1
|
Heywood J, Abele G, Langenbach B, Litvin S, Smallets S, Paustenbach D. Composition of e-cigarette aerosols: A review and risk assessment of selected compounds. J Appl Toxicol 2025; 45:364-386. [PMID: 39147402 DOI: 10.1002/jat.4683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10-3-135 μg/kg-bw/day) and butyraldehyde (1.9 × 10-4-66.54 μg/kg-bw/day) corresponded to MoEs of 227-17,200,000 and 271-280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10-6-1.99 × 10-4 μg/kg-bw/day NNN corresponded to 1.4-28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.
Collapse
Affiliation(s)
- Jonathan Heywood
- Paustenbach and Associates, Denver, Colorado, USA
- Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
2
|
Farber HJ. What Do We Know About the Harms of Electronic Cigarettes? PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2025. [PMID: 39977217 DOI: 10.1089/ped.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2025]
Abstract
Electronic cigarettes are commonly misperceived as safe, hence the importance of health care providers understanding the harms of these devices. To date, there is substantial evidence of impaired immune defenses leading to increased risk for severe infections. Electronic cigarette users have increased respiratory symptoms, including bronchitis, cough, and wheeze. There is evidence of emphysema from electronic cigarette use in both laboratory mouse studies and population health surveys. There is evidence of increased cardiovascular disease from electronic cigarettes in both laboratory mouse models and population health surveys. There have been many cases of acute severe lung disease leading to hospitalization and death in electronic cigarette users; although most cases reported were associated with vitamin E acetate in tetrahydrocannabinol-containing products, some cases report exclusive use of nicotine-containing electronic cigarettes. Recently, constrictive bronchiolitis has been found in lung biopsies of electronic cigarette users with dyspnea. There are multiple carcinogenic chemicals in electronic cigarette emissions. Mouse models demonstrate increased rates of lung cancer and carcinogenic chemicals accumulate in the urine of human users. Neurotoxicity has been demonstrated in laboratory mouse models. There is concern about nicotine exposure adversely impacting brain development and serving as a gateway drug for other harmful drug use. Dual use of electronic and combustible cigarettes appears to be more harmful than the use of combustible cigarettes alone. Conclusion: Electronic cigarettes have substantial harms and are not a safe alternative to combustible tobacco use. It is important for health care providers to know these harms and counsel their patients.
Collapse
Affiliation(s)
- Harold J Farber
- Pulmonary Division, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
3
|
Ganapathy V, Jaganathan R, Chinnaiyan M, Chengizkhan G, Sadhasivam B, Manyanga J, Ramachandran I, Queimado L. E-Cigarette effects on oral health: A molecular perspective. Food Chem Toxicol 2025; 196:115216. [PMID: 39736445 DOI: 10.1016/j.fct.2024.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Electronic cigarettes (e-cigarettes) have emerged as a potential alternative to traditional smoking and may aid in tobacco harm reduction and smoking cessation. E-cigarette use has notably increased, especially among young non-tobacco users, raising concerns due to the unknown long-term health effects. The oral cavity is the first and one of the most crucial anatomical sites for the deposition of e-cigarette aerosols. E-cigarette aerosols contain nicotine, flavors, volatile organic compounds, heavy metals, carcinogens, and other hazardous substances. These aerosols impact the oral cavity, disrupting host-microbial interactions and triggering gingivitis and systemic diseases. Furthermore, oral inflammation and periodontitis can be caused by proinflammatory cytokines induced by e-cigarette aerosols. The toxic components of e-cigarette aerosols increase the cellular reactive oxygen species (ROS) levels, reduce antioxidant capacity, increase DNA damage, and disrupt repair processes, which may further contribute to harmful effects on oral epithelum, leading to inflammatory and pre-malignant oral epithelial lesions. In this review, we analyze the toxicological properties of compounds in e-cigarette aerosols, exploring their cytotoxic, genotoxic, and inflammatory effects on oral health and delving into the underlying molecular mechanisms. Further research is essential to understand the impact of e-cigarettes on oral health and make informed regulatory decisions based on reliable scientific evidence.
Collapse
Affiliation(s)
- Vengatesh Ganapathy
- Department of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Ravindran Jaganathan
- Preclinical Department, Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL-RCMP), Ipoh, Perak, 30450, Malaysia
| | - Mayilvanan Chinnaiyan
- Department of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Gautham Chengizkhan
- Department of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Balaji Sadhasivam
- Department of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Occupational and Environmental Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jimmy Manyanga
- Department of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Lurdes Queimado
- Department of Otolaryngology-Head and Neck Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; TSET Health Promotion Research Center, Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Kaplan B, Tseng TY, Hardesty JJ, Czaplicki L, Cohen JE. Beneficial and Harmful Tobacco-Use Transitions Associated With ENDS in the U.S. Am J Prev Med 2025:S0749-3797(25)00025-X. [PMID: 39880060 DOI: 10.1016/j.amepre.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/12/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
INTRODUCTION ENDS can benefit those who use combustible tobacco if they transition completely to ENDS. ENDS can also result in nicotine addiction among nicotine-naïve people. METHODS ENDS-related tobacco-use transitions were assessed among U.S. youth and adults using weighted Population Assessment of Tobacco and Health Study Waves 4 (2016-2017) and 5 (2018-2019) adult and youth data. A beneficial transition was defined as those who used combustible tobacco and transitioned exclusively to ENDS use or quit with the help of ENDS. A harmful transition was defined as (1) nonusers of any tobacco product who initiated ENDS (with or without combustible tobacco co-use) or (2) those who exclusively used ENDS and then added or transitioned to combustible tobacco use. Sensitivity analyses were conducted to examine modified definitions of beneficial and harmful transitions based on different assumptions. The analyses were conducted between August 2024 and November 2024. RESULTS Total sample size (N=31,733) represented ∼256 million people. For those using a combustible tobacco product in Wave 4, 2.1 million (∼4.6%) transitioned to exclusive ENDS use or to ENDS-assisted cessation of a combustible tobacco product (benefit). In addition, 4.6 million (∼%2.2) transitioned from nonuse to ENDS or, among people who use ENDS exclusively in Wave 4, added combustible or transitioned to combustible tobacco use in Wave 5 (harm). CONCLUSIONS For every 1 beneficial transition, ENDS use was associated with 2.15 harmful transitions; this ratio ranged from 0.75 to 2.77 in sensitivity analyses. With effective restrictions on ENDS access and marketing for tobacco-naïve people, the population benefits of ENDS could outweigh population harms.
Collapse
Affiliation(s)
- Bekir Kaplan
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| | - Tuo-Yen Tseng
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jeffrey J Hardesty
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Lauren Czaplicki
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Joanna E Cohen
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
5
|
Lee J, Afshar M, Su WC, Han I. Effect of electronic cigarette atomising power and flavour on aerosol size-segregated metal concentration and inhalation risk. Tob Control 2025:tc-2024-058915. [PMID: 39814527 DOI: 10.1136/tc-2024-058915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
INTRODUCTION Although numerous studies have estimated the inhalation dose of metals emitted from electronic cigarettes (e-cigs), the impact of factors including aerosol size and the atomising power of e-cig aerosols on estimating the inhalation dose of metals remains underexplored. A comprehensive understanding of these determinants is essential to assess the health risks associated with inhaling e-cig aerosols, which may contain potentially harmful metals. OBJECTIVES The aim of this study is to elucidate the mass and inhalation doses of potentially harmful metals in e-cig aerosols by different particle size and their association with the various atomising powers of e-cig devices and flavours. METHODS Size-segregated e-cig aerosols were generated and collected in a exposure chamber, using an 11-stage cascade impactor for the analyses of aerosol mass and metals. The metal deposition dose in the human respiratory tract was calculated using a mathematical respiratory deposition estimation model and metal mass concentration by the size of aerosols. RESULTS In this study, the results showed that neither an increase in atomising power (from 5 to 20 W) nor e-cig flavours resulted in a significant increase in a metal deposition in the respiratory tracts. Although the factors did not significantly affect the calculated respiratory deposition of harmful metals under typical e-cig usage assumption, the estimated hazard index exceeded 1.0. CONCLUSION The calculated health risks suggest substantial risks of inhalation of metal aerosols from e-cig use.
