1
|
Ahsan M, Dutta A, Akermi M, Mahtab Alam M, Nizam Uddin S, Khatun N, Hasnat MA. Sulfur adlayer on gold surface for attaining H2O2 reduction in alkaline medium: Catalysis, Kinetics, and Sensing activities. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
2
|
Screen-printed electrochemical sensors for environmental monitoring of heavy metal ion detection. REV CHEM ENG 2022. [DOI: 10.1515/revce-2022-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Heavy metal ions (HMIs) are known to cause severe damages to the human body and ecological environment. And considering the current alarming situation, it is crucial to develop a rapid, sensitive, robust, economical and convenient method for their detection. Screen printed electrochemical technology contributes greatly to this task, and has achieved global attention. It enabled the mass transmission rate and demonstrated ability to control the chemical nature of the measure media. Besides, the technique offers advantages like linear output, quick response, high selectivity, sensitivity and stability along with low power requirement and high signal-to-noise ratio. Recently, the performance of SPEs has been improved employing the most effective and promising method of the incorporation of different nanomaterials into SPEs. Especially, in electrochemical sensors, the incorporation of nanomaterials has gained extensive attention for HMIs detection as it exhibits outstanding features like broad electrochemical window, large surface area, high conductivity, selectivity and stability. The present review focuses on the recent progress in the field of screen-printed electrochemical sensors for HMIs detection using nanomaterials. Different fabrication methods of SPEs and their utilization for real sample analysis of HMIs using various nanomaterials have been extensively discussed. Additionally, advancement made in this field is also discussed taking help of the recent literature.
Collapse
|
3
|
Dutta A, Hasan MM, Miah MR, Nagao Y, Hasnat MA. Efficient sensing of hydrogen peroxide via electrocatalytic oxidation reactions using polycrystalline Au electrode modified with controlled thiol group immobilization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Hughes G, Pemberton RM, Nicholas P, Hart JP. Fabrication of Miniaturised Screen-printed Glucose Biosensors, Using a Water-based Ink, and the Evaluation of their Electrochemical Behaviour. ELECTROANAL 2018. [DOI: 10.1002/elan.201800104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- G. Hughes
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences; University of the West of England, Bristol; Coldharbour Lane Bristol BS16 1QY
| | - R. M. Pemberton
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences; University of the West of England, Bristol; Coldharbour Lane Bristol BS16 1QY
| | - P. Nicholas
- The Gwent Group, Gwent Electronic Materials; Gwent Group Ltd.; Monmouth House, Mamhilad Park Pontypool NP4 OHZ UK
| | - J. P. Hart
- Centre for Research in Biosciences, Faculty of Health and Applied Sciences; University of the West of England, Bristol; Coldharbour Lane Bristol BS16 1QY
| |
Collapse
|
5
|
Electrochemical communication with the inside of cells using micro-patterned vertical carbon nanofibre electrodes. Sci Rep 2016; 6:37672. [PMID: 27905472 PMCID: PMC5131336 DOI: 10.1038/srep37672] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 11/21/2022] Open
Abstract
With the rapidly increasing demands for ultrasensitive biodetection, the design and applications of new nano-scale materials for development of sensors based on optical and electrochemical transducers have attracted substantial interest. In particular, given the comparable sizes of nanomaterials and biomolecules, there exist plenty of opportunities to develop functional nanoprobes with biomolecules for highly sensitive and selective biosensing, shedding new light on cellular behaviour. Towards this aim, herein we interface cells with patterned nano-arrays of carbon nanofibers forming a nanosensor-cell construct. We show that such a construct is capable of electrochemically communicating with the intracellular environment.
Collapse
|
6
|
Vagin MY, Sekretaryova AN, Reategui RS, Lundstrom I, Winquist F, Eriksson M. Arrays of Screen-Printed Graphite Microband Electrodes as a Versatile Electroanalysis Platform. ChemElectroChem 2014. [DOI: 10.1002/celc.201300204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mashazi PN, Nombona N, Muchindu M, Vilakazi S. Metallophthalocyanines and metalloporphyrins as electrocatalysts: a case of hydrogen peroxide and glucose detection. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424612300066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This review summarizes the applications of metallophthalocyanine (MPc) and metallo-porphyrin (MP) complexes as electrocatalysts immobilized onto various electrodes for the detection of hydrogen peroxide and glucose. The uses of MPc and MP complexes as electron mediators for the detection of glucose at glucose oxidase modified surfaces are discussed.
