therapy in pancreatic adenocarcinoma. J Gastrointest Surg 2024; 28:605-610. [PMID: 38704197 DOI: 10.1016/j.gassur.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 01/12/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Differential responses to neoadjuvant therapy (NAT) exist in pancreatic ductal adenocarcinoma (PDAC); however, contributing factors are poorly understood. Tobacco smoke is a common risk factor for PDAC, with nicotine-induced chemoresistance observed in other cancers. This study aimed to explore the potential association between tobacco use and NAT efficacy in PDAC. METHODS A single-center, retrospective analysis was conducted that included all consecutive patients with PDAC who underwent surgical resection after NAT with a documented smoking history (N = 208). NAT response was measured as percentage fibrosis in the surgical specimen. Multivariable models controlled for covariates and survival were modeled using the Kaplan-Meier method. RESULTS Postoperatively, major responses to NAT (>95% fibrosis) were less frequently observed in smokers than in nonsmokers (13.7% vs 30.4%, respectively; P = .021). Pathologic complete responses were similarly less frequent in smokers than in nonsmokers (2.1% vs 9.9%, respectively; P = .023). On multivariate analysis controlling for covariates, smoking history remained independently associated with lower odds of major fibrosis (odds ratio [OR], 0.25; 95% CI, 0.10-0.59; P = .002) and pathologic complete response (OR, 0.21; 95% CI, 0.03-0.84; P = .05). The median overall survival was significantly longer in nonsmokers than in smokers (39.1 vs 26.6 months, respectively; P = .05). CONCLUSION Tobacco use was associated with diminished pathologic responses to NAT. Future research to understand the biology underlying this observation is warranted and may inform differential NAT approaches or counseling among these populations.
Collapse
Affiliation(s)
- Rita C Akumuo
- Department of Surgery, Temple University Hospital, Philadelphia, Pennsylvania, United States; Division of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States.
| | - Sai P Reddy
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Caroline Westwood
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | - Dany Barrak
- Division of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | - Sanjay S Reddy
- Division of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| | - Anthony M Villano
- Division of Surgical Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States
| |
Collapse
|
3
|
Prashanth N, Meghana P, Sandeep Kumar Jain R, Pooja S Rajaput, Satyanarayan N D, Raja Naika H, Kumaraswamy H M. Nicotine promotes epithelial to mesenchymal transition and gemcitabine resistance via hENT1/RRM1 signalling in pancreatic cancer and chemosensitizing effects of Embelin-a naturally occurring benzoquinone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169727. [PMID: 38163613 DOI: 10.1016/j.scitotenv.2023.169727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Pancreatic cancer is lethal due to poor prognosis with 5-year survival rate lesser than 5 %. Gemcitabine is currently used to treat pancreatic cancer and development of chemoresistance is a major obstacle to overcome pancreatic cancer. Nicotine is a known inducer of drug resistance in pancreatic tumor micro-environment. Present study evaluates chemoresistance triggered by nicotine while treating with gemcitabine and chemosensitization using Embelin. Embelin is a naturally occurring benzoquinone from Embelia ribes possessing therapeutic potency. To develop nicotine-induced chemo-resistance, pancreatic cancer cells PANC-1 and MIA PaCa-2 were continuously treated with nicotine followed by exposure to gemcitabine. Gemcitabine sensitivity assay and immunoblotting was performed to assess the chemo-resistance. Antiproliferative assays such as migration assay, clonogenic assay, Mitochondrial Membrane Potential (MMP) assay, dual staining assay, comet assay, Reactive Oxygen Species (ROS) assay, cell cycle analysis and immunoblotting assays were performed to witness the protein expression involved in chemoresistance and chemosensitization. Epithelial to mesenchymal transition was observed in nicotine induced chemoresistant cells. Gemcitabine sensitivity assay revealed that relative resistance was increased to 6.26 (p < 0.0001) and 6.45 (p < 0.0001) folds in resistant PANC-1 and MIA PaCa-2 compared to parental cells. Protein expression studies confirmed resistance markers like hENT1 and dCK were downregulated with subsequent increase in RRM1 expression in resistant cells. Embelin considerably decreased the cell viability with an IC50 value of 4.03 ± 0.08 μM in resistant PANC-1 and 2.11 ± 0.04 μM in resistant MIA PaCa-2. Cell cycle analysis showed Embelin treatment caused cell cycle arrest at S phase in resistant PANC-1 cells; in resistant MIA PaCa-2 cells there was an escalation in the Sub G1. Embelin upregulated Bax, γH2AX, p53, ERK1/2 and hENT1 expression with concomitant down regulation of Bcl-2 and RRM1. Bioactive molecule embelin, its combination with gemcitabine could provide new vistas to overcome chemo resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Prashanth N
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Meghana P
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Sandeep Kumar Jain R
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Pooja S Rajaput
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India
| | - Satyanarayan N D
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Centre, Kadur, Chikkamagaluru, 577548, Karnataka, India
| | - Raja Naika H
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod 671320, Kerala, India
| | - Kumaraswamy H M
- Laboratory of Experimental Medicine, Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankarghatta, 577451, Karnataka, India.