Collapse
Affiliation(s)
- Jinho Lee
- Environmental and Occupational Health Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Masoud Afshar
- Environmental and Occupational Health Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Wei-Chung Su
- Environmental and Occupational Health Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- The University of Texas Health Science Center at Houston Southwest Center for Occupational and Environmental Health, Houston, Texas, USA
| | - Inkyu Han
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Block AC, Schneller LM, Leigh NJ, Heo J, Goniewicz ML, O'Connor RJ. Heavy metals in ENDS: a comparison of open versus closed systems purchased from the USA, England, Canada and Australia. Tob Control 2025; 34:28-33. [PMID: 37438094 PMCID: PMC10784404 DOI: 10.1136/tc-2023-057932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/09/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
INTRODUCTION Electronic nicotine delivery systems (ENDS) are known to contain heavy metals such as lead (Pb), nickel (Ni) and chromium (Cr). The presence of heavy metals in ENDS may be due to contamination of e-liquids or leaching from elements of the ENDS device. This study investigates differences in ENDS metal concentrations between product type, year of purchase, country of purchase and e-liquid flavour. METHODS Various open-system (refill e-liquids; n=116) and closed-system (prefilled with e-liquid; n=120) products were purchased in 2017 and 2018 from the USA, England, Canada and Australia. Electrothermal atomic absorption spectroscopy was used to analyse each product for Pb, Ni and Cr. Multiple linear regression and Kruskal-Wallis non-parametric statistical tests were conducted using GraphPad. RESULTS Linear regression showed system type, year of purchase (not supported by Kruskal-Wallis), country of purchase and flavour type each had significant impacts on heavy metal concentrations. Open-system e-liquid samples showed no quantifiable levels of heavy metals. Closed-system samples contained concerningly high concentrations of Pb, Ni and Cr. Closed-system samples from the USA commonly displayed higher average heavy metal concentrations than those from England. Some fruit and mint-flavoured closed-system products showed higher heavy metal concentrations than tobacco-flavoured products. CONCLUSION The presence of heavy metals only in closed-system products suggests that metals may be leaching from ENDS device parts. Highly variable heavy metal concentrations between ENDS products demonstrate that various product characteristics may affect the degree of leaching and that there is a need for further regulation of these products.
Collapse
Affiliation(s)
- Ashleigh C Block
- Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Chemistry, SUNY Buffalo State University, Buffalo, New York, USA
| | - Liane M Schneller
- Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Noel J Leigh
- Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Jinseok Heo
- Chemistry, SUNY Buffalo State University, Buffalo, New York, USA
| | - Maciej L Goniewicz
- Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Richard J O'Connor
- Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
7
|
Poindexter ME, Li Y, Madl AK, Nguyen TB, Pinkerton KE. Increasing coil temperature of a third-generation e-cigarette device modulates C57BL/6 mouse lung immune cell composition and cytokine milieu independently of aerosol dose. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024:1-14. [PMID: 39494666 DOI: 10.1080/15287394.2024.2412998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2024]
Abstract
Higher coil temperature in e-cigarette devices increases the formation of aerosols and toxicants, such as carbonyls. At present, the health implications of vaping at higher temperatures, including exacerbation of pulmonary inflammation, are largely unknown when aerosol dose is considered. To isolate the pulmonary effects of coil temperature, C57BL/6 mice were exposed to e-cigarette aerosols generated at lower (190°C) or higher (250°C) temperature for 3 days, while maintaining a similar chamber aerosol concentration. Increasing coil temperature did not markedly alter aerosol mass-normalized emissions of select carbonyls formed from thermal degradation pathways including formaldehyde, acetaldehyde, propionaldehyde, and acetone under the tested environment. Total bronchoalveolar cells, primarily macrophages, were significantly decreased in mice exposed to aerosols generated with higher coil temperatures compared to lower temperature exposures. The gene expression of IFNβ, IL-1β, TNFα, and IL-10 in mouse lung tissue was significantly reduced following e-cigarette exposure under both conditions, compared to filtered air exposure. Higher temperature exposures further exacerbated downregulation of IFNβ and IL-1β. Data suggest that higher temperature vaping might modulate acute pulmonary immune responses, potentially inducing immune suppression, even when normalized for aerosol dose exposure. Coil temperature thus appears to be an important parameter that needs to be regulated to ensure harm reduction for e-cigarette users.
Collapse
Affiliation(s)
- Morgan E Poindexter
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Yichen Li
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Amy K Madl
- Center for Health and the Environment, University of California, Davis, CA, USA
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, CA, USA
| |
Collapse
|
8
|
Harris T. Physical and Chemical Characterization of Aerosols Produced from Experimentally Designed Nicotine Salt-Based E-Liquids. Chem Res Toxicol 2024; 37:1315-1328. [PMID: 39078024 PMCID: PMC11337207 DOI: 10.1021/acs.chemrestox.4c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
Nicotine salt-based e-liquids deliver nicotine more rapidly and efficiently to electronic nicotine delivery system (ENDS) users than freebase nicotine formulations. Nicotine salt-based products represent a substantial majority of the United States ENDS market. Despite the popularity of nicotine salt formulations, the chemical and physical characteristics of aerosols produced by nicotine salt e-liquids are still not well understood. To address this, this study reports the harmful and potentially harmful constituents (HPHCs) and particle sizes of aerosols produced by laboratory-made freebase nicotine and nicotine salt e-liquids. The nicotine salt e-liquids were formulated with benzoic acid, citric acid, lactic acid, malic acid, or oxalic acid. The nicotine salt aerosols had different HPHC profiles than the freebase nicotine aerosols, indicating that the carboxylic acids were not innocent bystanders. The polycarboxylic acid e-liquids containing citric acid, malic acid, or oxalic acid produced higher acrolein yields than the monocarboxylic acid e-liquids containing benzoic acid or lactic acid. Across most PG:VG ratios, nicotine benzoate or nicotine lactate aerosols contained the highest nicotine quantities (in %) and the highest nicotine yields (per milligram of aerosol). Additionally, the nicotine benzoate and nicotine lactate e-liquids produced the highest carboxylic acid yields under all tested conditions. The lower acid yields of the citric, malic, and oxalic acid formulations are potentially due to a combination of factors such as lower transfer efficiencies, lower thermostabilities, and greater susceptibility to side reactions because of their additional carboxyl groups serving as new sites for reactivity. For all nicotine formulations, the particle size characteristics were primarily controlled by the e-liquid solvent ratios, and there were no clear trends between nicotine salt and freebase nicotine aerosols that indicated nicotine protonation affected particle size. The carboxylic acids impacted aerosol output, nicotine delivery, and HPHC yields in distinct ways such that interchanging them in ENDS can potentially cause downstream effects.
Collapse
Affiliation(s)
- Trevor Harris
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993, United States
| |
Collapse
|
9
|
Reilly S, Cheng T, Feng C, Walters MJ. Harmful and Potentially Harmful Constituents in E-Liquids and Aerosols from Electronic Nicotine Delivery Systems (ENDS). Chem Res Toxicol 2024; 37:1155-1170. [PMID: 38924487 PMCID: PMC11256903 DOI: 10.1021/acs.chemrestox.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In 2012, the U.S. Food & Drug Administration (FDA) published an established list of 93 harmful and potentially harmful constituents (HPHCs) targeting four tobacco product types (cigarettes, cigarette tobacco, roll-your-own tobacco, smokeless tobacco). In 2016, the FDA finalized the deeming rule to regulate electronic nicotine delivery systems (ENDS). However, knowledge gaps exist regarding whether certain HPHCs are present in ENDS e-liquids and aerosols. We identified and addressed these gaps by conducting literature searches and then experimentally quantifying HPHCs in the e-liquid and aerosol of 37 ENDS brands based on gaps in the literature. The literature searches identified 66 e-liquid HPHCs and 68 aerosol HPHCs that have limited to no information regarding the quantifiability of these constituents. A contracted ISO 17025 accredited laboratory performed the HPHC quantifications. The availability of validated analytical methods in the contracted laboratory determined the HPHCs included in the study scope (63/66 for e-liquids, 64/68 for aerosols). Combining the results from the quantifications and literature searches, 36 (39%) and 34 (37%) HPHCs were found quantifiable (≥limit of quantification [LOQ]) in ENDS e-liquids and aerosols, respectively, with 25 HPHCs being quantifiable in both matrices. Quantifiability results imply potential HPHC transfers between matrices, leaching from components, or formations from aerosol generation. The study results can inform the scientific basis for manufacturers and regulators regarding regulatory requirements for HPHC reporting. The HPHC quantities can also inform evaluations of the public health impact of ENDS and public communications regarding ENDS health risks.
