1
|
Li N, Zhao E, Zhang Z, Yin W, He L, Wang B, Wang F, Xiao X, Zhao J. Gradient and De-Clustered Anionic Redox Enabled Undetectable O 2 Formation in 4.5 V Sodium Manganese Oxide Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408984. [PMID: 39400472 DOI: 10.1002/adma.202408984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Anionic redox chemistry presents a promising approach to enhancing the energy density of oxide cathode materials. However, anionic redox reactions invariably lead to O2 formation, either as free gaseous O2 or trapped molecular O2, which destabilizes the material's structure. Here, this critical challenge is addressed by constructing a crystal structure with both gradient redox activity and de-clustered redox-active oxygen. This design strategy is directly validated by operando differential electrochemical mass spectrometry and ex situ 50 K electron paramagnetic resonance, revealing no release of O2 or trapped O2 in the 4.5 V P2-type sodium manganese-based layered oxide. Notably, the material exhibits a highly reversible capacity of 247 mA h g-1 at 20 mA g-1 and exceptional capacity retention of 91.4% after 300 cycles at 300 mA g-1. In situ X-ray diffraction further suggests that the absence of O2 formation suppresses the typical P2-O2 phase transition, resulting in a minimal lattice volume change of only 0.5%. Ex situ neutron diffraction studies and theoretical calculations further elucidate that the locally ordered lattice is well-preserved, attributable to reduced cationic migrations during cycling.
Collapse
Affiliation(s)
- Na Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Enyue Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zhigang Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Wen Yin
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lunhua He
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
| | - Baotian Wang
- Spallation Neutron Source Science Center, Dongguan, Guangdong, 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangwei Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoling Xiao
- College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinkui Zhao
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, Great Bay University, Dongguan, 523808, China
| |
Collapse
|
2
|
Zhou Y, Sun M, Cao M, Zeng Y, Su M, Dou A, Hou X, Liu Y. Simultaneously promoting the surface/bulk structural stability of Fe/Mn-based layered cathode for sodium ion batteries. J Colloid Interface Sci 2024; 657:472-481. [PMID: 38070333 DOI: 10.1016/j.jcis.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 01/02/2024]
Abstract
Layered sodium iron manganese oxide cathodes have attracted great interest owing to their high specific capacity and cost-effective metal resources, while the detrimental phase transitions and surface structural degradation severely limit their commercial applications. In this work, the bulk and surface structure stability of a P2-Na0.67Fe0.5Mn0.5O2 cathode can be synergically enhanced by a one-step Li/Nb co-doping strategy. Structural characterizations reveal that Li doping promotes the formation of P2/O3 biphasic structure and makes the unfavorable P2-OP4 phase transition convert into a smooth solid-solution reaction. Nb doping enhances the mobility of sodium ions and forms strong Nb-O bonds, thereby enhancing the stability of the TMO2 layer structure. In particular, the Nb element induces the surface reorganization of an atomic-scale NaNbO3 coating layer, which could effectively prevent the dissolution of metals and surface side reactions. The synergistic mechanism of enhanced electrochemical performance is proved by multiple characterizations during cycling. As a result, the as-prepared Na0.67Li0.1Fe0.5Mn0.38Nb0.02O2 exhibits improved capacity retention of 85.4 % than raw material (45.7 %) after 100 cycles at 0.5C (1C = 174 mA g-1) within 2.0-4.0 V. This co-regulating strategy provides a promising approach to designing highly stable sodium-ion battery cathodes. Furthermore, a full cell of Na0.67Li0.1Fe0.5Mn0.38Nb0.02O2 with hard carbon displays excellent cycling stability (85.1 % capacity retention after 100 cycles), making its commercial operation possible. This synergistic strategy of biphasic structure and surface reorganization is a critical route to accelerate the application of layer oxide cathodes.
Collapse
Affiliation(s)
- Yu Zhou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China; Zhejiang New Era Zhongneng Technology Co., Ltd., Shaoxing 312369, China
| | - Molin Sun
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meilan Cao
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yijin Zeng
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mingru Su
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Aichun Dou
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaochuan Hou
- Zhejiang New Era Zhongneng Technology Co., Ltd., Shaoxing 312369, China
| | - Yunjian Liu
- School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Zou Q, Xu C, Zhang J, Wang D, Chen H, Zhong G, Lu C, Peng Z. Structure and Performance of Na xMn 0.85Al 0.1Fe 0.05O 2 (0.7 ≤ x ≤ 1.0) Composite Materials for Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25348-25356. [PMID: 35638586 DOI: 10.1021/acsami.2c03115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
P2 and O3 structures are two important sodium manganese oxide phases for sodium-ion batteries; however, encounter Na-deficient and poor rate performance, respectively. Herein, a systematic study of NaxMn0.85Al0.1Fe0.05O2 (0.7 ≤ x ≤ 1.0) materials is performed by employing solid-state NMR, X-ray diffraction, and electrochemical analysis, to provide an in-depth understanding on the structure and the correlated performance for the rational design. The interlayer spacing of α-NaMnO2 broadens, and the content of distorted O3 structures (α- and β-NaMnO2) increases with raising Na content. It is exhibited that the NaMn0.85Al0.1Fe0.05O2 composite material presents better rate and cycling performance than P2-type Na0.7Mn0.85Al0.1Fe0.05O2, delivering a capacity of 87 mAh g-1 at 5 C. Significantly, the determinants of performance are further discussed, which reveal that diffusion coefficient is probably not the decisive factor restricts the rate performance of O3 and composite materials. The phase transition relaxation and the interfacial charge transfer resistance should be seriously addressed for further improvement.
Collapse
Affiliation(s)
- Qiyao Zou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congping Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, Jiangxi, China
| | - Jie Zhang
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Dawei Wang
- Key Laboratory of Automobile Materials of Ministry of Education & School of Materials Science and Engineering, Jilin University, Changchun, 130025, Jilin, China
| | - Huixin Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
| | - Guiming Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Canzhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangquan Peng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Advanced Spectro-electrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| |
Collapse
|