1
|
Zafar S, Sayed E, Rana SJ, Rasekh M, Onaiwu E, Nazari K, Kucuk I, Fatouros DG, Arshad MS, Ahmad Z. Particulate atomisation design methods for the development and engineering of advanced drug delivery systems: A review. Int J Pharm 2024; 666:124771. [PMID: 39341385 DOI: 10.1016/j.ijpharm.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The role and opportunities presented by particulate technologies (due to novel processing methods and advanced materials) have multiplied over the last few decades, leading to promising and ideal properties for drug delivery. For example, the dissolution and bioavailability of poorly soluble drug substances and achieving site- specific drug delivery with a desired release profile are crucial aspects of forming (to some extent) state-of-the-art platforms. Atomisation techniques are intended to achieve efficient control over particle size, improved processing time, improved drug loading efficiency, and the opportunity to encapsulate a broad range of viable yet sensitive therapeutic moieties. Particulate engineering through atomization is accomplished by employing various mechanisms such as air, no air, centrifugal, electrohydrodynamic, acoustic, and supercritical fluid driven processes. These driving forces overcome capillary stresses (e.g., liquid viscosity, surface tension) and transform formulation media (liquid) into fine droplets. More frequently, solvent removal, multiple methods are included to reduce the final size distribution. Nevertheless, a thorough understanding of fluid mechanics, thermodynamics, heat, and mass transfer is imperative to appreciate and predict outputs in real time. More so, in recent years, several advancements have been introduced to improve such processes through complex particle design coupled with quality by-design (QbD) yielding optimal particulate geometry in a predictable manner. Despite these valuable and numerous advancements, atomisation techniques face difficulty scaling up from laboratory scales to manufacturing industry scales. This review details the various atomisation techniques (from design to mechanism) along with examples of drug delivery systems developed. In addition, future perspectives and bottlenecks are provided while highlighting current and selected seminal developments in the field.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Elshaimaa Sayed
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, United Kingdom
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkiye
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
2
|
Slomkowski S, Basinska T, Gadzinowski M, Mickiewicz D. Polyesters and Polyester Nano- and Microcarriers for Drug Delivery. Polymers (Basel) 2024; 16:2503. [PMID: 39274136 PMCID: PMC11397835 DOI: 10.3390/polym16172503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the patient's body. To date, inorganic nanoparticles, solid lipids, micelles and micellar aggregates, liposomes, polymeric micelles, and other polymer assemblies were tested as drug carriers. Specifically, using polymers creates a variety of options to prepare nanocarriers tailored to the chosen needs. Among polymers, aliphatic polyesters are a particularly important group. The review discusses controlled synthesis of poly(β-butyrolactone)s, polylactides, polyglycolide, poly(ε-caprolactone), and copolymers containing polymacrolactone units with double bonds suitable for preparation of functionalized nanoparticles. Discussed are syntheses of aliphatic polymers with controlled molar masses ranging from a few thousand to 106 and, in the case of polyesters with chiral centers in the chains, with controlled microstructure. The review presents also a collection of methods useful for the preparation of the drug-loaded nanocarriers: classical, developed and mastered more recently (e.g., nanoprecipitation), and forgotten but still with great potential (by the direct synthesis of the drug-loaded nanoparticles in the process comprising monomer and drug). The article describes also in-vitro and model in-vivo studies for the brain-targeted drugs based on polyester-containing nanocarriers and presents a brief update on the clinical studies and the polyester nanocarrier formulation approved for application in the clinics in South Korea for the treatment of breast, lung, and ovarian cancers.