Collapse
Affiliation(s)
- Samantha
M. Reilly
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Tianrong Cheng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Charles Feng
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| | - Matthew J. Walters
- Office of Science, Center
for Tobacco Products, U.S. Food and Drug
Administration, Silver
Spring, Maryland 20993-0002, United States
| |
Collapse
|
10
|
Kapiamba KF, Owusu SY, Wu Y, Huang YW, Jiang Y, Wang Y. Examining the Oxidation States of Metals in Aerosols Emitted by Electronic Cigarettes. Chem Res Toxicol 2024; 37:1113-1120. [PMID: 38957009 DOI: 10.1021/acs.chemrestox.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/04/2024]
Abstract
Electronic cigarettes (ECs) emit many toxic substances, including metals, that can pose a threat to users and the environment. The toxicity of the emitted metals depends on their oxidation states. Hence, this study examines the oxidation states of metals observed in EC aerosols. X-ray photoelectron spectroscopy analysis of the filters that collected EC aerosols identified the oxidation states of five primary metals (based on surface sample analysis), including chromium(III) (close to 100%) under low power setting while a noticeable amount of chromium(VI) (15%) at higher power settings of the EC, and copper(II) (100%), zinc(II) (100%), nickel(II) (100%), lead(II) (65%), and lead(IV) (35%) regardless of power settings. This observation indicates that the increased temperature due to higher power settings could alter the oxidation states of certain metals. We noted that many metals were in their lesser toxic states; however, inhaling these metals may still pose health risks.
Collapse
Affiliation(s)
- Kashala Fabrice Kapiamba
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Miami, Florida 33146, United States
| | - Stephen Yaw Owusu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yangtao Wu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon TU428, Hong Kong
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yi Jiang
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon TU428, Hong Kong
| | - Yang Wang
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Miami, Florida 33146, United States
| |
Collapse
|
11
|
Tran L, Rao G, Robertson NE, Hunsaker HC, Chiu EY, Poulin BA, Madl AK, Pinkerton KE, Britt RD, Nguyen TB. Quantification of Free Radicals from Vaping Electronic Cigarettes Containing Nicotine Salt Solutions with Different Organic Acid Types and Concentrations. Chem Res Toxicol 2024; 37:991-999. [PMID: 38778043 PMCID: PMC11187635 DOI: 10.1021/acs.chemrestox.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies.
Collapse
Affiliation(s)
- Lillian
N. Tran
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Guodong Rao
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Nicholas E. Robertson
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Haylee C. Hunsaker
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Elizabeth Y. Chiu
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| | - Amy K. Madl
- Center
for Health and the Environment, University
of California Davis, Davis, California 95616, United States
| | - Kent E. Pinkerton
- Center
for Health and the Environment, University
of California Davis, Davis, California 95616, United States
| | - R. David Britt
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Tran B. Nguyen
- Department
of Environmental Toxicology, University
of California, Davis, Davis, California 95616, United States
| |
Collapse
|
12
|
Muthumalage T, Noel A, Thanavala Y, Alcheva A, Rahman I. Challenges in current inhalable tobacco toxicity assessment models: A narrative review. Tob Induc Dis 2024; 22:TID-22-102. [PMID: 38860150 PMCID: PMC11163881 DOI: 10.18332/tid/188197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2023] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 06/12/2024] Open
Abstract
Emerging tobacco products such as electronic nicotine delivery systems (ENDS) and heated tobacco products (HTPs) have a dynamic landscape and are becoming widely popular as they claim to offer a low-risk alternative to conventional smoking. Most pre-clinical laboratories currently exploit in vitro, ex vivo, and in vivo experimental models to assess toxicological outcomes as well as to develop risk-estimation models. While most laboratories have produced a wide range of cell culture and mouse model data utilizing current smoke/aerosol generators and standardized puffing profiles, much variation still exists between research studies, hindering the generation of usable data appropriate for the standardization of these tobacco products. In this review, we discuss current state-of-the-art in vitro and in vivo models and their challenges, as well as insights into risk estimation of novel products and recommendations for toxicological parameters for reporting, allowing comparability of the research studies between laboratories, resulting in usable data for regulation of these products before approval by regulatory authorities.
Collapse
Affiliation(s)
| | - Alexandra Noel
- School of Veterinary Medicine Louisiana State University, Baton Rouge, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, United States
| | - Aleksandra Alcheva
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, United States
| |
Collapse
|
13
|
Orisakwe OE, Ikpeama EU, Orish CN, Ezejiofor AN, Okolo KO, Cirovic A, Cirovic A, Nwaogazie IL, Onoyima CS. Prosopis africana exerts neuroprotective activity against quaternary metal mixture-induced memory impairment mediated by oxido-inflammatory response via Nrf2 pathway. AIMS Neurosci 2024; 11:118-143. [PMID: 38988888 PMCID: PMC11230863 DOI: 10.3934/neuroscience.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 07/12/2024] Open
Abstract
The beneficial effects of Prosopis africana (PA) on human health have been demonstrated; however, its protective effects against heavy metals (HM) are not yet understood. This study evaluated the potential neuroprotective effects of PA in the cerebral cortex and cerebellum. To accomplish this, we divided 35 albino Sprague Dawley rats into five groups. Group I did not receive either heavy metal mixture (HMM) or PA. Group II received a HMM of PbCl2 (20 mg/kg), CdCl2 (1.61 mg/kg), HgCl2 (0.40 mg/kg), and NaAsO3 (10 mg/kg) orally for a period of two months. Groups III, IV, and V received HMM along with PA at doses of 500, 1000, and 1500 mg/kg, respectively. PA caused decreased levels of HM accumulation in the cerebral cortex and cerebellum and improved performance in the Barnes maze and rotarod tests. PA significantly reduced levels of IL-6 and TNF-α. PA increased concentrations of SOD, CAT, GSH, and Hmox-1 and decreased the activities of AChE and Nrf2. In addition, levels of MDA and NO decreased in groups III, IV, and V, along with an increase in the number of live neurons. In conclusion, PA demonstrates a complex neuroprotective effect with the potential to alleviate various aspects of HM-induced neurotoxicity.
Collapse
Affiliation(s)
- Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, TR-10 Mersin, Turkey
| | - Evelyn Utomoibor Ikpeama
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinna N Orish
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Anthonet N Ezejiofor
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Kenneth O Okolo
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Enugu State, University of Science & Technology, Nigeria
| | - Aleksandar Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Ana Cirovic
- University of Belgrade, Faculty of Medicine, Institute of Anatomy, Belgrade, Serbia
| | - Ify L Nwaogazie
- World Bank Africa Centre of Excellence in Oilfield Chemicals Research (ACE-CEFOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chinekwu Samson Onoyima
- Dept. of Biochemistry, Faculty of Biological Sciences, University of Nigeria Nsukka, Enugu State, Nigeria
| |
Collapse
|
14
|
Phandthong R, Wong M, Song A, Martinez T, Talbot P. Does vaping increase the likelihood of SARS-CoV-2 infection? Paradoxically yes and no. Am J Physiol Lung Cell Mol Physiol 2024; 326:L175-L189. [PMID: 38147795 PMCID: PMC11280677 DOI: 10.1152/ajplung.00300.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2022] [Revised: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023] Open
Abstract
Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. Our objectives were to investigate the impact of EC aerosols on SARS-CoV-2 infection of human bronchial epithelial cells and identify the causative chemical(s). Fully differentiated human bronchial epithelial tissues (hBETs) were exposed at the air-liquid interface (ALI) to aerosols produced from JUUL "Virginia Tobacco" and BLU ECs, as well as nicotine, propylene glycol (PG), vegetable glycerin (VG), and benzoic acid, and infection was then evaluated with SARS-CoV-2 pseudoparticles. Pseudoparticle infection of hBETs increased with aerosols produced from PG/VG, PG/VG plus nicotine, or BLU ECs; however, JUUL EC aerosols did not increase infection compared with controls. Increased infection in PG/VG alone was due to enhanced endocytosis, whereas increased infection in PG/VG plus nicotine or in BLU ECs was caused by nicotine-induced elevation of the aerosol's pH, which correlated with increased transmembrane protease, serine 2 (TMPRSS2) activity. Notably, benzoic acid in JUUL aerosols mitigated the enhanced infection caused by PG/VG or nicotine, offering protection that lasted for at least 48 h after exposure. In conclusion, the study demonstrates that EC aerosols can impact susceptibility to SARS-CoV-2 infection depending on their specific ingredients. PG/VG alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by certain ingredients. These findings highlight the complex relationship between ECs and SARS-CoV-2 susceptibility, emphasizing the importance of considering the specific aerosol ingredients when evaluating the potential effects of ECs on infection risk.NEW & NOTEWORTHY Data on the relationship between electronic cigarettes (ECs) and SARS-CoV-2 infection are limited and contradictory. We investigated the impact of EC aerosols and their ingredients on SARS-CoV-2 infection of human bronchial epithelial cells. Our data show that specific ingredients in EC aerosols impact the susceptibility to SARS-CoV-2 infection. Propylene glycol (PG)/vegetable glycerin (VG) alone or PG/VG plus nicotine enhanced infection through different mechanisms, whereas benzoic acid in JUUL aerosols mitigated the increased infection caused by these ingredients.
