1
|
Bindellini D, Michelet R, Aulin LBS, Melin J, Neumann U, Blankenstein O, Huisinga W, Whitaker MJ, Ross R, Kloft C. A quantitative modeling framework to understand the physiology of the hypothalamic-pituitary-adrenal axis and interaction with cortisol replacement therapy. J Pharmacokinet Pharmacodyn 2024; 51:809-824. [PMID: 38977635 PMCID: PMC11579075 DOI: 10.1007/s10928-024-09934-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2024] [Accepted: 06/30/2024] [Indexed: 07/10/2024]
Abstract
Congenital adrenal hyperplasia (CAH) is characterized by impaired adrenal cortisol production. Hydrocortisone (synthetic cortisol) is the drug-of-choice for cortisol replacement therapy, aiming to mimic physiological cortisol circadian rhythm. The hypothalamic-pituitary-adrenal (HPA) axis controls cortisol production through the pituitary adrenocorticotropic hormone (ACTH) and feedback mechanisms. The aim of this study was to quantify key mechanisms involved in the HPA axis activity regulation and their interaction with hydrocortisone therapy. Data from 30 healthy volunteers was leveraged: Endogenous ACTH and cortisol concentrations without any intervention as well as cortisol concentrations measured after dexamethasone suppression and single dose administration of (i) 0.5-10 mg hydrocortisone as granules, (ii) 20 mg hydrocortisone as granules and intravenous bolus. A stepwise model development workflow was used: A newly developed model for endogenous ACTH and cortisol was merged with a refined hydrocortisone pharmacokinetic model. The joint model was used to simulate ACTH and cortisol trajectories in CAH patients with varying degrees of enzyme deficiency, with or without hydrocortisone administration, and healthy individuals. Time-dependent ACTH-driven endogenous cortisol production and cortisol-mediated feedback inhibition of ACTH secretion processes were quantified and implemented in the model. Comparison of simulated ACTH and cortisol trajectories between CAH patients and healthy individuals showed the importance of administering hydrocortisone before morning ACTH secretion peak time to suppress ACTH overproduction observed in untreated CAH patients. The developed framework allowed to gain insights on the physiological mechanisms of the HPA axis regulation, its perturbations in CAH and interaction with hydrocortisone administration, paving the way towards cortisol replacement therapy optimization.
Collapse
Affiliation(s)
- Davide Bindellini
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training program PharMetrX, Berlin, Germany
| | - Robin Michelet
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
| | - Linda B S Aulin
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Johanna Melin
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training program PharMetrX, Berlin, Germany
| | - Uta Neumann
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Blankenstein
- Charité-Universitätsmedizin Berlin, Berlin, Germany
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Potsdam, Germany
| | | | | | - Charlotte Kloft
- Dept. of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
2
|
Whitaker MJ, Debono M, Ross RJ. Developing oral chronotherapy for cortisol replacement in congenital adrenal hyperplasia. Clin Endocrinol (Oxf) 2024; 101:311-317. [PMID: 37767979 DOI: 10.1111/cen.14976] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
The sun imposes a 24-h periodicity to life and circadian rhythms have evolved to maintain homoeostasis through the day/night cycle. In humans, there is a central clock that controls the sleep/wake cycle which is paralleled metabolically by a fast/feed cycle. The clock maintains homoeostasis by synchronising metabolism to the time of feeding. Loss of synchrony between the clock and hormonal rhythms results in loss of homoeostasis as evidenced by obesity, depression, and diabetes in people undertaking shift work. Cortisol has a distinct circadian rhythm; peaking on waking and low at sleep onset. Loss of this rhythm in adrenal insufficiency is associated with a poor quality of life and increased mortality. To replace the cortisol rhythm requires chronotherapy and for this you need to define the key parameters of the target rhythm, create a formulation to replicate that rhythm, and then prove clinical benefit. The physiology of hormones is more complex than that of nonnative drugs. Hormones are secreted with varied rhythms, bound to multiple cognate binding proteins, and actively transported and cleared through enzymatic pathways in multiple organs. We have examined the diurnal rhythm of cortisol in healthy volunteers, created physiologically-based pharmacokinetic models, and tested various oral delayed and sustained formulations of hydrocortisone (development name, Chronocort) in clinical trials. The outcome from this work was the manufacture of modified-release hydrocortisone hard capsules (tradename Efmody, Diurnal Ltd), that replicate the cortisol diurnal rhythm and improve the disease control of congenital adrenal hyperplasia the commonest hereditary form of adrenal insufficiency.