Collapse
Affiliation(s)
- Stanislaw Slomkowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Teresa Basinska
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mariusz Gadzinowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Damian Mickiewicz
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
3
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
4
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
5
|
Rano S, Bhaduri A, Singh M. Nanoparticle-based platforms for targeted drug delivery to the pulmonary system as therapeutics to curb cystic fibrosis: A review. J Microbiol Methods 2024; 217-218:106876. [PMID: 38135160 DOI: 10.1016/j.mimet.2023.106876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Cystic fibrosis (CF) is a genetic disorder of the respiratory system caused by mutation of the Cystic Fibrosis Trans-Membrane Conductance Regulator (CFTR) gene that affects a huge number of people worldwide. It results in difficulty breathing due to a large accumulation of mucus in the respiratory tract, resulting in serious bacterial infections, and subsequent death. Traditional drug-based treatments face hindered penetration at the site of action due to the thick mucus layer. Nanotechnology offers possibilities for developing advanced and effective treatment platforms by focusing on drugs that can penetrate the dense mucus layer, fighting against the underlying bacterial infections, and targeting the genetic cause of the disease. In this review, current nanoparticle-mediated drug delivery platforms for CF, challenges in therapeutics, and future prospects have been highlighted. The effectiveness of the different types of nano-based systems conjugated with various drugs to combat the symptoms and the challenges of treating CF are brought into focus. The toxic effects of these nano-medicines and the various factors that are responsible for their effectiveness are also highlighted.
Collapse
Affiliation(s)
- Sujoy Rano
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; In-vitro Biology, Aragen Life Sciences, Hyderabad 500076, Telangana, India
| | - Ahana Bhaduri
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, HIT Campus, Purba Medinipur, Haldia 721657, West Bengal, India; Department of Botany, Kabi Nazrul College, Murarai, Birbhum 731219 (West Bengal), India.
| |
Collapse
|
6
|
Song B, Chen Q, Tong C, Li Y, Li S, Shen X, Niu W, Hao M, Ma Y, Wang Y. Research Progress on Immunomodulatory Effects of Poly (Lactic-co- Glycolic Acid) Nanoparticles Loaded with Traditional Chinese Medicine Monomers. Curr Drug Deliv 2024; 21:1050-1061. [PMID: 37818569 DOI: 10.2174/0115672018255493230922101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 10/12/2023]
Abstract
Immunomodulatory mechanisms are indispensable and key factors in maintaining the balance of the environment in humans. When the immune function of the immune system is impaired, autoimmune diseases occur. Excessive body fatigue, natural aging of the human body, malnutrition, genetic factors and other reasons cause low immune function, due to which the body is prone to being infected by bacteria or cancer. Clinically, the existing therapeutic drugs still have problems such as high toxicity, long treatment cycle, drug resistance and high price, so we still need to explore and develop a high efficiency and low toxicity drug. Poly(lactic-co-glycolic acid) (PLGA) refers to a nontoxic polymer compound that exhibits excellent biocompatibility. Traditional Chinese medicine (TCM) monomers come from natural plants, and have the characteristics of high efficiency and low toxicity. Applying PLGA to TCM monomers can make up for the defects of traditional dosage forms, improve bioavailability, reduce the frequency and dosage of drug use, and reduce toxicity and side effects, thus having the characteristics of sustained release and targeting. Accordingly, PLGA nanoparticles loaded with TCM monomers have been the focus of development. The previous research on drug loading advantages, preparation methods, and immune regulation of TCM PLGA nanoparticles is summarized in the following sections.
Collapse
Affiliation(s)
- Bocui Song
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Qian Chen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Chunyu Tong
- Department of Biological Science, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yuqi Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Shuang Li
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Xue Shen
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Wenqi Niu
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Meihan Hao
- College of Life Science & Technology, Heilongjiang Bayi Agricultura University, Daqing 163319, China
| | - Yunfei Ma
- Department of Pharmaceutical Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanhong Wang
- Department of Biological Engineering, College of Life Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
7
|
Alhajj N, Yahya MFZR, O'Reilly NJ, Cathcart H. Development and characterization of a spray-dried inhalable ternary combination for the treatment of Pseudomonas aeruginosa biofilm infection in cystic fibrosis. Eur J Pharm Sci 2024; 192:106654. [PMID: 38013123 DOI: 10.1016/j.ejps.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Cystic fibrosis (CF) is an inherited lung disease characterised by the accumulation of thick layers of dried mucus in the lungs which serve as a nidus for chronic infection. Pseudomonas aeruginosa is the predominant cause of chronic lung infection in cystic fibrosis. The dense mucus coupled with biofilm formation hinder antibiotic penetration and prevent them from reaching their target. Mucoactive agents are recommended in the treatment of CF in combination with antibiotics. In spite of the extensive research in developing novel drug combinations for the treatment of lung infection in CF, to our knowledge, there is no study that combines antibiotic, antibiofilm and mucoactive agent in a single inhaled dry powder formulation. In the present study, we investigate the possibility of adding a mucoactive agent to our previously developed ciprofloxacinquercetin (antibiotic-antibiofilm) dry powder for inhalation. Three mucoactive agents, namely mannitol (MAN), N-acetyl-L-cysteine (NAC) and ambroxol hydrochloride (AMB), were investigated for this purpose. The ternary combinations were prepared via spray drying without the addition of excipients. All ternary combinations conserved or improved the antibacterial and biofilm inhibition activities of ciprofloxacin against P. aeruginosa (ATCC 10145). The addition of AMB resulted in an amorphous ternary combination (SD-CQA) with superior physical stability as indicated by DSC and nonambient XRPD. Furthermore, SD-CQA displayed better in vitro aerosolization performance (ED ∼ 71 %; FPF ∼ 49 %) compared to formulations containing MAN and NAC (ED ∼ 64 % and 44 %; FPF ∼ 44 % and 29 %, respectively). In conclusion, a ternary drug combination powder with suitable aerosolization, physical stability and antibacterial/antibiofilm properties was prepared by a single spray drying step.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland.
| | | | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91 K0EK, Ireland
| |
Collapse
|
8
|
Meziu E, Shehu K, Koch M, Schneider M, Kraegeloh A. Impact of mucus modulation by N-acetylcysteine on nanoparticle toxicity. Int J Pharm X 2023; 6:100212. [PMID: 37771516 PMCID: PMC10522980 DOI: 10.1016/j.ijpx.2023.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/30/2023] Open
Abstract
Human respiratory mucus is a biological hydrogel that forms a protective barrier for the underlying epithelium. Modulation of the mucus layer has been employed as a strategy to enhance transmucosal drug carrier transport. However, a drawback of this strategy is a potential reduction of the mucus barrier properties, in particular in situations with an increased exposure to particles. In this study, we investigated the impact of mucus modulation on its protective role. In vitro mucus was produced by Calu-3 cells, cultivated at the air-liquid interface for 21 days and used for further testing as formed on top of the cells. Analysis of confocal 3D imaging data revealed that after 21 days Calu-3 cells secrete a mucus layer with a thickness of 24 ± 6 μm. Mucus appeared to restrict penetration of 500 nm carboxyl-modified polystyrene particles to the upper 5-10 μm of the layer. Furthermore, a mucus modulation protocol using aerosolized N-acetylcysteine (NAC) was developed. This treatment enhanced the penetration of particles through the mucus down to deeper layers by means of the mucolytic action of NAC. These findings were supported by cytotoxicity data, indicating that intact mucus protects the underlying epithelium from particle-induced effects on membrane integrity. The impact of NAC treatment on the protective properties of mucus was probed by using 50 and 100 nm amine-modified and 50 nm carboxyl-modified polystyrene nanoparticles, respectively. Cytotoxicity was only induced by the amine-modified particles in combination with NAC treatment, implying a reduced protective function of modulated mucus. Overall, our data emphasize the importance of integrating an assessment of the protective function of mucus into the development of therapy approaches involving mucus modulation.