Collapse
Affiliation(s)
- Rattapol Phandthong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Man Wong
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Ann Song
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Teresa Martinez
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| | - Prue Talbot
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States
| |
Collapse
|
15
|
Tillery A, Aherrera A, Chen R, Lin JJY, Tehrani M, Moustafa D, Mihalic J, Navas-Acien A, Rule AM. Characterization of e-cigarette users according to device type, use behaviors, and self-reported health outcomes: Findings from the EMIT study. Tob Induc Dis 2023; 21:159. [PMID: 38059181 PMCID: PMC10696923 DOI: 10.18332/tid/174710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Electronic cigarettes (e-cigarettes) rapidly evolved from large modifiable (MOD) devices, to small and affordable 'POD' devices. Detailed information on user demographics and preferences according to device type, which can inform potential chemical exposure and policy recommendations, is currently limited. The goal of this study is to describe user demographics, use behaviors and preferences, as well as self-reported health outcomes according to the e-cigarette device type used. METHODS From April 2019 to March 2020, 91 participants from Maryland (18 MOD users, 26 POD users, 16 dual users (use of both combustible and e-cigarettes), and 31 non-users (never e-cigarette users and never smokers or >6 months former use) were recruited. A comprehensive questionnaire collected sociodemographic characteristics, e-cigarette/tobacco use behaviors, self-reported health outcomes, device characteristics and preferences. Chi-squared tests for categorical variables, ANOVA for continuous variables, qualitative thematic analysis, linear and logistic regressions were used to assess relationships between variables and groups. RESULTS POD users were younger (average 22.5 years) than MOD users (30.8 years) or dual users (34.3 years) (p<0.001). MOD users reported more puffs per day (mean ± SD: 373 ± 125 puffs) compared to POD users (123.0 ± 172.5). E-cigarette users who were former smokers used 1.16 mg/mL lower nicotine concentrations compared to lifetime exclusive e-cigarette users (p=0.03) in linear models. Exclusive POD users self-reported more coughing than exclusive MOD or dual users (p=0.02). E-cigarette users reported more shortness of breath, headaches, and fatigue from their e-cigarette use compared to non-users. CONCLUSIONS We found significant differences between user demographics, e-cigarette preferences, device characteristics, and use behaviors by user group. This information can help explain exposure to chemicals from e-cigarettes, including compounds with known toxic effects (e.g. metals, formaldehyde), and help inform the design of prevention and intervention strategies and policy decisions.
Collapse
Affiliation(s)
- Anna Tillery
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Angela Aherrera
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Rui Chen
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Joyce J. Y. Lin
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Mina Tehrani
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Donia Moustafa
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Jana Mihalic
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| | - Ana Navas-Acien
- Mailman School of Public Health, Columbia University, New York, United States
| | - Ana M. Rule
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
16
|
Aherrera A, Lin JJ, Chen R, Tehrani M, Schultze A, Borole A, Tanda S, Goessler W, Rule AM. Metal Concentrations in E-Cigarette Aerosol Samples: A Comparison by Device Type and Flavor. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127004. [PMID: 38048100 PMCID: PMC10695266 DOI: 10.1289/ehp11921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2022] [Revised: 10/18/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The rapid evolution of electronic cigarette (e-cigarette) products warrants surveillance of the differences in exposure across device types-modifiable devices (MODs), cartridge ("pod")-containing devices (PODs), disposable PODs (d-PODs)-and flavors of the products available on the market. OBJECTIVE This study aimed to measure and compare metal aerosol concentrations by device type and common flavors. METHODS We collected aerosol from 104 MODs, 67 PODs (four brands: JUUL, Bo, Suorin, PHIX), and 23 d-PODs (three brands: ZPOD, Bidi, Stig) via droplet deposition in a series of conical pipette tips. Metals and metalloids [aluminum (Al), arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), and zinc (Zn)] were measured using inductively coupled plasma mass spectrometry (ICP-MS), results were log-transformed for statistical analysis, and concentrations are reported in aerosol units (mg / m 3 ). RESULTS Of the 12 elements analyzed, concentrations were statistically significantly higher in MOD devices, except for Co and Ni, which were higher in PODs and d-PODs. Of the POD brands analyzed, PHIX had the highest median concentrations among four metals (Al, Ni, Pb, and Sn) compared to the rest of the POD brands. According to POD flavor, seven metals were three to seven orders of magnitude higher in tobacco-flavored aerosol compared to those in mint and mango flavors. Among the d-POD brands, concentrations of four metals (Al, Cu, Ni, and Pb) were higher in the ZPOD brand than in Bidi Stick and Stig devices. According to d-POD flavor, only Cr concentrations were found to be statistically significantly higher in mint than tobacco-flavored d-PODs. DISCUSSION We observed wide variability in aerosol metal concentrations within and between the different e-cigarette device types, brands, and flavors. Overall, MOD devices generated aerosols with higher metal concentrations than PODs and d-PODs, and tobacco-flavored aerosols contained the highest metal concentrations. Continued research is needed to evaluate additional factors (i.e., nicotine type) that contribute to metal exposure from new and emerging e-cigarette devices in order to inform policy. https://doi.org/10.1289/EHP11921.
Collapse
Affiliation(s)
- Angela Aherrera
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Pediatric Pulmonary Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joyce Jy Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mina Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Schultze
- Department of Biochemistry, Ithaca College School of Humanities and Sciences, Ithaca, New York, USA
| | - Aryan Borole
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Stefan Tanda
- Institute of Chemistry, University of Graz, Graz, Austria
| | | | - Ana M. Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Gong JY, Ghosh M, Hoet PH. Association between metal exposure from e-cigarette components and toxicity endpoints: A literature review. Regul Toxicol Pharmacol 2023; 144:105488. [PMID: 37657743 DOI: 10.1016/j.yrtph.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Electronic cigarette is often promoted and perceived as an 'healthy' alternative compared to conventional cigarettes. However, growing body of evidence indicate the possible adverse health effect associated with e-cigarette. Here we reviewed the literature with a focus on metal exposure in relation to e-cigarette use and related toxicity endpoints. Twenty-nine studies were identified for full text screening after applying the screening criteria of which 5 in vitro studies and 11 epidemiological studies were included for data extraction. Cr, Cu, Ni, Sn are the most found metal in all studies. In vitro, metal from e-cigarette (liquid or aerosols) induced cytotoxicity, oxidative stress, genotoxicity and pro-inflammatory responses. It was observed that the presence of nicotine can influence metal-induced in vitro toxicity. Based on epidemiological studies, the metal burden in e-cigarette users showed to be elevated in different populations (including e.g. NHANES). However, most often such studies were limited by the missing user characteristics, and information of other potential sources of metal exposure. In general, metals from e-cigarette use can be associated with toxicity endpoints but to uncover the metal related hazard of e-cigarette in users, more detailed data on metals in vapors and e-liquids; user habits and user demographics are needed.