Collapse
Affiliation(s)
- Martin J Whitaker
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Miguel Debono
- Department of Endocrinology Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard J Ross
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Kaye AD, Khaled ME, Bembenick KN, Lacey J, Tandon A, Kelkar RA, Derouen AG, Ballaera C, Chandler D, Ahmadzadeh S, Shekoohi S, Varrassi G. Alkindi Sprinkle for Pediatric Patients With Primary Adrenocortical Insufficiency: A Narrative Review. Cureus 2024; 16:e56031. [PMID: 38606228 PMCID: PMC11007452 DOI: 10.7759/cureus.56031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024] Open
Abstract
Adrenocortical insufficiency, also known as adrenal insufficiency (AI), is an endocrine disorder characterized by inadequate production of adrenal hormones, including glucocorticoids and mineralocorticoids (MCs). The condition can be categorized as primary, secondary, or tertiary AI, depending on the location of the defect. Classical symptoms of AI include weakness, fatigue, abdominal pain, tachycardia, hypotension, electrolyte imbalances, and hyperpigmentation. In children, the most common cause of AI is classical congenital adrenal hyperplasia, which results from a deficiency in the 21-hydroxylase enzyme. The 21-hydroxylase enzyme produces all steroids, such as cortisol and aldosterone. AI management primarily involves hormone replacement therapy, typically with oral hydrocortisone and MC supplementation. However, the administration of hydrocortisone to pediatric patients presents challenges related to the lack of available dose-appropriate formulations. Historically, crushed or split adult tablets were used for the pediatric treatment of AI, although this poses an increased risk of under- or overtreatment. Inadequate dosing in the pediatric population can adversely affect growth, development, and metabolic health. Alkindi Sprinkle is a pediatric-specific hydrocortisone oral granule preparation that manages cortisol levels to help facilitate accurate therapeutic dosing. Alkindi offers several advantages, including accurate dosing, taste masking, and ease of administration. The present investigation describes AI, the management of AI, and the treatment of pediatric AI using Alkindi Sprinkle, including clinical efficacy.
Collapse
Affiliation(s)
- Alan D Kaye
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Munira E Khaled
- School of Medicine, Louisiana State University Health Sciences Center, Shreveport, USA
| | | | - John Lacey
- School of Medicine, Louisiana State University Health Sciences Center at New Orleans, New Orleans, USA
| | - Anamika Tandon
- School of Medicine, Louisiana State University Health Sciences Center at New Orleans, New Orleans, USA
| | - Rucha A Kelkar
- School of Medicine, Medical University of South Carolina, Charleston, USA
| | - Alyssa G Derouen
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Corrado Ballaera
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Debbie Chandler
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Shahab Ahmadzadeh
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | - Sahar Shekoohi
- Anesthesiology, Louisiana State University Health Sciences Center, Shreveport, USA
| | | |
Collapse
|
4
|
Zhang W, Zhang Q, Cao Z, Zheng L, Hu W. Physiologically Based Pharmacokinetic Modeling in Neonates: Current Status and Future Perspectives. Pharmaceutics 2023; 15:2765. [PMID: 38140105 PMCID: PMC10747965 DOI: 10.3390/pharmaceutics15122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Rational drug use in special populations is a clinical problem that doctors and pharma-cists must consider seriously. Neonates are the most physiologically immature and vulnerable to drug dosing. There is a pronounced difference in the anatomical and physiological profiles be-tween neonates and older people, affecting the absorption, distribution, metabolism, and excretion of drugs in vivo, ultimately leading to changes in drug concentration. Thus, dose adjustments in neonates are necessary to achieve adequate therapeutic concentrations and avoid drug toxicity. Over the past few decades, modeling and simulation techniques, especially physiologically based pharmacokinetic (PBPK) modeling, have been increasingly used in pediatric drug development and clinical therapy. This rigorously designed and verified model can effectively compensate for the deficiencies of clinical trials in neonates, provide a valuable reference for clinical research design, and even replace some clinical trials to predict drug plasma concentrations in newborns. This review introduces previous findings regarding age-dependent physiological changes and pathological factors affecting neonatal pharmacokinetics, along with their research means. The application of PBPK modeling in neonatal pharmacokinetic studies of various medications is also reviewed. Based on this, we propose future perspectives on neonatal PBPK modeling and hope for its broader application.