Collapse
Affiliation(s)
- Philani N. Mashazi
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag x3015, Randburg, South Africa
| | - Nolwazi Nombona
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag x3015, Randburg, South Africa
| | - Munkombwe Muchindu
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag x3015, Randburg, South Africa
| | - Sibulelo Vilakazi
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag x3015, Randburg, South Africa
| |
Collapse
|
8
|
Recent developments and applications of screen-printed electrodes in environmental assays—A review. Anal Chim Acta 2012; 734:31-44. [DOI: 10.1016/j.aca.2012.05.018] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/04/2012] [Accepted: 05/12/2012] [Indexed: 11/21/2022]
|
9
|
Chang YH, Hsu CL, Yuan CJ, Tang SF, Chiang HJ, Jang HD, Chang KS. Improvement of the inter-electrode reproducibility of screen-printed carbon electrodes by oxygen plasma etching and an image color level method for quality control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Honeychurch KC, Al-Berezanchi S, Hart JP. The voltammetric behaviour of lead at a microband screen-printed carbon electrode and its determination in acetate leachates from glazed ceramic plates. Talanta 2011; 84:717-23. [PMID: 21482273 DOI: 10.1016/j.talanta.2011.01.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/19/2011] [Accepted: 01/30/2011] [Indexed: 11/29/2022]
Abstract
Microband screen-printed carbon electrodes (μBSPCEs) without further modification have been investigated as disposable sensors for the measurement of lead in acetate leachates from ceramic glazed plates. Cyclic voltammetry was employed to elucidate the electrochemical behaviour of Pb(2+) at these electrodes in a variety of supporting electrolytes. The anodic peaks obtained on the reverse scans, showed that Pb had been deposited as a thin layer on the surface of the μBSPCE. The anodic peak of greatest magnitude was obtained in 0.1M pH 4.1 acetate buffer containing 13 mM Cl(-). The effect of chromium, copper, phosphate, sulphate and tin was examined and under the conditions employed, no significant change in current was found. The μBSPCEs were evaluated by carrying out lead determinations for acetate leachates from glazed ceramic plates. A highly decorated ornamental plate was found to leach 400 μg Pb(2+) (%CV=1.91%). A second plate, designed for dinnerware was found not to leach any detectable levels of Pb(2+). However, once fortified with 2.10 μg of Pb (equivalent to 100 ng/ml in the leachate), a mean recovery of 82.08% (%CV=4.07%) was obtained. The performance characteristics indicate that reliable data has been obtained for this application which could identify potentially toxic sources of lead.
Collapse
Affiliation(s)
- Kevin C Honeychurch
- Centre for Research in Biomedicine, Faculty of Health & Life Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | | | | |
Collapse
|
11
|
Metters JP, Kadara RO, Banks CE. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 2011; 136:1067-76. [DOI: 10.1039/c0an00894j] [Citation(s) in RCA: 335] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F. Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 2010. [DOI: 10.1016/j.ccr.2010.05.001] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Application of screen-printed microband biosensors incorporated with cells to monitor metabolic effects of potential environmental toxins. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0326-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Honeychurch KC, Gilbert L, Hart JP. Electrocatalytic behaviour of citric acid at a cobalt phthalocyanine-modified screen-printed carbon electrode and its application in pharmaceutical and food analysis. Anal Bioanal Chem 2010; 396:3103-11. [DOI: 10.1007/s00216-010-3534-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/25/2010] [Accepted: 01/30/2010] [Indexed: 11/30/2022]
|
15
|
Yuan B, Du H, You T. A novel tris(2,2′-bipyridine)ruthenium(II)/tripropylamine cathodic electrochemiluminescence in acetonitrile for the indirect determination of hydrogen peroxide. Talanta 2009; 79:730-3. [DOI: 10.1016/j.talanta.2009.04.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/25/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
|
16
|
Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Pemberton R, Xu J, Pittson R, Biddle N, Drago G, Jackson S, Hart J. Application of screen-printed microband biosensors to end-point measurements of glucose and cell numbers in HepG2 cell culture. Anal Biochem 2009; 385:334-41. [DOI: 10.1016/j.ab.2008.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 10/24/2008] [Accepted: 10/29/2008] [Indexed: 11/17/2022]
|
18
|
Miah MR, Ohsaka T. Electrochemical oxidation of hydrogen peroxide at a bromine adatom-modified gold electrode in alkaline media. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.09.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Fabrication of microband glucose biosensors using a screen-printing water-based carbon ink and their application in serum analysis. Biosens Bioelectron 2009; 24:1246-52. [DOI: 10.1016/j.bios.2008.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/14/2008] [Accepted: 07/15/2008] [Indexed: 11/20/2022]
|