Collapse
Affiliation(s)
- Jia-You Gong
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Manosij Ghosh
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| | - Peter Hm Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
Jameson JB, Wang J, Bailey PC, Oldham MJ, Smith CR, Jeong LN, Cook DK, Bates AL, Ullah S, Pennington ASC, Gillman IG. Determination of chemical constituent yields in e-cigarette aerosol using partial and whole pod collections, a comparative analysis. Front Chem 2023; 11:1223967. [PMID: 37744056 PMCID: PMC10512464 DOI: 10.3389/fchem.2023.1223967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Literature reports the chemical constituent yields of electronic nicotine delivery systems (ENDS) aerosol collected using a range of aerosol collection strategies. The number of puffs to deplete an ENDS product varies widely, but collections often consist of data from the first 50-100 puffs. However, it is not clear whether these discrete puff blocks are representative of constituent yields over the life of a pod. We aimed to assess the effect of differing aerosol collection strategies on reported yields for select chemical constituents in the aerosol of closed pod-based ENDS products. Constituents analyzed were chosen to reflect important classes of compounds from the Final Premarket Tobacco Product Application Guidance. Yields were normalized to total device mass loss (DML). Collection strategies that consisted of partial pod collection were valid for determining yields of constituents whose DML normalized yields were consistent for the duration of pod life. These included primary aerosol constituents, such as propylene glycol, glycerol, and nicotine, and whole pod yields could be determined from initial puff blocks. However, changes were observed in the yields of some metals, some carbonyl compounds, and glycidol over pod life in a chemical constituent and product dependent manner. These results suggest that collection strategies consisting of initial puff block collections require validation per chemical constituent/product and are not appropriate for chemical constituents with variable yields over pod life. Whole pod collection increased sensitivity and accuracy in determining metal, carbonyl, and glycidol yields compared to puff block-based collection methodologies for all products tested.
Collapse
|
19
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
20
|
Kaplan B, Navas-Acien A, Rule AM, Hilpert M, Cohen JE. Exposure to metals among Electronic Nicotine Delivery System (ENDS) users in the PATH study: A longitudinal analysis. ENVIRONMENTAL RESEARCH 2023; 231:116032. [PMID: 37137457 PMCID: PMC10330461 DOI: 10.1016/j.envres.2023.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Few studies have evaluated Electronic Nicotine Delivery Systems (ENDS) in longitudinal studies, as a potential source of metals which may have carcinogenic, neurotoxic, and cardiotoxic effects. We evaluated metal body burden by ENDS use status in a longitudinal population-based national survey. METHODS We used the Population Assessment of Tobacco and Health (PATH) Study wave 1 (2013-2014), wave 2 (2014-2015), and wave 3 (2015-2016) adult data to assess urinary concentrations of seven metals among (1) ENDS only users who never used any nonelectronic tobacco products (n = 50), (2) ENDS only users who were former users of any nonelectronic tobacco products (n = 123) and (3) Never users (n = 1501) of any tobacco product. RESULTS Among ENDS only users who never used any nonelectronic tobacco products (n = 50), the geometric mean ratios (GMRs) of Cd and Pb were 1.25 (95%CI: 1.09-1.42) and 1.19 (95%CI: 1.05-1.34), respectively, compared to never users after adjustment for PATH Study wave, age, sex, race/ethnicity, education, region, secondhand smoke at home and work, and cannabis and other substance use. After the same adjustment, the corresponding GMRs were 1.48 (95%CI: 1.32-1.67) and 1.43 (95%CI: 1.28-1.60) for ENDS only users who were former users of any nonelectronic tobacco products (n = 123). No difference was observed in urinary concentrations of other metals comparing ENDS users to never users of any tobacco product. DISCUSSION ENDS users show higher urinary levels of Cd and Pb, including lifetime exclusive ENDS users compared to never users of any tobacco product. These findings are limited by the small sample size and could be related to underreporting of past combustible tobacco use or other factors. Metals typical of ENDS such as nickel and chromium unfortunately are not available in PATH. Studies assessing metal exposure associated with long term lifetime exclusive ENDS use (≥5 years) with larger sample size are needed.
Collapse
Affiliation(s)
- Bekir Kaplan
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joanna E Cohen
- Institute for Global Tobacco Control, Department of Health, Behavior and Society, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
21
|
Kotewar SS, Pakhale A, Tiwari R, Reche A, Singi SR. Electronic Nicotine Delivery System: End to Smoking or Just a New Fancy Cigarette. Cureus 2023; 15:e43425. [PMID: 37706142 PMCID: PMC10497069 DOI: 10.7759/cureus.43425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/19/2023] [Accepted: 08/13/2023] [Indexed: 09/15/2023] Open
Abstract
Smoking and tobacco chewing are the predominant causes of oral cancer. Tobacco is the second-most widely consumed psychoactive substance. There are numerous ways to quit smoking, of which one is electronic cigarettes (e-cigarettes). E-cigarette use is a brand-new, global trend. E-cigarette is a battery-operated device that heats a liquid to create a vapor that the consumer inhales. Several countries have acknowledged that the first step toward electronic nicotine delivery system (ENDS) management is a precise classification of ENDS within the limits of current legislation. Countries have currently categorized ENDS into four generations. People's perceptions about tobacco products have altered recently as a consequence of the advertising of ENDS. The likelihood of starting to smoke cigarettes was four times higher in adolescents who used ENDS, and the probability of quitting was reduced and often prolonged in those who used ENDS. In addition, ENDS normalizes smoking-like actions including inhaling in and exhaling smoke. Adverse marketing via geographic locations and social media platforms, as well as nicotine's irreversible effects on growing adolescent and young adult brains that predispose individuals to addicted behaviors, may be responsible for their rising appeal among teenagers. Despite this, ENDS use has risen among young individuals who have never smoked and undoubtedly face more health risks than those who do not use ENDS. The oral cavity is the first to encounter ENDS in individuals and where it initially affects the human system. As a known contributor to cardiovascular diseases, neurological conditions, and cancers, nicotine seems to be a serious cause for concern. This review provides a concise summary of the research on the components, mode of action, applications, and effects of e-cigarettes on oral as well as systemic systems.
Collapse
Affiliation(s)
- Samrudhi S Kotewar
- Department of Public Health Dentistry, Sharad Pawar Dental College ad Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Aayushi Pakhale
- Department of Oral Pathology and Microbiology, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Rupali Tiwari
- Department of Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Amit Reche
- Department of Public Health Dentistry, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| | - Shriya R Singi
- Department of Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (Deemed to be University), Wardha, IND
| |
Collapse
|
22
|
Tehrani MW, Ahererra AD, Tanda S, Chen R, Borole A, Goessler W, Rule AM. Arsenic and arsenic species in MOD, POD, and disposable POD electronic cigarette aerosols: a pilot study. JOURNAL OF ENVIRONMENTAL EXPOSURE ASSESSMENT 2023; 2:9. [PMID: 39252696 PMCID: PMC11382129 DOI: 10.20517/jeea.2023.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 09/11/2024]
Abstract
The growing popularity of electronic cigarettes (e-cig) has raised questions about the health effects of e-cig use, or vaping. Previous studies have reported on the potential of exposure to arsenic (As) and other metal(loid)s from vaping, but little is known about the speciation of As in the inhaled aerosols, an important determinant of toxicity. Inorganic As (iAs) species AsIII and AsV are generally more hazardous than organic As species. This study aimed to investigate total and speciated As in condensed aerosols of popular commercial e-cig products and to compare them with regulatory exposure limits. High-performance liquid chromatography and inductively-coupled plasma mass spectrometry were used for As measurements of e-cig aerosol condensates. The analysis included samples from three types of e-cig devices: MODs, PODs, and disposable pod (d-POD) devices. iAs species were identified in all 23 analyzed e-cig aerosol condensate samples, with the highest aerosol concentrations measured in MODs. The geometric mean (range) iAs concentration of 2.3 (1.2-5.1) μg/m3 observed in MOD devices in this study exceeded the recommended exposure limit of 2 μg/m3 for 15-min or shorter inhalation exposures set by the United States National Institute for Occupational Safety and Health. These preliminary results suggest that iAs species are present in inhalable aerosols of some MOD products at levels above regulatory limits for iAs inhalation.