Collapse
Affiliation(s)
| | | | | | - Liang Zheng
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; (W.Z.); (Q.Z.); (Z.C.)
| |
Collapse
|
5
|
Porwal M, Kumar A, Rastogi V, Maheshwari KK, Verma A. Odevixibat: A Review of a Bioactive Compound for the Treatment of Pruritus Approved by the FDA. Curr Drug Res Rev 2023; 16:CDRR-EPUB-130058. [PMID: 36892028 DOI: 10.2174/2589977515666230308125238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2022] [Revised: 12/16/2022] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Odevixibat is synthesized through chemical modification of Benzothiazepine's structure. It is a tiny chemical that inhibits the ileal bile acid transporter and is used to treat a variety of cholestatic illnesses, including progressive familial intrahepatic cholestasis (PFIC). For cholestatic pruritus and liver disease development, bile acid transporter inhibition is a unique treatment strategy. Odevixibat reduces enteric bile acid reuptake. Oral odevixibat was also studied in children with cholestatic liver disease. Odevixibat received its first approval in the European Union (EU) in July 2021 for the treatment of PFIC in patients aged 6 months, followed by approval in the USA in August 2021 for the treatment of pruritus in PFIC patients aged 3 months. Bile acids in the distal ileum can be reabsorbed by the ileal sodium/bile acid cotransporter, a transport glycoprotein. Odevixibat is a sodium/bile acid co-transporter reversible inhibitor. An average 3 mg once-daily dose of odevixibat for a week resulted in a 56% reduction in the area under the curve of bile acid. A daily dose of 1.5 mg resulted in a 43% decrease in the area under the curve for bile acid. Odevixibat is also being evaluated in many countries for the treatment of other cholestatic illnesses, including Alagille syndrome and biliary atresia. This article reviews the updated information on odevixibat with respect to its clinical pharmacology, mechanism of action, pharmacokinetics, pharmacodynamics, metabolism, drug-drug interactions, pre-clinical studies, and clinical trials.
Collapse
Affiliation(s)
- Mayur Porwal
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| | - Arvind Kumar
- Drug Design Laboratory, School of Pharmaceutical Sciences, IFTM University, Moradabad, 244001, Uttar Pradesh, India
| | - Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| | | | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, 244001, Uttar Pradesh, India
| |
Collapse
|
6
|
Michelet R, Bindellini D, Melin J, Neumann U, Blankenstein O, Huisinga W, Johnson TN, Whitaker MJ, Ross R, Kloft C. Insights in the maturational processes influencing hydrocortisone pharmacokinetics in congenital adrenal hyperplasia patients using a middle-out approach. Front Pharmacol 2023; 13:1090554. [PMID: 36712688 PMCID: PMC9877293 DOI: 10.3389/fphar.2022.1090554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction: Hydrocortisone is the standard of care in cortisol replacement therapy for congenital adrenal hyperplasia patients. Challenges in mimicking cortisol circadian rhythm and dosing individualization can be overcome by the support of mathematical modelling. Previously, a non-linear mixed-effects (NLME) model was developed based on clinical hydrocortisone pharmacokinetic (PK) pediatric and adult data. Additionally, a physiologically-based pharmacokinetic (PBPK) model was developed for adults and a pediatric model was obtained using maturation functions for relevant processes. In this work, a middle-out approach was applied. The aim was to investigate whether PBPK-derived maturation functions could provide a better description of hydrocortisone PK inter-individual variability when implemented in the NLME framework, with the goal of providing better individual predictions towards precision dosing at the patient level. Methods: Hydrocortisone PK data from 24 adrenal insufficiency pediatric patients and 30 adult healthy volunteers were used for NLME model development, while the PBPK model and maturation functions of clearance and cortisol binding globulin (CBG) were developed based on previous studies published in the literature. Results: Clearance (CL) estimates from both approaches were similar for children older than 1 year (CL/F increasing from around 150 L/h to 500 L/h), while CBG concentrations differed across the whole age range (CBGNLME stable around 0.5 μM vs. steady increase from 0.35 to 0.8 μM for CBG PBPK). PBPK-derived maturation functions were subsequently included in the NLME model. After inclusion of the maturation