| |
Collapse
|
4
|
Abd-Elsabour M, Alsoghier HM, Alhamzani AG, Abou-Krisha MM, Yousef TA, Assaf HF. A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2354. [PMID: 35889578 PMCID: PMC9323772 DOI: 10.3390/nano12142354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
A simple electrochemical sensor for nicotine (NIC) detection was performed. The sensor based on a glassy carbon electrode (GCE) was modified by (1,2-naphthoquinone-4-sulphonic acid)(Nq) decorated by graphene oxide (GO) nanocomposite. The synthesized (GO) nanosheets were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission electron microscope (TEM), FT-IR, and UV-Visible Spectroscopy. The insertion of Nq with GO nanosheets on the surface of GCE displayed high electrocatalytic activity towards NIC compared to the bare GCE. NIC determination was performed under the optimum conditions using 0.10 M of Na2SO4 as a supporting electrolyte with pH 8.0 at a scan rate of 100 mV/s using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). This electrochemical sensor showed an excellent result for NIC detection. The oxidation peak current increased linearly with a 6.5-245 µM of NIC with R2 = 0.9999. The limit of detection was 12.7 nM. The fabricated electrode provided satisfactory stability, reproducibility, and selectivity for NIC oxidation. The reliable GO/Nq/GCE sensor was successfully applied for detecting NIC in the tobacco product and a urine sample.
Collapse
Affiliation(s)
- M. Abd-Elsabour
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Hesham M. Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| | - Abdulrahman G. Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
| | - Tarek A. Yousef
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (A.G.A.); (T.A.Y.)
- Mansoura Laboratory, Department of Toxic and Narcotic Drug, Forensic Medicine, Medicolegal Organization, Ministry of Justice, Mansoura 35511, Egypt
| | - Hytham F. Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt; (M.A.-E.); (H.M.A.)
| |
Collapse
|
5
|
Role of the parasympathetic nervous system in cancer initiation and progression. Clin Transl Oncol 2020; 23:669-681. [PMID: 32770391 DOI: 10.1007/s12094-020-02465-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The nervous system plays an important role in cancer initiation and progression. Accumulated evidences clearly show that the sympathetic nervous system exerts stimulatory effects on carcinogenesis and cancer growth. However, the role of the parasympathetic nervous system in cancer has been much less elucidated. Whereas retrospective studies in vagotomized patients and experiments employing vagotomized animals indicate the parasympathetic nervous system has an inhibitory effect on cancer, clinical studies in patients with prostate cancer indicate it has stimulatory effects. Therefore, the aim of this paper is a critical evaluation of the available data related to the role of the parasympathetic nervous system in cancer.
