1
|
Ballout J, Akiba Y, Kaunitz JD, Schwiertz A, Mazzuoli-Weber G, Breves G, Diener M. Alteration of the Microbiota with Vancomycin and High-Fibre Diet Affects Short-Chain Fatty Acid/Free Fatty Acid Receptor Signalling in Rat Caecum. J Nutr Biochem 2025:109881. [PMID: 39993646 DOI: 10.1016/j.jnutbio.2025.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Microbial short-chain fatty acids (SCFA) regulate intestinal functions via free-fatty acid (FFA) receptors type 2 and 3. Though the caecum is the most important fermentation chamber in many species, it is unknown whether this signalling system is modulated in dependence on the rate of fermentation within the lumen of this part of the large intestine. Thus, we asked the question whether alteration of the microbiota composition by antibiotic treatment or high-fibre diet affects the SCFA/FFA signalling using rat caecum as model system. SCFA concentrations and microbiota were analysed in caecal samples from untreated rats, following vancomycin treatment, or after feeding with a high-fibre diet. Oral and aboral caecal segments were harvested for Ussing chamber experiments paralleled by Ca2+ imaging experiments with Fura-2 loaded crypts, immunofluorescence, and qPCR. Vancomycin treatment reduced total SCFA concentrations in the caecal content, whereas the high-fibre diet increased the concentration of acetate, but reduced that of propionate and butyrate. Propionate-induced anion secretion was abolished in the vancomycin group, whereas it nearly doubled in the high-fibre group. These effects could not be explained by changes in the expression of FFA2 receptor or in Ca2+ signalling evoked by FFA2 receptor activation. Parallel changes in ion secretion evoked by carbachol suggest that alterations in cholinergic signalling might be responsible for the observed changes in epithelial ion transport. Additionally, mucosal mast cell and enterochromaffin cell density increased after vancomycin and high-fibre diet, respectively. This study emphasizes the complex interactions between the microbiota and the caecal epithelium focusing on SCFA/FFA signalling.
Collapse
Affiliation(s)
- Jasmin Ballout
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany.
| | - Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, 90073, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, 90073, USA; David Geffen School of Medicine at UCLA, Los Angeles, CA, 90024, USA
| | | | - Gemma Mazzuoli-Weber
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gerhard Breves
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Martin Diener
- Institute for Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Raya Tonetti F, Eguileor A, Llorente C. Goblet cells: guardians of gut immunity and their role in gastrointestinal diseases. EGASTROENTEROLOGY 2024; 2:e100098. [PMID: 39524932 PMCID: PMC11542612 DOI: 10.1136/egastro-2024-100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/08/2024] [Indexed: 11/16/2024]
Abstract
Goblet cells (GCs) are specialised guardians lining the intestine. They play a critical role in gut defence and immune regulation. GCs continuously secrete mucus creating a physical barrier to protect from pathogens while harbouring symbiotic gut bacteria adapted to live within the mucus. GCs also form specialised GC-associated passages in a dynamic and regulated manner to deliver luminal antigens to immune cells, promoting gut tolerance and preventing inflammation. The composition of gut bacteria directly influences GC function, highlighting the intricate interplay between these components of a healthy gut. Indeed, imbalances in the gut microbiome can disrupt GC function, contributing to various gastrointestinal diseases like colorectal cancer, inflammatory bowel disease, cystic fibrosis, pathogen infections and liver diseases. This review explores the interplay between GCs and the immune system. We delve into the underlying mechanisms by which GC dysfunction contributes to the development and progression of gastrointestinal diseases. Finally, we examine current and potential treatments that target GCs and represent promising avenues for further investigation.