functions, none, a part of, or all parameters were re-estimated. However, the inclusion of CL and/or CBG maturation functions in the NLME model did not result in improved model performance for the CL maturation function (ΔOFV > -15.36) and the re-estimation of parameters using the CBG maturation function most often led to unstable models or individual CL prediction bias. Discussion: Three explanations for the observed discrepancies could be postulated, i) non-considered maturation of processes such as absorption or first-pass effect, ii) lack of patients between 1 and 12 months, iii) lack of correction of PBPK CL maturation functions derived from urinary concentration ratio data for the renal function relative to adults. These should be investigated in the future to determine how NLME and PBPK methods can work towards deriving insights into pediatric hydrocortisone PK.
Collapse
Affiliation(s)
- Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany,*Correspondence: Robin Michelet,
| | - Davide Bindellini
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany,Graduate Research Training Program, Berlin, Germany
| | - Johanna Melin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany,Graduate Research Training Program, Berlin, Germany
| | - Uta Neumann
- Clinic for Pediatric Endocrinology and Diabetology, Charité-Universitätsmedizin, Berlin, Germany
| | - Oliver Blankenstein
- Clinic for Pediatric Endocrinology and Diabetology, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | - Martin J. Whitaker
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Richard Ross
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom,Diurnal Limited, Cardiff, United Kingdom
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
7
|
Whitaker MJ, Huatan H, Ross RJ. Chronotherapy based on modified-release hydrocortisone to restore the physiological cortisol diurnal rhythm. Drug Deliv Transl Res 2023; 13:1-8. [PMID: 35618893 PMCID: PMC9726814 DOI: 10.1007/s13346-022-01183-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/10/2022] [Indexed: 01/01/2023]
Abstract
In this inspirational note, we describe the development of an endocrine chronotherapy to restore the physiological rhythm of the essential adrenal stress hormone, cortisol. The challenges included demonstrating the circadian rhythm of the drug target, creating a drug formulation that replicated that rhythm and then proving benefit in clinical trials. The physiological cortisol circadian rhythm is well defined with cortisol levels high on waking and low on going to sleep. We experimented with different formulation technologies including modified-release tablets and multi-particulates to replicate the cortisol rhythm where absent through disease. We describe the development of Efmody®, a modified-release formulation of hydrocortisone, which replicates the cortisol diurnal rhythm and improves the disease control of congenital adrenal hyperplasia, the commonest hereditary form of adrenal insufficiency. This program shows it is possible, through modified-release technology, to treat chronic endocrine diseases with physiological replacement to preserve health for life.
Collapse
Affiliation(s)
- Martin J. Whitaker
- Diurnal Ltd, Cardiff, UK ,Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - Richard J. Ross
- Diurnal Ltd, Cardiff, UK ,Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Zhou X, Dun J, Chen X, Xiang B, Dang Y, Cao D. Predicting the correct dose in children: Role of computational Pediatric Physiological-based pharmacokinetics modeling tools. CPT Pharmacometrics Syst Pharmacol 2022; 12:13-26. [PMID: 36330677 PMCID: PMC9835135 DOI: 10.1002/psp4.12883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022] Open
Abstract
The pharmacokinetics (PKs) and safety of medications in particular groups can be predicted using the physiologically-based pharmacokinetic (PBPK) model. Using the PBPK model may enable safe pediatric clinical trials and speed up the process of new drug research and development, especially for children, a population in which it is relatively difficult to conduct clinical trials. This review summarizes the role of pediatric PBPK (P-PBPK) modeling software in dose prediction over the past 6 years and briefly introduces the process of general P-PBPK modeling. We summarized the theories and applications of this software and discussed the application trends and future perspectives in the area. The modeling software's extensive use will undoubtedly make it easier to predict dose prediction for young patients.