Collapse
Affiliation(s)
- Mina W Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Angela D Ahererra
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefan Tanda
- Institute of Chemistry, University of Graz, Graz 8010, Austria
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Aryan Borole
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Walter Goessler
- Institute of Chemistry, University of Graz, Graz 8010, Austria
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
23
|
Alcantara C, Chaparro L, Zagury GJ. Occurrence of metals in e-cigarette liquids: Influence of coils on metal leaching and exposure assessment. Heliyon 2023; 9:e14495. [PMID: 36950607 PMCID: PMC10025154 DOI: 10.1016/j.heliyon.2023.e14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Electronic cigarettes are generally recognized as a safer alternative than conventional cigarettes. Nevertheless, previous research suggests metal (loid) leaching due to coil contact, potentially transferring to the e-liquid and its aerosolized form. In this study, Cr, Cd, Ni, and Pb levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) on 17 samples of e-liquids with different chemical properties (e.g., pH, nicotine content, flavoring, free-base, and nicotine salts). Twelve e-liquids were then put in contact with 36-gauge Kanthal A-1, Nichrome 80, Stainless steel 317 L and disposable coils such as Juul, and Aspire BVC for three days at 200-250 °C for 1 h each day. Metal levels expressed as mean (standard deviation) metal concentration, were below detection (Cd) to very low in bottle samples (Ni ≤ 76 (18); Pb ≤ 16 (1.5); and Cr ≤ 386 (15.6) μg/kg). In the coil extracts, varying concentrations of the same metal (loid) were found, indicating that metal leaching capacity may differ per sample. All samples contained Ni and Cr, followed by Pb to a much lesser extent. Cd levels were mostly below detection limits. Coil + e-liquid combinations with the highest Ni, Cr, and Pb concentrations were: Aspire BVC + Melon 0 mg/mL: Ni = 1.22 E+04 (281); Aspire BVC + Hit Nicotine 40 mg/mL: Cr = 864 (116); and Nichrome 80 + Melon 0 mg/mL: Pb = 56 (5) μg/kg. Overall, results suggest that nicotine salts at 40 mg/mL enhance Cr and Ni transfer. Stainless steel 317 L released very low metal concentrations. A conservative screening level risk characterization showed that 10.5% and 3.5% of the coil extracts may exceed Ni and Cr (III) safe concentrations, respectively. In the aerosol phase, 8.8% of samples might be above Ni equivalent daily dose for chronic exposure and 1.8% for intermediate exposure. Further studies on coil metal leaching could aid in establishing coil manufacturing regulations.
Collapse
Affiliation(s)
- Claudia Alcantara
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal (QC), H3C 3A7, Canada
| | - Laura Chaparro
- Les Laboratoires Vaporus Inc., 9704 Trans Canada Route, Saint-Laurent (QC), H4S 1V9, Canada
| | - Gerald J. Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montréal (QC), H3C 3A7, Canada
| |
Collapse
|
24
|
Canchola A, Langmo S, Meletz R, Lum M, Lin YH. External Factors Modulating Vaping-Induced Thermal Degradation of Vitamin E Acetate. Chem Res Toxicol 2023; 36:83-93. [PMID: 36534744 PMCID: PMC9846828 DOI: 10.1021/acs.chemrestox.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2022] [Indexed: 12/23/2022]
Abstract
Despite previous studies indicating the thermal stability of vitamin E acetate (VEA) at low temperatures, VEA has been shown to readily decompose into various degradation products such as alkenes, long-chain alcohols, and carbonyls such as duroquinone (DQ) at vaping temperatures of <200 °C. While most models simulate the thermal decomposition of e-liquids under pyrolysis conditions, numerous factors, including vaping behavior, device construction, and the surrounding environment, may impact the thermal degradation process. In this study, we investigated the role of the presence of molecular oxygen (O2) and transition metals in promoting thermal oxidation of e-liquids, resulting in greater degradation than predicted by pure pyrolysis. Thermal degradation of VEA was performed in inert (N2) and oxidizing atmospheres (clean air) in the absence and presence of Ni-Cr and Cu-Ni alloy nanopowders, metals commonly found in the heating coil and body of e-cigarettes. VEA degradation was analyzed using thermogravimetric analysis (TGA) and gas chromatography/mass spectrometry (GC/MS). While the presence of O2 was found to significantly enhance the degradation of VEA at both high (356 °C) and low (176 °C) temperatures, the addition of Cu-Ni to oxidizing atmospheres was found to greatly enhance VEA degradation, resulting in the formation of numerous degradation products previously identified in VEA vaping emissions. O2 and Cu-Ni nanopowder together were also found to significantly increase the production of OH radicals, which has implications for e-liquid degradation pathways as well as the potential risk of oxidative damage to biological systems in real-world vaping scenarios. Ultimately, the results presented in this study highlight the importance of oxidation pathways in VEA thermal degradation and may aid in the prediction of thermal degradation products from e-liquids.
Collapse
Affiliation(s)
- Alexa Canchola
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
| | - Siri Langmo
- Department
of Evolution, Ecology, and Organismal Biology, University of California, Riverside, California 92521, United States
| | - Ruth Meletz
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Michael Lum
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Environmental
Toxicology Graduate Program, University
of California, Riverside, California 92521, United States
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
25
|
Herbst RS, Hatsukami D, Acton D, Giuliani M, Moushey A, Phillips J, Sherwood S, Toll BA, Viswanath K, Warren NJH, Warren GW, Alberg AJ. Electronic Nicotine Delivery Systems: An Updated Policy Statement From the American Association for Cancer Research and the American Society of Clinical Oncology. J Clin Oncol 2022; 40:4144-4155. [PMID: 36287017 DOI: 10.1200/jco.22.01749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
Combustible tobacco use has reached historic lows, demonstrating the importance of proven strategies to reduce smoking since publication of the 1964 Surgeon General's report. In contrast, the use of electronic nicotine delivery systems (ENDS), specifically e-cigarettes, has grown to alarming rates and threatens to hinder progress against tobacco use. A major concern is ENDS use by youth and adults who never previously used tobacco. While ENDS emit fewer carcinogens than combustible tobacco, preliminary evidence links ENDS use to DNA damage and inflammation, key steps in cancer development. Furthermore, high levels of nicotine can also increase addiction, raise blood pressure, interfere with brain development, and suppress the immune system. The magnitude of long-term health risks will remain unknown until longitudinal studies are completed. ENDS have been billed as a promising tool for combustible tobacco cessation, but further evidence is needed to assess their potential efficacy for adults who smoke. Of concern, epidemiological studies estimate that approximately 15%-42% of adults who use ENDS have never used another tobacco product, and another 36%-54% dual use both ENDS and combustible tobacco. This policy statement details advances in science related to ENDS and calls for urgent action to end predatory practices of the tobacco industry and protect public health. Importantly, we call for an immediate ban on all non-tobacco-flavored ENDS products that contain natural or synthetic nicotine to reduce ENDS use by youth and adults who never previously used tobacco. Concurrently, evidence-based treatments to promote smoking cessation and prevent smoking relapse to reduce cancer incidence and improve public health remain top priorities for our organizations. We also recognize there is an urgent need for research to understand the relationship between ENDS and tobacco-related disparities.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, CT
| | | | - Dana Acton
- American Association for Cancer Research, Washington, DC
| | | | - Allyn Moushey
- American Society of Clinical Oncology, Alexandria, VA
| | | | | | | | | | | | | | - Anthony J Alberg
- Arnold School of Public Health, University of South Carolina, Columbia, SC
| |
Collapse
|
26
|
Soulet S, Sussman RA. Critical Review of the Recent Literature on Organic Byproducts in E-Cigarette Aerosol Emissions. TOXICS 2022; 10:714. [PMID: 36548547 PMCID: PMC9787926 DOI: 10.3390/toxics10120714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/03/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
We review the literature on laboratory studies quantifying the production of potentially toxic organic byproducts (carbonyls, carbon monoxide, free radicals and some nontargeted compounds) in e-cigarette (EC) aerosol emissions, focusing on the consistency between their experimental design and a realistic usage of the devices, as determined by the power ranges of an optimal regime fulfilling a thermodynamically efficient process of aerosol generation that avoids overheating and "dry puffs". The majority of the reviewed studies failed in various degrees to comply with this consistency criterion or supplied insufficient information to verify it. Consequently, most of the experimental outcomes and risk assessments are either partially or totally unreliable and/or of various degrees of questionable relevance to end users. Studies testing the devices under reasonable approximation to realistic conditions detected levels of all organic byproducts that are either negligible or orders of magnitude lower than in tobacco smoke. Our review reinforces the pressing need to update and improve current laboratory standards by an appropriate selection of testing parameters and the logistical incorporation of end users in the experimental design.