Collapse
Affiliation(s)
- Enkeleda Meziu
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Kristela Shehu
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Marcus Koch
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics & Pharmaceutical Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Annette Kraegeloh
- INM – Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
| |
Collapse
|
9
|
Muhammad W, Zhang Y, Zhu J, Xie J, Wang S, Wang R, Feng B, Zhou J, Chen W, Xu Y, Yao Q, Yu Y, Cao H, Gao C. Co-delivery of azithromycin and ibuprofen by ROS-responsive polymer nanoparticles synergistically attenuates the acute lung injury. BIOMATERIALS ADVANCES 2023; 154:213621. [PMID: 37714042 DOI: 10.1016/j.bioadv.2023.213621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Bacterial infection causes lung inflammation and recruitment of several inflammatory factors that may result in acute lung injury (ALI). During bacterial infection, reactive oxygen species (ROS) and other signaling pathways are activated, which intensify inflammation and increase ALI-related mortality and morbidity. To improve the ALI therapy outcome, it is imperative clinically to manage bacterial infection and excessive inflammation simultaneously. Herein, a synergistic nanoplatform (AZI+IBF@NPs) constituted of ROS-responsive polymers (PFTU), and antibiotic (azithromycin, AZI) and anti-inflammatory drug (ibuprofen, IBF) was developed to enable an antioxidative effect, eliminate bacteria, and modulate the inflammatory milieu in ALI. The ROS-responsive NPs (PFTU NPs) loaded with dual-drugs (AZI and IBF) scavenged excessive ROS efficiently both in vitro and in vivo. The AZI+IBF@NPs eradicated Pseudomonas aeruginosa (PA) bacterial strain successfully. To imitate the entry of bacterial-derived compounds in body, a lipopolysaccharide (LPS) model was adopted. The administration of AZI+IBF@NPs via the tail veins dramatically reduced the number of neutrophils, significantly reduced cell apoptosis and total protein concentration in vivo. Furthermore, nucleotide oligomerization domain-like receptor thermal protein domain associated protein 3 (NLRP3) and Interleukin-1 beta (IL-1β) expressions were most effectively inhibited by the AZI+IBF@NPs. These findings present a novel nanoplatform for the effective treatment of ALI.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yiru Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Ruo Wang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Wenyi Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yanping Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China; Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
10
|
Yan X, Sha X. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa. Pharmaceutics 2023; 15:2457. [PMID: 37896217 PMCID: PMC10610050 DOI: 10.3390/pharmaceutics15102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Airway mucus is a complex viscoelastic gel composed mainly of water, glycoproteins, lipids, enzymes, minerals, etc. Among them, glycoproteins are the main factors determining mucus's gel-like rheology. Airway mucus forms a protective barrier by secreting mucin, which represents a barrier for absorption, especially for more lipophilic drugs. It rapidly removes drugs from the airway through the physiological mucus clearance mechanism so drugs cannot remain in the lungs or reach the airway epithelial tissue for a long time. Significant progress has been made in enhancing drug lung deposition recently, but strategies are still needed to help drugs break through the lung mucosal barrier. Based on the physiopathological mechanisms of airway mucus, this paper reviews and summarizes strategies to enhance drug penetration and retention in the airway mucosa mediated by nano-delivery systems, including mucosal permeation systems, mucosal adhesion systems, and enzyme-modified delivery systems. On this basis, the potential and challenges of nano-delivery systems for improving airway mucus clearance are revealed. New ideas and approaches are provided for designing novel nano-delivery systems that effectively improve drug retention and penetration in the airway mucus layer.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
11
|
Knap K, Reczyńska-Kolman K, Kwiecień K, Niewolik D, Płonka J, Ochońska D, Jeleń P, Mielczarek P, Kazek-Kęsik A, Jaszcz K, Brzychczy-Włoch M, Pamuła E. Poly(sebacic acid) microparticles loaded with azithromycin as potential pulmonary drug delivery system: Physicochemical properties, antibacterial behavior, and cytocompatibility studies. BIOMATERIALS ADVANCES 2023; 153:213540. [PMID: 37429048 DOI: 10.1016/j.bioadv.2023.213540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Recurrent bacterial infections are a common cause of death for patients with cystic fibrosis and chronic obstructive pulmonary disease. Herein, we present the development of the degradable poly(sebacic acid) (PSA) microparticles loaded with different concentrations of azithromycin (AZ) as a potential powder formulation to deliver AZ locally to the lungs. We characterized microparticle size, morphology, zeta potential, encapsulation efficiency, interaction PSA with AZ and degradation profile in phosphate buffered saline (PBS). The antibacterial properties were evaluated using the Kirby-Bauer method against Staphylococcus aureus. Potential cytotoxicity was evaluated in BEAS-2B and A549 lung epithelial cells by the resazurin reduction assay and live/dead staining. The results show that microparticles are spherical and their size, being in the range of 1-5 μm, should be optimal for pulmonary delivery. The AZ encapsulation efficiency is nearly 100 % for all types of microparticles. The microparticles degradation rate is relatively fast - after 24 h their mass decreased by around 50 %. The antibacterial test showed that released AZ was able to successfully inhibit bacteria growth. The cytotoxicity test showed that the safe concentration of both unloaded and AZ-loaded microparticles was equal to 50 μg/ml. Thus, appropriate physicochemical properties, controlled degradation and drug release, cytocompatibility, and antibacterial behavior showed that our microparticles may be promising for the local treatment of lung infections.