Collapse
Affiliation(s)
- Xu Zhou
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Jiening Dun
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Xiao Chen
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Bai Xiang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Yunjie Dang
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| | - Deying Cao
- College of PharmacyHebei Medical UniversityShijiazhuangChina
| |
Collapse
|
9
|
Besci Ö, Erbaş İM, Küme T, Acinikli KY, Abacı A, Böber E, Demir K. A 4-hour Profile of 17-hydroxyprogesterone in Salt-wasting Congenital Adrenal Hyperplasia: Is the Serial Monitoring Strategy Worth the Effort? J Clin Res Pediatr Endocrinol 2022; 14:145-152. [PMID: 34866371 PMCID: PMC9176089 DOI: 10.4274/jcrpe.galenos.2021.2021-9-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Since there is no gold standard laboratory variable for adjustment of treatment in congenital adrenal hyperplasia (CAH), the aim was to assess the use of a 4-hour profile of serum 17-hydroxyprogesterone (17-OHP) to determine the most appropriate sample time and level of 17-OHP in predicting the metabolic control and evaluate the role of sex hormone-binding globulin (SHBG) in hyperandrogenemia. METHODS This study included children with salt-wasting CAH. Measurements for 17-OHP and cortisol were made from samples obtained before and 1, 2, and 4 hours after the morning dose of hydrocortisone. Patients were designated to have poor metabolic control when androstenedione levels according to age and sex-specific reference intervals were high and annual height standard deviation score (SDS) changes were ≥0.5. RESULTS The study cohort was 16 children (9 girls) with a median age of 7-years old. Premedication 17-OHP levels were strongly correlated with 17-OHP levels 1, 2, and 4 hours after the morning dose (rs=0.929, p<0.01; rs=0.943, p<0.01; rs=0.835, p<0.01, respectively). 17-OHP profiles (0, 1, 2, 4 hours) of poor (n=6) and good (n=10) metabolically controlled cases were similar. Among the patients with poor metabolic control, two cases had 17-OHP levels <2 ng/mL at all times. The remaining patients with poor metabolic control had median 17-OHP levels above 104 ng/mL, 82 ng/mL, 14 ng/mL, and 4 ng/mL, for baseline and 1, 2, and 4 hours, respectively. Differences between the poor and well-controlled group were androstenedione levels with respect to upper limit of normal [1.8 (1.5) and 0.5 (1.5) ng/mL, respectively p=0.03], annual change in height SDS [0.7 (0.2) and -0.03 (0.8) SDS, respectively, p=0.001], and daily hydrocortisone doses [7 (6) and 16 (8) mg/m2/day, respectively, p=0.02]. Androstenedione and SHBG levels were negatively correlated in the pubertal children (rs=-0.7, p=0.04). CONCLUSION We conclude that: (i) a 4-hour 17-OHP profile is not useful in predicting hyperandrogenemia; (ii) suppressed levels of 17-OHP do not always indicate overtreatment; (iii) reference intervals of 17-OHP for different time periods might be of importance; (iv) low hydrocortisone doses should be avoided; and (v) SHBG could be used in pubertal children as an indicator of hyperandrogenemia.
