1
|
Liu J, Gui Y, Rao J, Sun J, Wang G, Ren Q, Qu N, Niu B, Chen Z, Sheng X, Wang Y, Zheng M, Li X. In silico off-target profiling for enhanced drug safety assessment. Acta Pharm Sin B 2024; 14:2927-2941. [PMID: 39027254 PMCID: PMC11252485 DOI: 10.1016/j.apsb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 07/20/2024] Open
Abstract
Ensuring drug safety in the early stages of drug development is crucial to avoid costly failures in subsequent phases. However, the economic burden associated with detecting drug off-targets and potential side effects through in vitro safety screening and animal testing is substantial. Drug off-target interactions, along with the adverse drug reactions they induce, are significant factors affecting drug safety. To assess the liability of candidate drugs, we developed an artificial intelligence model for the precise prediction of compound off-target interactions, leveraging multi-task graph neural networks. The outcomes of off-target predictions can serve as representations for compounds, enabling the differentiation of drugs under various ATC codes and the classification of compound toxicity. Furthermore, the predicted off-target profiles are employed in adverse drug reaction (ADR) enrichment analysis, facilitating the inference of potential ADRs for a drug. Using the withdrawn drug Pergolide as an example, we elucidate the mechanisms underlying ADRs at the target level, contributing to the exploration of the potential clinical relevance of newly predicted off-target interactions. Overall, our work facilitates the early assessment of compound safety/toxicity based on off-target identification, deduces potential ADRs of drugs, and ultimately promotes the secure development of drugs.
Collapse
Affiliation(s)
- Jin Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Yike Gui
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jingxin Rao
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Sun
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Ren
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Qu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buying Niu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyi Chen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 330106, China
| | - Xia Sheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yitian Wang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyue Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 330106, China
| | - Xutong Li
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu R, Guo L, Zhao Y, Wu D, Yu J, Liu P. Study on multi-target effects of the novel HDAC6 inhibitor W5 on Aβ/Cu 2+-induced Alzheimer's disease model of rats. Brain Res 2024; 1832:148847. [PMID: 38442843 DOI: 10.1016/j.brainres.2024.148847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Histone deacetylase 6 (HDAC6) is a key therapeutic target in neurodegenerative diseases such as Alzheimer's disease (AD), which has been demonstrated to play an essential role in memory function and microtubule-associated tau physiology. In this study, W5 was used to treat AD model rats induced by Aβ/Cu2+ to study the improving effect of W5 on learning and memory impairment in AD rats and its related mechanism, to provide the basis for the subsequent development of W5 as an anti-AD drug. Results showed that W5 could decrease the expression of Aβ, Tau, and p-Tau proteins in the hippocampus of AD rats to inhibit the formation of senile plaques and neurofibrillary tangles, down-regulate the expression of Bax mRNA and Caspase-3 mRNA, and up-regulate the expression of Bcl-2 mRNA to reduce the apoptosis of neuron cells, reverse the expression of TNF-α, IL-1β and IL-6 mRNA to regulate neuroinflammatory response in AD rat brain. W5 also could regulate the oxidative stress state of AD rats, and balance the neurotransmitter disorder in AD rats' brain tissue. Overall, W5 could recover the morphology of hippocampal neurons and improve the learning and memory dysfunction in AD rats by regulating multiple targets in AD rats, providing a promising therapeutic avenue for the treatment of AD.
Collapse
Affiliation(s)
- Ruihua Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linli Guo
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Zhao
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dan Wu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiasi Yu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Liu
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Zhu R, Jiang G, Tang W, Zhao X, Chen F, Zhang X, Ye N. Aporphines: A privileged scaffold in CNS drug discovery. Eur J Med Chem 2023; 256:115414. [PMID: 37172474 DOI: 10.1016/j.ejmech.2023.115414] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Aporphine alkaloids embedded in 4H-dibenzo[de,g]quinoline four-ring structures belong to one of the largest subclasses of isoquinoline alkaloids. Aporphine is a privileged scaffold in the field of organic synthesis and medicinal chemistry for the discovery of new therapeutic agents for central nervous system (CNS) diseases, cancer, metabolic syndrome, and other diseases. In the past few decades, aporphine has attracted continuing interest to be widely used to develop selective or multitarget directed ligands (MTDLs) targeting the CNS (e.g., dopamine D1/2/5, serotonin 5-HT1A/2A/2C and 5-HT7, adrenergic α/β receptors, and cholinesterase enzymes), thereby serving as valuable pharmacological probes for mechanism studies or as potential leads for CNS drug discovery. The aims of the present review are to highlight the diverse CNS activities of aporphines, discuss their SAR, and briefly summarize general synthetic routes, which will pave the way for the design and development of new aporphine derivatives as promising CNS active drugs in the future.
Collapse
Affiliation(s)
- Rongfeng Zhu
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guangqian Jiang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Wanyu Tang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaobao Zhao
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Chen
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoya Zhang
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Na Ye
- Department of Medicinal Chemistry, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
4
|
Yang J, Yang L, Gu J, Shuai L, Wang H, Ouyang Q, Li YL, Liu H, Gong L. Nickel-Catalyzed Reductive Cascade Arylalkylation of Alkenes with Alkylpyridinium Salts. Org Lett 2022; 24:2376-2380. [PMID: 35319219 DOI: 10.1021/acs.orglett.2c00599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe a nickel-catalyzed reductive deaminative arylalkylation of tethered alkenes with pyridinium salts as C(sp3) electrophiles. This two-component dicarbofunctionalization reaction enables the efficient synthesis of various benzene-fused cyclic compounds bearing all-carbon quaternary centers. The approach presented in this paper proceeds under mild conditions, tolerating a wide variety of functional groups and heterocycles. It has been used to functionalize complicated molecules at a late stage.