Collapse
Affiliation(s)
- Karolina Knap
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Reczyńska-Kolman
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Konrad Kwiecień
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Daria Niewolik
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Dorota Ochońska
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Piotr Jeleń
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Silicate Chemistry and Macromolecular Compounds, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Przemysław Mielczarek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Analytical Chemistry and Biochemistry, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Alicja Kazek-Kęsik
- Silesian University of Technology, Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, ul. Krzywoustego 6, Gliwice 44-100, Poland
| | - Katarzyna Jaszcz
- Silesian University of Technology, Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, ul. M. Strzody 9, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Microbiology, Department of Molecular Medical Microbiology, ul. Św. Anny 12, 31-121 Kraków, Poland
| | - Elżbieta Pamuła
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Kraków, Poland.
| |
Collapse
|
12
|
Parihar A, Prajapati BG, Paliwal H, Shukla M, Khunt D, Devrao Bahadure S, Dyawanapelly S, Junnuthula V. Advanced pulmonary drug delivery formulations for the treatment of cystic fibrosis. Drug Discov Today 2023; 28:103729. [PMID: 37532219 DOI: 10.1016/j.drudis.2023.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Cystic fibrosis (CF), a fatal genetic condition, causes thick, sticky mucus. It also causes pancreatic dysfunction, bacterial infection, and increased salt loss. Currently available treatments can improve the patient's quality of life. Drug delivery aided by nanotechnology has been explored to alter the pharmacokinetics and toxicity of drugs. In this short review, we aim to summarize various conventional formulations and highlight advanced formulations delivered via the pulmonary route for the treatment of CF. There is considerable interest in advanced drug delivery formulations addressing the various challenges posed by CF. Despite their potential to be translated for clinical use, we anticipate that a significant amount of effort may still be required for translation to the clinic.
Collapse
Affiliation(s)
- Akshay Parihar
- Faculty of Pharmaceutical Sciences, The ICFAI University, Baddi, Himachal Pradesh, India
| | - Bhupendra G Prajapati
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India.
| | - Himanshu Paliwal
- Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Maheka Shukla
- Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, Gujarat, India
| | - Dignesh Khunt
- Graduate School of Pharmacy, Gujarat Technological University, Gujarat, India
| | - Sumedh Devrao Bahadure
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| | | |
Collapse
|
13
|
de Jesús Martín-Camacho U, Rodríguez-Barajas N, Alberto Sánchez-Burgos J, Pérez-Larios A. Weibull β value for the discernment of drug release mechanism of PLGA particles. Int J Pharm 2023; 640:123017. [PMID: 37149112 DOI: 10.1016/j.ijpharm.2023.123017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Mathematical models are used to characterize and optimize drug release in drug delivery systems (DDS). One of the most widely used DDS is the poly(lactic-co-glycolic acid) (PLGA)-based polymeric matrix owing to its biodegradability, biocompatibility, and easy manipulation of its properties through the manipulation of synthesis processes. Over the years, the Korsmeyer-Peppas model has been the most widely used model for characterizing the release profiles of PLGA DDS. However, owing to the limitations of the Korsmeyer-Peppas model, the Weibull model has emerged as an alternative for the characterization of the release profiles of PLGA polymeric matrices. The purpose of this study was to establish a correlation between the n and β parameters of the Korsmeyer-Peppas and Weibull models and to use the Weibull model to discern the drug release mechanism. A total of 451 datasets describing the overtime drug release of PLGA-based formulations from 173 scientific articles were fitted to both models. The Korsmeyer-Peppas model had a mean Akaike Information Criteria (AIC) value of 54.52 and an n value of 0.42, while the Weibull model had a mean AIC of 51.99 and a β value of 0.55, and by using reduced major axis regression values, a high correlation was found between the n and β values. These results demonstrate the ability of the Weibull model to characterize the release profiles of PLGA-based matrices and the usefulness of the β parameter for determining the drug release mechanism.