Collapse
|
6
|
Hajiasgharzadeh K, Somi MH, Sadigh-Eteghad S, Mokhtarzadeh A, Shanehbandi D, Mansoori B, Mohammadi A, Doustvandi MA, Baradaran B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020; 6:e03611. [PMID: 32215331 PMCID: PMC7090353 DOI: 10.1016/j.heliyon.2020.e03611] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/10/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Alpha7 nicotinic acetylcholine receptor (α7nAChR) is one of the main subtypes of nAChRs that modulates various cancer-related properties including proliferative, anti-apoptotic, pro-angiogenic and pro-metastatic activities in most of the cancers. It also plays a crucial role in inflammation control through the cholinergic anti-inflammatory pathway in numerous pathophysiological contexts. Such diverse physiological and pathological functions that initiate from this receptor may have significant impacts in determining the outcome of different cancers. Various tissues of gastrointestinal (GI) cancers such as gastric, colorectal, pancreatic and liver cancers have shown the up-regulated expression of α7nAChR as compared to normal adjacent tissues. According to the well-established connection between inflammation and tumorigenesis in the digestive system, there are mounting studies demonstrated either stimulatory or inhibitory effects of α7nAChR signaling in the development of GI cancers. To date, the precise underlying mechanisms related to this receptor in patients with GI cancers have not been fully elucidated. Regarding the paradoxical modulatory effects of this receptor in carcinogenesis, in this review, we aim to summarize the accumulated evidence about the involvement of α7nAChR in inflammation-associated GI cancers. It seems that the complex influences of α7nAChR may be a promising target in designing novel strategies in the treatment of such pathologic conditions.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Underwood PW, Zhang DY, Cameron ME, Gerber MH, Delitto D, Maduka MU, Cooper KJ, Han S, Hughes SJ, Judge SM, Judge AR, Trevino JG. Nicotine Induces IL-8 Secretion from Pancreatic Cancer Stroma and Worsens Cancer-Induced Cachexia. Cancers (Basel) 2020; 12:cancers12020329. [PMID: 32024069 PMCID: PMC7072641 DOI: 10.3390/cancers12020329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/18/2023] Open
Abstract
Smoking is highly associated with pancreatic cancer. Nicotine, the addictive component of tobacco, is involved in pancreatic cancer tumorigenesis, metastasis, and chemoresistance. This work aimed to describe the role of nicotine within the pancreatic cancer tumor microenvironment. Nicotine treatment was used in vitro to assess its effect on tumor-associated stromal cells and pancreatic cancer cells. Nicotine treatment was then used in a pancreatic cancer patient-derived xenograft model to study the effects in vivo. Nicotine induced secretion of interleukin 8 (IL-8) by tumor-associated stroma cells in an extracellular signal-regulated kinase (ERK)-dependent fashion. The secreted IL-8 and nicotine acted on the pancreatic cancer cell, resulting in upregulation of IL-8 receptor. Nicotine treatment of mice bearing pancreatic cancer patient-derived xenografts had significantly increased tumor mass, increased tumor-free weight loss, and decreased muscle mass. These represent important pathways through which nicotine acts within the tumor microenvironment and worsens pancreatic cancer-induced cachexia, potentially representing future therapeutic targets.
Collapse
Affiliation(s)
- Patrick W. Underwood
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Dong Yu Zhang
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Miles E. Cameron
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Michael H. Gerber
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Daniel Delitto
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Michael U. Maduka
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Kyle J. Cooper
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Song Han
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Steven J. Hughes
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
| | - Sarah M. Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, FL 32610, USA; (S.M.J.); (A.R.J.)
| | - Andrew R. Judge
- Department of Physical Therapy, University of Florida Health Science Center, Gainesville, FL 32610, USA; (S.M.J.); (A.R.J.)
| | - Jose G. Trevino
- Department of Surgery, College of Medicine, University of Florida Health Science Center, Gainesville, FL 32610, USA; (P.W.U.); (D.Y.Z.); (M.E.C.); (M.H.G.); (M.U.M.); (K.J.C.); (S.H.); (S.J.H.)
- Correspondence:
| |
Collapse
|
8
|
Hajiasgharzadeh K, Somi MH, Mansoori B, Khaze Shahgoli V, Derakhshani A, Mokhtarzadeh A, Shanehbandi D, Baradaran B. Small interfering RNA targeting alpha7 nicotinic acetylcholine receptor sensitizes hepatocellular carcinoma cells to sorafenib. Life Sci 2020; 244:117332. [PMID: 31962133 DOI: 10.1016/j.lfs.2020.117332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
AIMS It has been demonstrated that reduced expression of alpha7 nicotinic acetylcholine receptor (α7nAChR) led to reduced chemotherapeutic drugs resistance in various cancer cells. However, whether small interfering RNA (siRNA) mediated knockdown of α7nAChR can reduce sorafenib (SOR) resistance in HCC cells remains to be determined. MATERIALS AND METHODS The effects of α7nAChR-siRNA in combination with SOR treatment was analyzed in human (HepG2) and mouse (Hepa 1-6) HCC cell lines. The MTT, DAPI staining and flow cytometry assays were applied to measure the cell viability, apoptosis and cell cycle progression of the cells. Also, the changes in the mRNA and protein levels of the α7nAChR were measured by quantitative real-time PCR and western blot analysis, respectively. KEY FINDINGS The results revealed that SOR increased both mRNA and protein levels of α7nAChR in HCC cells. Treatment with α7nAChR-siRNA abolished these effects. Also, SOR treatment in combination with α7nAChR-siRNA significantly sensitizes HCC cells to SOR cytotoxicity. This combination therapy significantly induced HCC cells apoptosis compared to SOR alone. SIGNIFICANCE These experimental results indicate that knockdown of α7nAChR by siRNA increased the SOR antitumor activity of HCC cells and suggests that this additive combination is a promising drug candidate for HCC therapy.