Collapse
Affiliation(s)
| | - Roberto A. Sussman
- Institute of Nuclear Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
27
|
Herbst RS, Hatsukami D, Acton D, Giuliani M, Moushey A, Phillips J, Sherwood S, Toll BA, Viswanath K, Warren NJH, Warren GW, Alberg AJ. Electronic Nicotine Delivery Systems: An Updated Policy Statement from the American Association for Cancer Research and the American Society of Clinical Oncology. Clin Cancer Res 2022; 28:4861-4870. [PMID: 36287033 DOI: 10.1158/1078-0432.ccr-22-2429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 01/24/2023]
Abstract
Combustible tobacco use has reached historic lows, demonstrating the importance of proven strategies to reduce smoking since publication of the 1964 Surgeon General's report. In contrast, the use of electronic nicotine delivery systems (ENDS), specifically e-cigarettes, has grown to alarming rates and threatens to hinder progress against tobacco use. A major concern is ENDS use by youth and adults who never previously used tobacco. While ENDS emit fewer carcinogens than combustible tobacco, preliminary evidence links ENDS use to DNA damage and inflammation, key steps in cancer development. Furthermore, high levels of nicotine can also increase addiction, raise blood pressure, interfere with brain development, and suppress the immune system. The magnitude of long-term health risks will remain unknown until longitudinal studies are completed. ENDS have been billed as a promising tool for combustible tobacco cessation, but further evidence is needed to assess their potential efficacy for adults who smoke. Of concern, epidemiological studies estimate that approximately 15% to 42% of adults who use ENDS have never used another tobacco product, and another 36% to 54% "dual use" both ENDS and combustible tobacco. This policy statement details advances in science related to ENDS and calls for urgent action to end predatory practices of the tobacco industry and protect public health. Importantly, we call for an immediate ban on all non-tobacco-flavored ENDS products that contain natural or synthetic nicotine to reduce ENDS use by youth and adults who never previously used tobacco. Concurrently, evidence-based treatments to promote smoking cessation and prevent smoking relapse to reduce cancer incidence and improve public health remain top priorities for our organizations. We also recognize there is an urgent need for research to understand the relationship between ENDS and tobacco-related disparities.
Collapse
Affiliation(s)
- Roy S Herbst
- Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | | | - Dana Acton
- American Association for Cancer Research, Washington, D.C
| | | | - Allyn Moushey
- American Society of Clinical Oncology, Alexandria, Virginia
| | | | | | - Benjamin A Toll
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | - Graham W Warren
- Medical University of South Carolina, Charleston, South Carolina
| | - Anthony J Alberg
- Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
28
|
Soulet S, Sussman RA. A Critical Review of Recent Literature on Metal Contents in E-Cigarette Aerosol. TOXICS 2022; 10:510. [PMID: 36136475 PMCID: PMC9506048 DOI: 10.3390/toxics10090510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 05/23/2023]
Abstract
The inhalation of metallic compounds in e-cigarette (EC) aerosol emissions presents legitimate concerns of potential harms for users. We provide a critical review of laboratory studies published after 2017 on metal contents in EC aerosol, focusing on the consistency between their experimental design, real life device usage and appropriate evaluation of exposure risks. All experiments reporting levels above toxicological markers for some metals (e.g., nickel, lead, copper, manganese) exhibited the following experimental flaws: (i) high powered sub-ohm tank devices tested by means of puffing protocols whose airflows and puff volumes are conceived and appropriate for low powered devices; this testing necessarily involves overheating conditions that favor the production of toxicants and generate aerosols that are likely repellent to human users; (ii) miscalculation of exposure levels from experimental outcomes; (iii) pods and tank devices acquired months and years before the experiments, so that corrosion effects cannot be ruled out; (iv) failure to disclose important information on the characteristics of pods and tank devices, on the experimental methodology and on the resulting outcomes, thus hindering the interpretation of results and the possibility of replication. In general, low powered devices tested without these shortcomings produced metal exposure levels well below strict reference toxicological markers. We believe this review provides useful guidelines for a more objective risk assessment of EC aerosol emissions and signals the necessity to upgrade current laboratory testing standards.
Collapse
Affiliation(s)
| | - Roberto A. Sussman
- Institute of Nuclear Sciences, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
29
|
Vivarelli F, Granata S, Rullo L, Mussoni M, Candeletti S, Romualdi P, Fimognari C, Cruz-Chamorro I, Carrillo-Vico A, Paolini M, Canistro D. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol Res 2022; 182:106315. [PMID: 35724819 DOI: 10.1016/j.phrs.2022.106315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/16/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Department of Medicine and Surgery - University of Milano - Bicocca
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Mussoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
30
|
Rastian B, Wilbur C, Curtis DB. Transfer of Metals to the Aerosol Generated by an Electronic Cigarette: Influence of Number of Puffs and Power. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159334. [PMID: 35954690 PMCID: PMC9368615 DOI: 10.3390/ijerph19159334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
Electronic cigarettes (e-cigarettes) are increasing in popularity despite uncertainties about their health hazards. Literature studies have shown that e-cigarettes may be a source of toxic heavy metal exposure to the user, but the mechanism by which metals are transferred from the e-cigarette parts into the aerosol plume that is inhaled by the user is poorly understood. The goal of this study was to quantify the potentially harmful heavy metals chromium, nickel, copper, and lead systematically during the simulated use of a mod-type e-cigarette in order to better understand the mechanism of metal transfer from the e-cigarette parts into the aerosol plume and into the liquid in the storage tank. Aerosol was collected and aliquots of the remaining liquid in the storage tank were collected from 0 to 40 puffs in 10 puff increments and analyzed with atomic absorption spectroscopy. It was found that the concentration of metals increased in both the aerosol and tank liquid the more times the e-cigarette was puffed, but at varying rates for each element and depending on the power applied to the heating coil. For copper, lead, and nickel, the concentrations of metals in the aerosol and tank increased with increasing power but for chromium, the concentration varied with power. Additionally, it was observed that chromium and nickel concentrations were greater in the aerosol than in tank liquid, consistent with the direct transfer of those metals to the aerosol from heating of the nichrome coil element used in this study. For copper and lead, the concentrations were similar or greater in the tank compared to the aerosol, consistent with transfer first into the storage tank liquid, followed by vaporization into the aerosol.
Collapse
|
31
|
Esposito F, Squillante J, Nolasco A, Montuori P, Macrì PG, Cirillo T. Acrylamide levels in smoke from conventional cigarettes and heated tobacco products and exposure assessment in habitual smokers. ENVIRONMENTAL RESEARCH 2022; 208:112659. [PMID: 34990604 DOI: 10.1016/j.envres.2021.112659] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/14/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Acrylamide (AA) is a neurotoxic, genotoxic, and carcinogenic compound developed during heating at high temperatures. Foods such as potatoes, biscuits, bread and coffee are the main foodstuffs containing AA. Cigarette smoke may be a significant additional source of exposure. However, AA content may vary among different types of cigarettes. The study aimed to evaluate the AA content in conventional cigarettes (CC) and heated tobacco products (HTP) and its resulting exposure through their use. AA levels from the two types of cigarettes were determined by GC-MS and the daily exposure to AA was also ascertained. The margin of exposure (MOE) was calculated for neurotoxic and carcinogenic risk based on benchmark dose lower confidence limit for a 10% response (BMDL10) of 0.43 and 0.17, 0.30, and 1.13 mg/kgbw/day. AA level in CC ranged from 235 to 897 ng/cigarette, whereas HTP reported AA levels in the range of 99-187 ng/cigarette. The data showed a low neurotoxic risk for either CC or HTP, whereas a carcinogenic risk emerged through the smoking of CC based on different Benchmark doses. The carcinogenic risk for CC based on the highest Benchmark dose that was considered showed unsafe levels, as little as 10 CC cigarettes/day, whereas it was almost always of low concern for HTP. Another approach based upon the incremental lifetime cancer risk (ILCR) analysis led to similar results, exceeding, in some cases, the safety value of 10-4, as far as CC are concerned. Overall, the results confirmed that CC are a significant source of AA, and its levels were five times higher than in HTP.