Collapse
Affiliation(s)
- Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | - Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600
| | | | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jal., México, 47600.
| |
Collapse
|
14
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
15
|
Electrosprayed trilayer poly (d,l-lactide-co-glycolide) nanoparticles for the controlled co-delivery of a SGLT2 inhibitor and a thiazide-like diuretic. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
16
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
17
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
18
|
Quispe C, Herrera-Bravo J, Khan K, Javed Z, Semwal P, Painuli S, Kamiloglu S, Martorell M, Calina D, Sharifi-Rad J. Therapeutic applications of curcumin nanomedicine formulations in cystic fibrosis. Prog Biomater 2022; 11:321-329. [PMID: 35904711 DOI: 10.1007/s40204-022-00198-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/17/2022] [Indexed: 12/12/2022] Open
Abstract
Medicinal applications of turmeric-derived curcumin have been known to mankind for long ages. Its potential in managing "cystic fibrosis" has also been evaluated. This autosomal recessive genetic disease is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) which involves an impaired secretion of chloride ions and leads to hypersecretion of thick and sticky mucus and serious complications including airway obstruction, chronic lung infection, and inflammatory reactions. This narrative review aims to highlight the available evidence for the efficacy of curcumin nanoformulations in its potential treatment of cystic fibrosis. Recent research has shown that curcumin acts on the localized mutant CFTR ion channel at the plasma membrane. Preclinical studies have also shown that curcumin nanoformulations have promising effects in the treatment of cystic fibrosis. In this context, the purpose of this narrative review is to highlight the general bioactivity of curcumin, the types of formulations and related studies, thus opening new therapeutic perspectives for CF.
Collapse
Affiliation(s)
- Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Bogotá, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Sector H-12, Islamabad, 44000, Pakistan
| | - Zeeshan Javed
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, India.,Uttarakhand State Council for Science and Technology, Dehradun, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, India
| | - Senem Kamiloglu
- Science and Technology Application and Research Center (BITUAM), Bursa Uludag University, 16059, Gorukle, Bursa, Turkey
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386, Concepción, Chile.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
19
|
Dodda JM, Remiš T, Rotimi S, Yeh YC. Progress in the drug encapsulation of poly(lactic- co-glycolic acid) and folate-decorated poly(ethylene glycol)-poly(lactic- co-glycolic acid) conjugates for selective cancer treatment. J Mater Chem B 2022; 10:4127-4141. [PMID: 35593381 DOI: 10.1039/d2tb00469k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a US Food and Drug Administration (FDA)-approved polymer used in humans in the forms of resorbable sutures, drug carriers, and bone regeneration materials. Recently, PLGA-based conjugates have been extensively investigated for cancer, which is the second leading cause of death globally. This article presents an account of the literature on PLGA-based conjugates, focusing on their chemistries, biological activity, and functions as targeted drug carriers or sustained drug controllers for common cancers (e.g., breast, prostate, and lung cancers). The preparation and drug encapsulation of PLGA nanoparticles and folate-decorated poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) conjugates are discussed, along with several representative examples. Particularly, the reactions used for preparing drug-conjugated PLGA and FA-PEG-PLGA are emphasized, with the associated chemistries involved in the formation of structures and their biocompatibility with internal organs. This review provides a deeper understanding of the constituents and interactions of PLGA-conjugated materials to ensure successful conjugation in PLGA material design and the subsequent biomedical applications.
Collapse
Affiliation(s)
- Jagan Mohan Dodda
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Tomáš Remiš
- New Technologies-Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| | - Sadiku Rotimi
- Institute of NanoEngineering Research (INER) and Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Staatsartillerie Rd, 0183, Pretoria West Campus, South Africa
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
The Promise of Nanotechnology in Personalized Medicine. J Pers Med 2022; 12:jpm12050673. [PMID: 35629095 PMCID: PMC9142986 DOI: 10.3390/jpm12050673] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Both personalized medicine and nanomedicine are new to medical practice. Nanomedicine is an application of the advances of nanotechnology in medicine and is being integrated into diagnostic and therapeutic tools to manage an array of medical conditions. On the other hand, personalized medicine, which is also referred to as precision medicine, is a novel concept that aims to individualize/customize therapeutic management based on the personal attributes of the patient to overcome blanket treatment that is only efficient in a subset of patients, leaving others with either ineffective treatment or treatment that results in significant toxicity. Novel nanomedicines have been employed in the treatment of several diseases, which can be adapted to each patient-specific case according to their genetic profiles. In this review, we discuss both areas and the intersection between the two emerging scientific domains. The review focuses on the current situation in personalized medicine, the advantages that can be offered by nanomedicine to personalized medicine, and the application of nanoconstructs in the diagnosis of genetic variability that can identify the right drug for the right patient. Finally, we touch upon the challenges in both fields towards the translation of nano-personalized medicine.