Collapse
Affiliation(s)
- Fernanda Raya Tonetti
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cristina Llorente
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Fox EA, Serlin HK. Gaps in our understanding of how vagal afferents to the small intestinal mucosa detect luminal stimuli. Am J Physiol Regul Integr Comp Physiol 2024; 327:R173-R187. [PMID: 38860288 DOI: 10.1152/ajpregu.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024]
Abstract
Vagal afferents to the gastrointestinal tract are crucial for the regulation of food intake, signaling negative feedback that contributes to satiation and positive feedback that produces appetition and reward. Vagal afferents to the small intestinal mucosa contribute to this regulation by sensing luminal stimuli and reporting this information to the brain. These afferents respond to mechanical, chemical, thermal, pH, and osmolar stimuli, as well as to bacterial products and immunogens. Surprisingly, little is known about how these stimuli are transduced by vagal mucosal afferents or how their transduction is organized among these afferents' terminals. Furthermore, the effects of stimulus concentration ranges or physiological stimuli on vagal activity have not been examined for some of these stimuli. Also, detection of luminal stimuli has rarely been examined in rodents, which are most frequently used for studying small intestinal innervation. Here we review what is known about stimulus detection by vagal mucosal afferents and illustrate the complexity of this detection using nutrients as an exemplar. The accepted model proposes that nutrients bind to taste receptors on enteroendocrine cells (EECs), which excite them, causing the release of hormones that stimulate vagal mucosal afferents. However, evidence reviewed here suggests that although this model accounts for many aspects of vagal signaling about nutrients, it cannot account for all aspects. A major goal of this review is therefore to evaluate what is known about nutrient absorption and detection and, based on this evaluation, identify candidate mucosal cells and structures that could cooperate with EECs and vagal mucosal afferents in stimulus detection.
Collapse
Affiliation(s)
- Edward A Fox
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| | - Hannah K Serlin
- Behavioral Neurogenetics Laboratory, Department of Psychological Sciences, Purdue University, West Lafayette, Indiana, United States
| |
Collapse
|
4
|
Tamura Y, Takai Y, Miyamoto H, SeokHyun L, Liu Y, Qiu X, Kang LJ, Simasaki Y, Shindo C, Suda W, Ohno H, Oshima Y. Alteration of shoaling behavior and dysbiosis in the gut of medaka (Oryzias latipes) exposed to 2-μm polystyrene microplastics. CHEMOSPHERE 2024; 353:141643. [PMID: 38447901 DOI: 10.1016/j.chemosphere.2024.141643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/27/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
There is global concern that microplastics may harm aquatic life. Here, we examined the effects of fine polystyrene microplastics (PS-MPs, 2-μm diameter, 0.1 mg/L, 2.5 × 107 particles/L) on the behavior and the microbiome (linked to brain-gut interaction) of a fish model using medaka, Oryzias latipes. We found that shoaling behavior was reduced in PS-MP-exposed medaka compared with control fish during the exposure period, but it recovered during a depuration period. There was no difference in swimming speed between the PS-MP-exposed and control groups during the exposure period. Analysis of the dominant bacterial population (those comprising ≥1% of the total bacterial population) in the gut of fish showed that exposure to PS-MPs tended to increase the relative abundance of the phylum Fusobacteria and the genus Vibrio. Furthermore, structural-equation modeling of gut bacteria on the basis of machine-learning data estimated strong relationship involved in the reduction of the functional bacterial species of minority (<1% of the total bacterial population) such as the genera Muribaculum (an undefined role), Aquaspirillum (a candidate for nitrate metabolism and magnetotactics), and Clostridium and Phascolarctobacterium (potential producers of short-chain fatty acids, influencing behavior by affecting levels of neurotransmitters) as a group of gut bacteria in association with PS-MP exposure. Our results suggest that fish exposure to fine microplastics may cause dysbiosis and ultimately cause social behavior disorders linked to brain-gut interactions. This effect could be connected to reduction of fish fitness in the ecosystem and reduced fish survival.
Collapse
Affiliation(s)
- Yui Tamura
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Takai
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Hirokuni Miyamoto
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan; Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8501, Japan
| | - Lee SeokHyun
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yangqing Liu
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Lk Joon Kang
- School of Interdisciplinary Science and Innovation, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yohei Simasaki
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Chie Shindo
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Oshima
- Laboratory of Marine Environmental Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan; Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
OUP accepted manuscript. Nutr Rev 2022; 80:2002-2016. [DOI: 10.1093/nutrit/nuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|