Collapse
Affiliation(s)
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Zhao J, Nelson J, Dada O, Pyrgiotakis G, Kavouras IG, Demokritou P. Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns. Inhal Toxicol 2018; 30:78-88. [PMID: 29564955 PMCID: PMC6459014 DOI: 10.1080/08958378.2018.1450462] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Users of electronic cigarettes (e-cigs) are exposed to particles and other gaseous pollutants. However, major knowledge gaps on the physico-chemical properties of such exposures and contradictory data in published literature prohibit health risk assessment. Here, the effects of product brand, type, e-liquid flavoring additives, operational voltage, and user puffing patterns on emissions were systematically assessed using a recently developed, versatile, e-cig exposure generation platform and state-of-the-art analytical methods. Parameters of interest in this systematic evaluation included two brands (A and B), three flavors (tobacco, menthol, and fruit), three types of e-cigs (disposable, pre-filled, and refillable tanks), two puffing protocols (4 and 2 s/puff), and four operational voltages (2.2-5.7 V). Particles were generated at a high number concentration (106-107 particles/cm3). The particle size distribution was bi-modal (∼200 nm and 1 µm). Furthermore, organic species (humectants propylene glycol and glycerin, nicotine) that were present in e-liquid and trace metals (potassium and sodium) that were present on e-cig heating coil were also released into the emission. In addition, combustion-related byproducts, such as benzene and toluene, were also detected in the range of 100-38,000 ppbv/puff. Parametric analyzes performed in this study show the importance of e-cig brand, type, flavor additives, user puffing pattern (duration and frequency), and voltage on physico-chemical properties of emissions. This observed influence is indicative of the complexity associated with the toxicological screening of emissions from e-cigs and needs to be taken into consideration.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| | - Jordan Nelson
- Department of Environmental Health Science, University of Alabama, Birmingham, AL, USA
| | - Oluwabunmi Dada
- Department of Environmental Health Science, University of Alabama, Birmingham, AL, USA
| | - Georgios Pyrgiotakis
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| | - Ilias G. Kavouras
- Department of Environmental Health Science, University of Alabama, Birmingham, AL, USA
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
10
|
Oluwasanmi A, Al-Shakarchi W, Manzur A, Aldebasi MH, Elsini RS, Albusair MK, Haxton KJ, Curtis ADM, Hoskins C. Diels Alder-mediated release of gemcitabine from hybrid nanoparticles for enhanced pancreatic cancer therapy. J Control Release 2017; 266:355-364. [PMID: 28943195 DOI: 10.1016/j.jconrel.2017.09.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Hybrid nanoparticles (HNPs) have shown huge potential as drug delivery vehicles for pancreatic cancer. Currently, the first line treatment, gemcitabine, is only effective in 23.8% of patients. To improve this, a thermally activated system was developed by introducing a linker between HNPs and gemcitabine. Whereby, heat generation resulting from laser irradiation of the HNPs promoted linker breakdown resulting in prodrug liberation. In vitro evaluation in pancreatic adenocarcinoma cells, showed the prodrug was 4.3 times less cytotoxic than gemcitabine, but exhibited 11-fold improvement in cellular uptake. Heat activation of the formulation led to a 56% rise in cytotoxicity causing it to outperform gemcitabine by 26%. In vivo the formulation outperformed free gemcitabine with a 62% reduction in tumor weight in pancreatic xenografts. This HNP formulation is the first of its kind and has displayed superior anti-cancer activity as compared to the current first line drug gemcitabine after heat mediated controlled release.
