1
|
Cai CH, Then CK, Lin YL, Shih CC, Li CC, Yang TS. Associative analysis of sludge microbiota and wastewater degradation efficacy within swine farm sludge systems. Heliyon 2024; 10:e39997. [PMID: 39568825 PMCID: PMC11577235 DOI: 10.1016/j.heliyon.2024.e39997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Industrial wastewater management is a significant global challenge. Sludge microbiota from swine farms may play a crucial role in enhancing wastewater treatment processes, thereby reducing water pollution from industrial activities. A deeper understanding of this complex community could lead to innovative approaches for improving wastewater treatment methods. Sludge samples were collected from the anaerobic, sedimentation, and thickening tanks of ten swine farms. The microbiota communities were analyzed using 16S rRNA full-length sequencing on the PacBio platform, with subsequent data analysis conducted on the QIIME2 platform utilizing the SILVA database. Compared to anaerobic and thickening tanks, the sedimentation tanks exhibited a unique profile of sludge microbiota, with higher abundances of the phyla Proteobacteria, Bacteroidota, and Caldatribacteriota. Additionally, sludges from farms already utilized in processing industrial water-specifically farms B, G, and J-contained higher concentrations of bacteria (>20 ng/μL), indicating the robustness of the bacterial load for practical industrial use. Furthermore, sludge from farms with higher alpha diversity, such as E, G, I, and J, exhibited enriched degradation profiles, including the degradation of aromatic compounds, polymers, industrial compounds, toluene, and vanillin. The farms were categorized based on wastewater ammonia nitrogen degradation levels, revealing a clustering effect of the microbiota from the sedimentation tanks in the Principal Coordinates Analysis (PCoA) plot. A higher relative abundance of the families Rhodocyclaceae, AKYH767, and Comamonadaceae, and a lower abundance of the families Anaerolineaceae and Christensenellaceae, were found in groups with high ammonia nitrogen reduction, suggesting potential targets for bioaugmentation strategies. In conclusion, this study underscores the critical role of microbial abundance, composition, and biodiversity in optimizing wastewater treatment and advocates for comprehensive microbiota analysis to identify suitable sludge for industrial applications.
Collapse
Affiliation(s)
- Cheng-Han Cai
- Industry Technology Research Institute, Nantou City, Taiwan
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Yan-Ling Lin
- Industry Technology Research Institute, Nantou City, Taiwan
| | | | - Chih-Chieh Li
- Industry Technology Research Institute, Nantou City, Taiwan
| | - Tzu-Sen Yang
- Graduate Institute of Biomedical Optomechatronics, Taipei Medical University, Taipei, 110, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei, 110, Taiwan
- School of Dental Technology, Taipei Medical University, Taipei, 110, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei, 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| |
Collapse
|
2
|
Waseem Mumtaz M, Mukhtar H, Miran W, Alessa AH, Waleed A, Sarwar Z, Ashraf H. Impact of CeO 2 modified cathode and PANI modified anode on tannery wastewater fed microbial fuel cell performance. Saudi J Biol Sci 2024; 31:104024. [PMID: 38988338 PMCID: PMC11234157 DOI: 10.1016/j.sjbs.2024.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 07/12/2024] Open
Abstract
Microbial fuel cell (MFC) technology is getting acceptance as an emphatic, sustainable and energy efficient alternative of conventional wastewater treatment strategies. MFCs utilize exoelectrogens as biocatalysts to degrade the complex organic substances present in wastewater with simultaneous power generation. The present study was aimed at investigating the impact of MFC electrode's modification with CeO2 nanoparticles and polyaniline (PANI) on its performance characteristics. The hydrothermal approach was employed for the synthesis of CeO2 nanoparticles followed by their deposition on carbon cloth (CC) as MFC cathode, whereas MFC's anode i.e., CF/NF was modified by in-situe deposition of PANI. The synthesized material was characterized with FTIR, XRD, SEM, EDX and BET analysis. The experiments were performed using dual chambered MFC fed with leather tannery wastewater using modified and unmodified electrodes. The highest outcomes of power density and corresponding current density were observed with PANI@NF composite anode and CeO2@CC as cathode i.e., 279.3 mW/m2 corresponding to the current density of 581.8 mA/m2. The same MFC electrode configuration resulted in highest COD reduction, i.e., 80 % and coulombic efficiency of 19.86 %. On the other hand, MFC equipped with PANI@CF anode and CeO2@CC cathode also displayed comparable results. It was ascertained that modification of NF/CF anode with PANI (conductive polymer) and CC cathode with CeO2 nanoparticles have significantly improved the overall MFC operational performance regarding tannery wastewater treatment and bioelectricity generation.
Collapse
Affiliation(s)
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, GC University Lahore, Pakistan
| | - Waheed Miran
- School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Abdulrahman H Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Aashir Waleed
- Deprtment of Electrical Electronics and Telecommunication Engineering, University of Engineering and Technology, Faisalabad Campus, Faisalabad, Punjab 38000, Pakistan
| | - Zoha Sarwar
- Department of Chemistry, University of Gujrat, Pakistan
| | - Haseeb Ashraf
- Department of Chemistry, University of Gujrat, Pakistan
| |
Collapse
|
3
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
4
|
Ma WL, Zhang YQ, Li WZ, Li J, Luan J. Fabrication of carbon-based materials derived from a cobalt-based organic framework for enhancing photocatalytic degradation of dyes. Dalton Trans 2024; 53:4314-4324. [PMID: 38347825 DOI: 10.1039/d3dt04055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The pyrolysis of metal-organic frameworks (MOFs) has emerged as a promising route to synthesize carbon/metal oxide-based materials with diverse phase compositions, morphologies, sizes and surface areas. In this paper, 1,3,5-benzoic acid (BTC) and 2,4,6-tri(4-pyridinyl)-1-pyridine (TPP) were used as ligands to prepare a novel cobalt-based MOF (Co-MOF) which was used as a precursor to obtain five carbon-based materials at different temperatures (Co-C200/400/600/800/1000). Furthermore, five dyes were used as degradation targets to investigate the photocatalytic degradation performance of the title materials under UV light irradiation. Co-C1000 exhibited the best photocatalytic degradation performance for methyl orange (MO), and the degradation rate could reach 99.21%. The enhanced photocatalytic activity was attributed to narrower band-gaps and a synergistic effect originating from the well-aligned straddling band structures between Co/CoO/Co3O4 and C, also resulting in a faster interfacial charge transfer during the photocatalytic reaction. This study will aid in the development of photocatalysts generated from carbon-based materials via the pyrolysis transformation of MOFs, therefore greatly enhancing the photocatalytic performance.
Collapse
Affiliation(s)
- Wan-Lin Ma
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Ya-Qian Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jing Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| |
Collapse
|
5
|
Anwar A, Imran M, Iqbal HM. Smart chemistry and applied perceptions of enzyme-coupled nano-engineered assemblies to meet future biocatalytic challenges. Coord Chem Rev 2023; 493:215329. [DOI: 10.1016/j.ccr.2023.215329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
|
6
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|