Collapse
|
21
|
Puri V, Chaudhary KR, Singh A, Singh C. Inhalation potential of N-Acetylcysteine loaded PLGA nanoparticles for the management of tuberculosis: In vitro lung deposition and efficacy studies. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100084. [PMID: 35112077 PMCID: PMC8790477 DOI: 10.1016/j.crphar.2022.100084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/28/2022] Open
Abstract
Several studies have stated that mucus is a critical hurdle for drug delivery to the mucosal tissues. As a result, Polymeric nanoparticles that can overcome mucus barriers are gaining popularity for controlled drug delivery into intra-macrophages to attain high intracellular drug concentration. The present study was aimed to fabricate inhalable N-acetylcysteine (NAC) modified PLGA mucus penetrating particles using the double emulsion method (w/o/w) for target delivery to alveolar macrophages and minimize the dose-related adverse effects, efficiently encapsulate hydrophilic drug, sustain the release profile and prolong the retention time for the management of tuberculosis. Among the numerous formulations, the drug/polymer ratio of 1:10 with 0.50% PVA concentration and sonication time for 2 min s was chosen for further research. The formulated nanoparticles had a mean particle size of 307.50 ± 9.54 nm, PDI was 0.136 ± 0.02, zeta potential about -11.3 ± 0.4 mV, decent entrapment efficiency (55.46 ± 2.40%), drug loading (9.05 ± 0.22%), and excellent flowability. FTIR confirmed that NAC and PLGA were compatible with each other. SEM graphs elucidated that the nanoparticles were spherically shaped with a slightly rough surface whereas TEM analysis ensured the nanometer size nanoparticles and coating of lipid over NPs surface. PXRD spectrum concluded the transformation of the drug from crystalline to amorphous state in the formulation. In vitro release pattern was biphasic started with burst release (64.67 ± 1.53% within 12hrs) followed by sustained release over 48hrs thus enabling the prolonged replenishing of NAC. In vitro lung deposition study pronounced that coated NAC-PLGA-MPPs showed favorable results in terms of emitted dose (86.67 ± 2.52%), MMAD value (2.57 ± 0.12 μm), GSD value (1.55 ± 0.11 μm), and FPF of 62.67 ± 2.08% for the deposition and targeting the lungs. Finally, in vitro efficacy studies demonstrated that NAC-PLGA-MPPs presented more prominent antibacterial activity against MTB H37Rv strain as compared to NAC. Hence, PLGA based particles could be a better strategy to deliver the NAC for lung targeting.
Collapse
Affiliation(s)
- Vishal Puri
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| | - Kabi Raj Chaudhary
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road NH-95, Ghal Kalan, Moga, Punjab, 142001, India
| |
Collapse
|
22
|
Alhajj N, O'Reilly NJ, Cathcart H. Developing ciprofloxacin dry powder for inhalation: A story of challenges and rational design in the treatment of cystic fibrosis lung infection. Int J Pharm 2021; 613:121388. [PMID: 34923051 DOI: 10.1016/j.ijpharm.2021.121388] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is an inherited multisystem disease affecting the lung which leads to a progressive decline in lung function as a result of malfunctioning mucociliary clearance and subsequent chronic bacterial infections. Pseudomonas aeruginosa is the predominant cause of lung infection in CF patients and is associated with significant morbidity and mortality. Thus, antibiotic therapy remains the cornerstone of the treatment of CF. Pulmonary delivery of antibiotics for lung infections significantly reduces the required dose and the associated systemic side effects while improving therapeutic outcomes. Ciprofloxacin is one of the most widely used antibiotics against P. aeruginosa and the most effective fluoroquinolone. However, in spite of the substantial amount of research aimed at developing ciprofloxacin powder for inhalation, none of these formulations has been commercialized. Here, we present an integrated view of the diverse challenges associated with delivering ciprofloxacin dry particles to the lungs of CF patients and the rationales behind recent formulations of ciprofloxacin dry powder for inhalation. This review will discuss the challenges in developing ciprofloxacin powder for inhalation along with the physiological and pathophysiological challenges such as ciprofloxacin lung permeability, overproduction of viscous mucus and bacterial biofilms. The review will also discuss the current and emerging particle engineering approaches to overcoming these challenges. By doing so, we believe the review will help the reader to understand the current limitations in developing an inhalable ciprofloxacin powder and explore new opportunities of rational design strategies.