Collapse
Affiliation(s)
- Jun Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lina Yang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Jing Gu
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Li Shuai
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Hui Wang
- School of Biological & Chemical Engineering, Chongqing University of Education, Nanan, Chongqing 400065, China
| | - Qin Ouyang
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Haibin Liu
- National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Dong'E E-Jiao Co. Ltd., Dong'E 252201, China
| | - Liang Gong
- College of Pharmacy, Army Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
5
|
Sourbron J, Lagae L. Serotonin receptors in epilepsy: novel treatment targets? Epilepsia Open 2022; 7:231-246. [PMID: 35075810 PMCID: PMC9159250 DOI: 10.1002/epi4.12580] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 11/24/2022] Open
Abstract
Despite the availability of over 30 antiseizure medications (ASMs), there is no “one size fits it all,” so there is a continuing search for novel ASMs. There are divergent data demonstrating that modulation of distinct serotonin (5‐hydroxytryptamine, 5‐HT) receptors subtypes could be beneficial in the treatment of epilepsy and its comorbidities, whereas only a few ASM, such as fenfluramine (FA), act via 5‐HT. There are 14 different 5‐HT receptor subtypes, and most epilepsy studies focus on one or a few of these subtypes, using different animal models and different ligands. We reviewed the available evidence of each 5‐HT receptor subtype using MEDLINE up to July 2021. Our search included medical subject heading (MeSH) and free terms of each “5‐HT subtype” separately and its relation to “epilepsy or seizures.” Most research underlines the antiseizure activity of 5‐HT1A,1D,2A,2C,3 agonism and 5‐HT6 antagonism. Consistently, FA, which has recently been approved for the treatment of seizures in Dravet syndrome, is an agonist of 5‐HT1D,2A,2C receptors. Even though each study focused on a distinct seizure/epilepsy type and generalization of different findings could lead to false interpretations, we believe that the available preclinical and clinical studies emphasize the role of serotonergic modulation, especially stimulation, as a promising avenue in epilepsy treatment.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Design and synthesis of new potent 5-HT 7 receptor ligands as a candidate for the treatment of central nervous system diseases. Eur J Med Chem 2022; 227:113931. [PMID: 34710746 DOI: 10.1016/j.ejmech.2021.113931] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/03/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022]
Abstract
Owing to their multifunctional pharmacological profiles (including dual 5-HT1A/5-HT7 action), arylpiperazine derivatives are widely used for treating central nervous system diseases including the depression or neuropathic pain. Herein we describe the design, synthesis and evaluation of biological activity of novel 5-HT7 ligands derived of 2,4,6-triamino-1,3,5-triazine. The studied compounds showed affinity and high selectively towards 5-HT7 receptor with the two most active compounds 34 (Ki = 61 nM), 22 (Ki = 109 nM) showing good metabolic stability and moderate affinity to CYP3A4 isoenzyme. Compound 22 had high hepatotoxicity at a concentration below 50 μM, while compound 34 showed low hepatotoxicity even at a concentration above 50 μM.
Collapse
|
7
|
John Jayakumar JAK, Panicker MM. The roles of serotonin in cell adhesion and migration, and cytoskeletal remodeling. Cell Adh Migr 2021; 15:261-271. [PMID: 34494935 PMCID: PMC8437456 DOI: 10.1080/19336918.2021.1963574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 07/04/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Serotonin is well known as a neurotransmitter. Its roles in neuronal processes such as learning, memory or cognition are well established, and also in disorders such as depression, schizophrenia, bipolar disorder, and dementia. However, its effects on adhesion and cytoskeletal remodelling which are strongly affected by 5-HT receptors, are not as well studied with some exceptions for e.g. platelet aggregation. Neuronal function is strongly dependent on cell-cell contacts and adhesion-related processes. Therefore the role played by serotonin in psychiatric illness, as well as in the positive and negative effects of neuropsychiatric drugs through cell-related adhesion can be of great significance. In this review, we explore the role of serotonin in some of these aspects based on recent findings.
Collapse
Affiliation(s)
- Joe Anand Kumar John Jayakumar
- Manipal Academy of Higher Education, Manipal, India
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Mitradas M. Panicker
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
- Present Address - Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, USA
| |
Collapse
|
8
|
Karki A, Namballa HK, Alberts I, Harding WW. Structural manipulation of aporphines via C10 nitrogenation leads to the identification of new 5-HT 7AR ligands. Bioorg Med Chem 2020; 28:115578. [PMID: 32631561 DOI: 10.1016/j.bmc.2020.115578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/16/2022]
Abstract
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.
Collapse
Affiliation(s)
- Anupam Karki
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Program in Biochemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA
| | - Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| | - Ian Alberts
- LaGuardia Community College, Department of Chemistry, 31-10 Thompson Avenue, LIC, NY 11104, USA
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA; Program in Biochemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA; Program in Chemistry, CUNY Graduate Center, 365 5(th) Avenue, New York, NY 10016, USA.
| |
Collapse
|
9
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|