Collapse
Affiliation(s)
- Adeolu Oluwasanmi
- Institute of Science and Technology in Medicine, School of Pharmacy, Keele University, Keele ST5 5BG, UK
| | - Wejdan Al-Shakarchi
- Institute of Science and Technology in Medicine, School of Pharmacy, Keele University, Keele ST5 5BG, UK
| | - Ayesha Manzur
- Institute of Science and Technology in Medicine, School of Pharmacy, Keele University, Keele ST5 5BG, UK
| | - Mohammed H Aldebasi
- College of Medicine, Al Imam Mohammad Ibn, Saud Islamic University, Riyadh, Saudi Arabia
| | - Rayan S Elsini
- College of Medicine, Al Imam Mohammad Ibn, Saud Islamic University, Riyadh, Saudi Arabia
| | - Malek K Albusair
- College of Medicine, Al Imam Mohammad Ibn, Saud Islamic University, Riyadh, Saudi Arabia
| | - Katherine J Haxton
- School of Physical and Geographical Sciences, Faculty of Natural Sciences, Keele University, Keele ST5 5BG, UK
| | - Anthony D M Curtis
- Institute of Science and Technology in Medicine, School of Pharmacy, Keele University, Keele ST5 5BG, UK
| | - Clare Hoskins
- Institute of Science and Technology in Medicine, School of Pharmacy, Keele University, Keele ST5 5BG, UK.
| |
Collapse
|
11
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
12
|
Haussmann HJ, Fariss MW. Comprehensive review of epidemiological and animal studies on the potential carcinogenic effects of nicotine per se. Crit Rev Toxicol 2016; 46:701-34. [PMID: 27278157 PMCID: PMC5020336 DOI: 10.1080/10408444.2016.1182116] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/14/2016] [Accepted: 04/20/2016] [Indexed: 12/31/2022]
Abstract
The effects of long-term use of nicotine per se on cancer risk, in the absence of tobacco extract or smoke, are not clearly understood. This review evaluates the strength of published scientific evidence, in both epidemiological and animal studies, for the potential carcinogenic effects of nicotine per se; that is to act as a complete carcinogen or as a modulator of carcinogenesis. For human studies, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a carcinogenic effect due to the limited information available. In animal studies, limited evidence suggests an association between long-term nicotine exposure and a lack of a complete carcinogenic effect. Conclusive studies using current bioassay guidelines, however, are missing. In studies using chemical/physical carcinogens or transgenic models, there appears to be inadequate evidence for an association between nicotine exposure and the presence of or lack of a modulating (stimulating) effect on carcinogenesis. This is primarily due to the large number of conflicting studies. In contrast, a majority of studies provides sufficient evidence for an association between nicotine exposure and enhanced carcinogenesis of cancer cells inoculated in mice. This modulating effect was especially prominent in immunocompromized mice. Overall, taking the human and animal studies into consideration, there appears to be inadequate evidence to conclude that nicotine per se does or does not cause or modulate carcinogenesis in humans. This conclusion is in agreement with the recent US Surgeon General's 2014 report on the health consequences of nicotine exposure.
Collapse
|
13
|
Coffa BG, Coggins CRE, Werley MS, Oldham MJ, Fariss MW. Chemical, physical, and in vitro characterization of research cigarettes containing denicotinized tobacco. Regul Toxicol Pharmacol 2016; 79:64-73. [PMID: 27181452 DOI: 10.1016/j.yrtph.2016.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/18/2022]
Abstract
The use of very low nicotine tobacco cigarettes is currently being investigated as a possible harm reduction strategy. Here, we report the smoke chemistry, toxicity, and physical characteristics of very low nicotine cigarettes that were made using blended tobacco processed through a supercritical CO2 fluid extraction, which resulted in elimination of 96% of nicotine content (denicotinized (denic) tobacco). Three types of test cigarettes (TCs) were manufactured with tobacco filler containing 100% denic tobacco (TC100), 50% denic tobacco and 50% unextracted tobacco (TC50/50), and 100% unextracted tobacco (TC0). Mainstream smoke (MS) was generated for measurement of 46 analytes and cytotoxicity and mutagenicity determination. Analysis of physical characteristics of TCs demonstrated they were well made with <5% variability among cigarettes for most parameters measured. We observed significant changes in the levels of smoke constituents, including decreases in formaldehyde, nitrosamines, and phenol, and increases in aliphatic hydrocarbons, aliphatic nitrogen compounds, aromatic amines, halogen compounds, and metals. Use of denic tobacco resulted in changes in the chemical composition of MS, but these changes did not modify biological activity as measured in the mutagenicity and cytotoxicity assays.