Collapse
Affiliation(s)
- Nasser Alhajj
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland.
| | - Niall J O'Reilly
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland; SSPC - The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Helen Cathcart
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
23
|
Cela-López JM, Camacho Roldán CJ, Gómez-Lizarraga G, Martínez V. A Natural Alternative Treatment for Urinary Tract Infections: Itxasol©, the Importance of the Formulation. Molecules 2021; 26:4564. [PMID: 34361723 PMCID: PMC8348710 DOI: 10.3390/molecules26154564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Genito-urinary tract infections have a high incidence in the general population, being more prevalent among women than men. These diseases are usually treated with antibiotics, but very frequently, they are recurrent and lead to the creation of resistance and are associated with increased morbidity and mortality. For this reason, it is necessary to develop new compounds for their treatment. In this work, our objective is to review the characteristics of the compounds of a new formulation called Itxasol© that is prescribed as an adjuvant for the treatment of UTIs and composed of β-arbutin, umbelliferon and n-acetyl cysteine. This formulation, based on biomimetic principles, makes Itxasol© a broad-spectrum antibiotic with bactericidal, bacteriostatic and antifungal properties that is capable of destroying the biofilm and stopping its formation. It also acts as an anti-inflammatory agent, without the adverse effects associated with the recurrent use of antibiotics that leads to renal nephrotoxicity and other side effects. All these characteristics make Itxasol© an ideal candidate for the treatment of UTIs since it behaves like an antibiotic and with better characteristics than other adjuvants, such as D-mannose and cranberry extracts.
Collapse
Affiliation(s)
| | | | | | - Vicente Martínez
- Achucarro Basque Center for Neuroscience, Campus of Biscay, University of the Basque Country/Euskal Herriko Unibertsitatea, Parque Científico de la UPV/EHU, Edificio Sede, Barrio Sarriena, 48940 Leioa, Spain; (J.M.C.-L.); (C.J.C.R.); (G.G.-L.)
| |
Collapse
|
24
|
Birk SE, Boisen A, Nielsen LH. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv Drug Deliv Rev 2021; 174:30-52. [PMID: 33845040 DOI: 10.1016/j.addr.2021.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/23/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022]
Abstract
Now-a-days healthcare systems face great challenges with antibiotic resistance and low efficacy of antibiotics when combating pathogenic bacteria and bacterial biofilms. Administration of an antibiotic in its free form is often ineffective due to lack of selectivity to the infectious site and breakdown of the antibiotic before it exerts its effect. Therefore, polymeric delivery systems, where the antibiotic is encapsulated into a formulation, have shown great promise, facilitating a high local drug concentration at the site of infection, a controlled drug release and less drug degradation. All this leads to improved therapeutic effects and fewer systemic side effects together with a lower risk of developing antibiotic resistance. Here, we review and provide a comprehensive overview of polymer-based nano- and microparticles as carriers for antimicrobial agents and their effect on eradicating bacterial biofilms. We have a main focus on polymeric particulates containing poly(lactic-co-glycolic acid), chitosan and polycaprolactone, but also strategies involving combinations of these polymers are included. Different production techniques are reviewed and important parameters for biofilm treatment are discussed such as drug loading capacity, control of drug release, influence of particle size and mobility in biofilms. Additionally, we reflect on other promising future strategies for combating biofilms such as lipid-polymer hybrid particles, enzymatic biofilm degradation, targeted/triggered antibiotic delivery and future alternatives to the conventional particles.
Collapse
|