Collapse
Affiliation(s)
- Özge Besci
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - İbrahim Mert Erbaş
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Tuncay Küme
- Dokuz Eylül University Faculty of Medicine, Department of Medical Biochemistry, İzmir, Turkey
| | - Kübra Yüksek Acinikli
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ayhan Abacı
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Ece Böber
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey
| | - Korcan Demir
- Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey,* Address for Correspondence: Dokuz Eylül University Faculty of Medicine, Department of Pediatric Endocrinology, İzmir, Turkey Phone: +90 505 525 27 43 E-mail:
| |
Collapse
|
10
|
Stachanow V, Neumann U, Blankenstein O, Bindellini D, Melin J, Ross R, Whitaker MJ, Huisinga W, Michelet R, Kloft C. Exploring Dried Blood Spot Cortisol Concentrations as an Alternative for Monitoring Pediatric Adrenal Insufficiency Patients: A Model-Based Analysis. Front Pharmacol 2022; 13:819590. [PMID: 35370666 PMCID: PMC8968419 DOI: 10.3389/fphar.2022.819590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is the most common form of adrenal insufficiency in childhood; it requires cortisol replacement therapy with hydrocortisone (HC, synthetic cortisol) from birth and therapy monitoring for successful treatment. In children, the less invasive dried blood spot (DBS) sampling with whole blood including red blood cells (RBCs) provides an advantageous alternative to plasma sampling. Potential differences in binding/association processes between plasma and DBS however need to be considered to correctly interpret DBS measurements for therapy monitoring. While capillary DBS samples would be used in clinical practice, venous cortisol DBS samples from children with adrenal insufficiency were analyzed due to data availability and to directly compare and thus understand potential differences between venous DBS and plasma. A previously published HC plasma pharmacokinetic (PK) model was extended by leveraging these DBS concentrations. In addition to previously characterized binding of cortisol to albumin (linear process) and corticosteroid-binding globulin (CBG; saturable process), DBS data enabled the characterization of a linear cortisol association with RBCs, and thereby providing a quantitative link between DBS and plasma cortisol concentrations. The ratio between the observed cortisol plasma and DBS concentrations varies highly from 2 to 8. Deterministic simulations of the different cortisol binding/association fractions demonstrated that with higher blood cortisol concentrations, saturation of cortisol binding to CBG was observed, leading to an increase in all other cortisol binding fractions. In conclusion, a mathematical PK model was developed which links DBS measurements to plasma exposure and thus allows for quantitative interpretation of measurements of DBS samples.
Collapse
Affiliation(s)
- Viktoria Stachanow
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Uta Neumann
- Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
| | - Oliver Blankenstein
- Pediatric Endocrinology, Charité-Universitätsmedizin, Berlin, Germany
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Davide Bindellini
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | - Johanna Melin
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin, Germany
| | | | | | | | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| |
Collapse
|
11
|
Johnson TN, Small BG, Rowland Yeo K. Increasing application of pediatric physiologically based pharmacokinetic models across academic and industry organizations. CPT Pharmacometrics Syst Pharmacol 2022; 11:373-383. [PMID: 35174656 PMCID: PMC8923731 DOI: 10.1002/psp4.12764] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/16/2022] Open
Abstract
There has been a significant increase in the use of physiologically based pharmacokinetic (PBPK) models during the past 20 years, especially for pediatrics. The aim of this study was to give a detailed overview of the growth and areas of application of pediatric PBPK (P‐PBPK) models. A total of 181 publications and publicly available regulatory reviews were identified and categorized according to year, author affiliation, platform, and primary application of the P‐PBPK model (in clinical settings, drug development or to advance pediatric model development in general). Secondary application areas, including dose selection, biologics, and drug interactions, were also assessed. The growth rate for P‐PBPK modeling increased 33‐fold between 2005 and 2020; this was mainly attributed to growth in clinical and drug development applications. For primary applications, 50% of articles were classified under clinical, 18% under drug development, and 33% under model development. The most common secondary applications were dose selection (75% drug development), pharmacokinetic prediction and covariate identification (47% clinical), and model parameter identification (68% model development), respectively. Although population PK modeling remains the mainstay of approaches supporting pediatric drug development, the data presented here demonstrate the widespread application of P‐PBPK models in both drug development and clinical settings. Although applications for pharmacokinetic and drug–drug interaction predictions in pediatrics is advocated, this approach remains underused in areas such as assessment of pediatric formulations, toxicology, and trial design. The increasing number of publications supporting the development and refinement of the pediatric model parameters can only serve to enhance optimal use of P‐PBPK models.
Collapse
Affiliation(s)
| | - Ben G Small
- Certara UK Limited (Simcyp Division), Sheffield, UK
| | | |
Collapse
|