Collapse
|
14
|
Sanner T, Grimsrud TK. Nicotine: Carcinogenicity and Effects on Response to Cancer Treatment - A Review. Front Oncol 2015; 5:196. [PMID: 26380225 PMCID: PMC4553893 DOI: 10.3389/fonc.2015.00196] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Tobacco use is considered the single most important man-made cause of cancer that can be avoided. The evidence that nicotine is involved in cancer development is reviewed and discussed in this paper. Both tobacco smoke and tobacco products for oral use contain a number of carcinogenic substances, such as polycyclic hydrocarbons and tobacco-specific N-nitrosamines (TSNA), which undoubtedly contribute to tobacco related cancer. Recent studies have shown that nicotine can affect several important steps in the development of cancer, and suggest that it may cause aggravation and recurrence of the disease. TSNA may be formed from nicotine in the body. The role of nicotine as the major addictive component of tobacco products may have distracted our attention from toxicological effects on cell growth, angiogenesis, and tumor malignancy. Effects on cancer disease are important aspects in the evaluation of possible long-term effects from sources of nicotine, such as e-cigarettes and products for nicotine replacement therapy, which both have a potential for life-long use.
Collapse
Affiliation(s)
- Tore Sanner
- Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Tom K. Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| |
Collapse
|
15
|
Neuzillet C, Tijeras-Raballand A, Bourget P, Cros J, Couvelard A, Sauvanet A, Vullierme MP, Tournigand C, Hammel P. State of the art and future directions of pancreatic ductal adenocarcinoma therapy. Pharmacol Ther 2015; 155:80-104. [PMID: 26299994 DOI: 10.1016/j.pharmthera.2015.08.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is expected to become the second cause of cancer-related death in 2030. PDAC is the poorest prognostic tumor of the digestive tract, with 80% of patients having advanced disease at diagnosis and 5-year survival rate not exceeding 7%. Until 2010, gemcitabine was the only validated therapy for advanced PDAC with a modest improvement in median overall survival as compared to best supportive care (5-6 vs 3 months). Multiple phase II-III studies have used various combinations of gemcitabine with other cytotoxics or targeted agents, most in vain, in attempt to improve this outcome. Over the past few years, the landscape of PDAC management has undergone major and rapid changes with the approval of the FOLFIRINOX and gemcitabine plus nab-paclitaxel regimens in patients with metastatic disease. These two active combination chemotherapy options yield an improved median overall survival (11.1 vs 8.5 months, respectively) thus making longer survival a reasonably achievable goal. This breakthrough raises some new clinical questions about the management of PDAC. Moreover, better knowledge of the environmental and genetic events that underpin multistep carcinogenesis and of the microenvironment surrounding cancer cells in PDAC has open new perspectives and therapeutic opportunities. In this new dynamic context of deep transformation in basic research and clinical management aspects of the disease, we gathered updated preclinical and clinical data in a multifaceted review encompassing the lessons learned from the past, the yet unanswered questions, and the most promising research priorities to be addressed for the next 5 years.
Collapse
Affiliation(s)
- Cindy Neuzillet
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Digestive Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Medical Oncology, Henri Mondor University Hospital, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France.
| | - Annemilaï Tijeras-Raballand
- Department of Translational Research, AAREC Filia Research, 1 place Paul Verlaine, 92100 Boulogne-Billancourt, France
| | - Philippe Bourget
- Department of Clinical Pharmacy, Necker-Enfants Malades University Hospital, 149 Rue de Sèvres, 75015 Paris, France
| | - Jérôme Cros
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Pathology, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Anne Couvelard
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Pathology, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Alain Sauvanet
- Department of Biliary and Pancreatic Surgery, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Marie-Pierre Vullierme
- Department of Radiology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| | - Christophe Tournigand
- Department of Medical Oncology, Henri Mondor University Hospital, 51 avenue du Maréchal de Lattre de Tassigny, 94010 Créteil, France
| | - Pascal Hammel
- INSERM UMR1149, Bichat-Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 46 rue Henri Huchard, 75018 Paris, and 100 boulevard du Général Leclerc, 92110 Clichy, France; Department of Digestive Oncology, Beaujon University Hospital (AP-HP - PRES Paris 7 Diderot), 100 boulevard du Général Leclerc, 92110 Clichy, France
| |
Collapse
|
16
|
The Role of nAChR and Calcium Signaling in Pancreatic Cancer Initiation and Progression. Cancers (Basel) 2015; 7:1447-71. [PMID: 26264026 PMCID: PMC4586778 DOI: 10.3390/cancers7030845] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer shows a strong correlation with smoking and the current therapeutic strategies have been relatively ineffective in improving the survival of patients. Efforts have been made over the past many years to understand the molecular events that drive the initiation and progression of pancreatic cancer, especially in the context of smoking. It has become clear that components of tobacco smoke not only initiate these cancers, especially pancreatic ductal adenocarcinomas (PDACs) through their mutagenic properties, but can also promote the growth and metastasis of these tumors by stimulating cell proliferation, angiogenesis, invasion and epithelial-mesenchymal transition. Studies in cell culture systems, animal models and human samples have shown that nicotinic acetylcholine receptor (nAChR) activation enhances these tumor-promoting events by channeling signaling through multiple pathways. In this context, signaling through calcium channels appear to facilitate pancreatic cancer growth by itself or downstream of nAChRs. This review article highlights the role of nAChR downstream signaling events and calcium signaling in the growth, metastasis as well as drug resistance of pancreatic cancer.
Collapse
|
17
|
Pisinger C, Døssing M. A systematic review of health effects of electronic cigarettes. Prev Med 2014; 69:248-60. [PMID: 25456810 DOI: 10.1016/j.ypmed.2014.10.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To provide a systematic review of the existing literature on health consequences of vaporing of electronic cigarettes (ECs). METHODS Search in: PubMed, EMBASE and CINAHL. INCLUSION CRITERIA Original publications describing a health-related topic, published before 14 August 2014. PRISMA recommendations were followed. We identified 1101 studies; 271 relevant after screening; 94 eligible. RESULTS We included 76 studies investigating content of fluid/vapor of ECs, reports on adverse events and human and animal experimental studies. Serious methodological problems were identified. In 34% of the articles the authors had a conflict of interest. Studies found fine/ultrafine particles, harmful metals, carcinogenic tobacco-specific nitrosamines, volatile organic compounds, carcinogenic carbonyls (some in high but most in low/trace concentrations), cytotoxicity and changed gene expression. Of special concern are compounds not found in conventional cigarettes, e.g. propylene glycol. Experimental studies found increased airway resistance after short-term exposure. Reports on short-term adverse events were often flawed by selection bias. CONCLUSIONS Due to many methodological problems, severe conflicts of interest, the relatively few and often small studies, the inconsistencies and contradictions in results, and the lack of long-term follow-up no firm conclusions can be drawn on the safety of ECs. However, they can hardly be considered harmless.
Collapse
Affiliation(s)
- Charlotta Pisinger
- Research Centre for Prevention and Health, Glostrup Hospital, DK-2600 Glostrup, Denmark.
| | - Martin Døssing
- Medicinsk Afdeling, Frederikssund Hospital, DK-3600 Frederikssund, Denmark
| |
Collapse
|
18
|
Differential modulation of nicotine-induced gemcitabine resistance by GABA receptor agonists in pancreatic cancer cell xenografts and in vitro. BMC Cancer 2014; 14:725. [PMID: 25260978 PMCID: PMC4190427 DOI: 10.1186/1471-2407-14-725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/23/2014] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer is frequently resistant to cancer therapeutics. Smoking and alcoholism are risk factors and pancreatic cancer patients often undergo nicotine replacement therapy (NRT) and treatment for alcohol dependence. Based on our report that low dose nicotine within the range of NRT causes gemcitabine resistance in pancreatic cancer, our current study has tested the hypothesis that GABA or the selective GABA-B-R agonist baclofen used to treat alcohol dependence reverse nicotine-induced gemcitabine resistance in pancreatic cancer. Methods Using mouse xenografts from the gemcitabine--sensitive pancreatic cancer cell line BXPC-3, we tested the effects of GABA and baclofen on nicotine-induced gemcitabine resistance. The levels of cAMP, p-SRC, p-ERK, p-AKT, p-CREB and cleaved caspase-3 in xenograft tissues were determined by ELISA assays. Expression of the two GABA-B receptors, metalloproteinase-2 and 9 and EGR-1 in xenograft tissues was monitored by Western blotting. Mechanistic studies were conducted in vitro, using cell lines BXPC-3 and PANC-1 and included analyses of cAMP production by ELISA assay and Western blots to determine protein expression of GABA-B receptors, metalloproteinase-2 and 9 and EGR-1. Results Our data show that GABA was as effective as gemcitabine and significantly reversed gemcitabine resistance induced by low dose nicotine in xenografts whereas baclofen did not. These effects of GABA were accompanied by decreases in cAMP, p-CREB, p-AKT, p-Src, p-ERK metalloproteinases-9 and -2 and EGR-1 and increases in cleaved caspase-3 in xenografts whereas baclofen had the opposite effects. In vitro exposure of cells to single doses or seven days of nicotine induced the protein expression of MMP-2, MMP-9 and EGR-1 and these responses were blocked by GABA. Baclofen downregulated the protein expression of GABA-B-Rs in xenograft tissues and in cells exposed to baclofen for seven days in vitro. This response was accompanied by inversed baclofen effects from inhibition of cAMP formation after single dose exposures to stimulation of cAMP formation in cells pretreated for seven days. Conclusions These findings suggest GABA as a promising single agent for the therapy of pancreatic cancer and to overcome nicotine-induced gemcitabine resistance whereas treatment with baclofen may increase gemcitabine resistance.
Collapse
|
19
|
Recombinant expression of different mutant K-ras gene in pancreatic cancer Bxpc-3 cells and its effects on chemotherapy sensitivity. SCIENCE CHINA-LIFE SCIENCES 2014; 57:1011-7. [PMID: 25216706 DOI: 10.1007/s11427-014-4724-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 07/24/2014] [Indexed: 01/08/2023]
Abstract
K-ras is a member of ras gene family which is involved in cell survival, proliferation and differentiation. When a mutation occurs in ras gene, the activation of Ras proteins may be prolonged to induce oncogenesis. However, the relationship between K-ras mutation and clinical outcomes in pancreatic cancer patients treated with chemotherapy agents is still under debate. In this study, we constructed five pAcGFP1-C3 plasmids for different types of K-ras gene (WT, G12V, G12R, G12D, and G13D) and stably transfected human pancreatic cancer Bxpc-3 cells with these genes. The wild type and mutant clones showed a comparable growth and expression of K-Ras-GFP fusion protein. The expression of some K-ras mutations resulted in a reduced sensitivity to gefitinib, 5-FU, docetaxel and gemcitabine, while showed no effects on erlotinib or cisplatin. Moreover, compared with the wild type clone, K-Ras downstream signals (phospho-Akt and/or phospho-Erk) were increased in K-ras mutant clones. Interestingly, different types of K-ras mutation had non-identical K-Ras downstream signal activities and drug responses. Our results are the first to reveal the relationship between different K-ras mutation and drug sensitivities of these anti-cancer drugs in pancreatic cancer cells in vitro.
Collapse
|
20
|
Abstract
This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and Cancer Center and Research Institute, University of California, Irvine, California 92782, USA
| |
Collapse
|
21
|
Schuller HM. Impact of neuro-psychological factors on smoking-associated lung cancer. Cancers (Basel) 2014; 6:580-94. [PMID: 24633083 PMCID: PMC3980616 DOI: 10.3390/cancers6010580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
Smoking has been extensively documented as a risk factor for all histological types of lung cancer and tobacco-specific nitrosamines and polycyclic aromatic hydrocarbons reproducibly cause lung cancer in laboratory rodents. However, the most common lung cancer, non-small cell lung cancer (NSCLC), frequently develops in never smokers and is particularly common in women and African Americans, suggesting that factors unrelated to smoking significantly impact this cancer. Recent experimental investigations in vitro and in animal models have shown that chronic psychological stress and the associated hyperactive signaling of stress neurotransmitters via β-adrenergic receptors significantly promote the growth and metastatic potential of NSCLC. These responses were caused by modulation in the expression and sensitization state of nicotinic acetylcholine receptors (nAChRs) that regulate the production of stress neurotransmitters and the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Similar changes in nAChR-mediated neurotransmitter production were identified as the cause of NSCLC stimulation in vitro and in xenograft models by chronic nicotine. Collectively, these data suggest that hyperactivity of the sympathetic branch of the autonomic nervous system caused by chronic psychological stress or chronic exposure to nicotinic agonists in cigarette smoke significantly contribute to the development and progression of NSCLC. A recent clinical study that reported improved survival outcomes with the incidental use of β-blockers among patients with NSCLC supports this interpretation.
Collapse
Affiliation(s)
- Hildegard M Schuller
- Experimental Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, 2407 River Drive, Knoxville, TN 37996, USA.
| |
Collapse
|