Collapse
Affiliation(s)
- Francesco Esposito
- Department of Public Health, University of Naples "Federico II", via Sergio Pansini, 5 - 80131 Naples, Italy.
| | - Jonathan Squillante
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100 - 80055 Portici, Naples, Italy
| | - Agata Nolasco
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100 - 80055 Portici, Naples, Italy
| | - Paolo Montuori
- Department of Public Health, University of Naples "Federico II", via Sergio Pansini, 5 - 80131 Naples, Italy
| | - Pasquale Giuseppe Macrì
- Area Dipartimentale Medicina Legale e Gestione Della Responsabilità Sanitaria Az. USL Toscana Sud Est, Siena, Arezzo, Grosseto, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100 - 80055 Portici, Naples, Italy
| |
Collapse
|
32
|
Kapiamba KF, Hao W, Adom S, Liu W, Huang YW, Wang Y. Examining Metal Contents in Primary and Secondhand Aerosols Released by Electronic Cigarettes. Chem Res Toxicol 2022; 35:954-962. [PMID: 35385266 DOI: 10.1021/acs.chemrestox.1c00411] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The usage of electronic cigarettes (ECs) has surged since their invention two decades ago. However, to date, the health effects of EC aerosol exposure are still not well understood because of insufficient data on the chemical composition of EC aerosols and the corresponding evidence of health risks upon exposure. Herein, we quantified the metals in primary and secondhand aerosols generated by three brands of ECs. By combining aerosol filter sampling and inductively coupled plasma mass spectrometry (ICP-MS), we assessed the mass of metals as a function of EC flavoring, nicotine concentration, device power, puff duration, and aging of the devices. The masses of Cr, Cu, Mn, Ni, Cu, and Zn were consistently high across all brands in the primary and secondhand aerosols, some of which were above the regulated maximum daily intake amount, especially for Cr and Ni with mass (nanograms per 10 puffs) emitted at 117 ± 54 and 50 ± 24 (JUUL), 125 ± 77 and 219 ± 203 (VOOPOO), and 33 ± 10 and 27 ± 2 (Vapor4Life). Our analysis indicates that the metals are predominantly released from the EC liquid, potentially through mechanisms such as bubble bursting or the vaporization of metal-organic compounds. High metal contents were also observed in simulated secondhand aerosols, generally 80-90% of those in primary aerosols. Our findings provide a more detailed understanding of the metal emission characteristics of EC for assessing its health effects and policymaking.
Collapse
Affiliation(s)
- Kashala Fabrice Kapiamba
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Weixing Hao
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Stephen Adom
- Department of Chemistry and Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Wenyan Liu
- Department of Chemistry and Center for Research in Energy and Environment, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yang Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
33
|
Das D, Alam El Din SM, Pulczinski J, Mihalic JN, Chen R, Bressler J, Rule AM, Ramachandran G. Assessing variability of aerosols generated from e-Cigarettes. Inhal Toxicol 2022; 34:90-98. [PMID: 35275758 DOI: 10.1080/08958378.2022.2044414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022]
Abstract
While some in vitro and in vivo experiments have studied the toxic effects of e-cigarette (e-cig) components, the typical aerosol properties released from e-cigarettes have not been well characterized. In the present study, we characterized the variability in mass concentration and particle size distribution associated with the aerosol generation of different devices and e-liquid compositions in an experimental setup. The findings of this study indicate a large inter-day variability in the experiments, likely due to poor quality control in some e-cig devices, pointing to the need for a better understanding of all the factors affecting exposures in in vitro and in vivo experiments, and the development of standardized protocols for generation and measurement of e-cig aerosols.
Collapse
Affiliation(s)
- Darpan Das
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah-Marie Alam El Din
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jairus Pulczinski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jana N Mihalic
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Joseph Bressler
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
Jităreanu A, Cara IG, Sava A, Mârțu I, Caba IC, Agoroaei L. The Impact of the Storage Conditions and Type of Clearomizers on the Increase of Heavy Metal Levels in Electronic Cigarette Liquids Retailed in Romania. TOXICS 2022; 10:toxics10030126. [PMID: 35324751 PMCID: PMC8950552 DOI: 10.3390/toxics10030126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
The growing popularity of electronic cigarettes has raised several public health concerns, including the risks associated with heavy metals exposure via e-liquids and vapors. The purpose of this study was to determine, using atomic absorption spectrometry, the concentrations of Pb, Ni, Zn, and Co in some commercially available e-liquid samples from Romania immediately after purchase and after storage in clearomizers. Lead and zinc were found in all investigated samples before storage. The initial concentrations of Pb ranged from 0.13 to 0.26 mg L−1, while Zn concentrations were between 0.04 and 0.07 mg L−1. Traces of nickel appeared in all investigated e-liquids before storage but in very small amounts (0.01–0.02 mg L−1). Co was below the detection limits. We investigated the influence of the storage period (1, 3, and 5 days), storage temperature (22 °C and 40 °C), and type of clearomizer. In most cases, the temperature rise and storage period increase were associated with higher concentrations of heavy metals. This confirms that storage conditions can affect metal transfer and suggests that the temperature of storage is another parameter that can influence this phenomenon.
Collapse
Affiliation(s)
- Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (A.J.); (I.-C.C.); (L.A.)
| | - Irina Gabriela Cara
- Research Institute for Agriculture and Environment, “Ion Ionescu de la Brad” University of Life Sciences, 700115 Iasi, Romania
- Correspondence:
| | - Alexandru Sava
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Ioana Mârțu
- Department of Dental Technology, Faculty of Dental Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania;
| | - Ioana-Cezara Caba
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (A.J.); (I.-C.C.); (L.A.)
| | - Luminița Agoroaei
- Department of Toxicology, Faculty of Pharmacy, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (A.J.); (I.-C.C.); (L.A.)
| |
Collapse
|
35
|
Zhao D, Ilievski V, Slavkovich V, Olmedo P, Domingo-Relloso A, Rule AM, Kleiman NJ, Navas-Acien A, Hilpert M. Effects of e-liquid flavor, nicotine content, and puff duration on metal emissions from electronic cigarettes. ENVIRONMENTAL RESEARCH 2022; 204:112270. [PMID: 34717948 PMCID: PMC9140018 DOI: 10.1016/j.envres.2021.112270] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/15/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 05/11/2023]
Abstract
Vaping is the action of inhaling and exhaling aerosols from electronic cigarettes. The aerosols contain various amounts of toxic chemicals, including metals. The purpose of this study was to evaluate factors that can influence metal levels, including flavor and nicotine content in the e-liquid, and puff duration. Aerosols were collected from both closed-system (cartridge-based) and open-system e-cigarettes using e-liquids with different flavors (fruit, tobacco, and menthol), nicotine content (0, 6, 24, and 59 mg/mL), and different puff durations (1, 2, and 4 s). The concentrations of 14 metals in the collected aerosols were measured using inductively coupled plasma mass spectroscopy. Aerosol concentrations of As, Fe, and Mn varied significantly among fruit, tobacco, and menthol flavors in both closed-system and open-system devices. Concentrations of Al, Fe, Sn, and U were significantly higher in tobacco or menthol flavored aerosols compared to fruit flavors in closed-system devices. Aerosol W levels were significantly higher in tobacco flavored aerosols compared to fruit flavors in open-system devices. Concentrations of As, Fe, and Mn were higher in tobacco flavored aerosols compared to menthol flavors in both types of devices. The median Pb concentration decreased significantly from 15.8 to 0.88 μg/kg when nicotine content increased from 0 to 59 mg/mL, and median Ni concentration was 9.60 times higher in aerosols with nicotine of 59 mg/mL compared to 24 mg/mL (11.9 vs. 1.24 μg/kg) for closed-system devices. No significant differences were observed in aerosol metal concentrations for different puff durations. Aerosol metal concentrations varied widely between different flavors and nicotine content but not by puff duration. Flavor and nicotine content of the e-liquid could be potential factors in metal emissions. Some elements showed higher concentrations under certain conditions, highlighting the urgent need of developing strict product regulations, especially on e-liquid composition and nicotine content to inform e-cigarette users about metal exposure through vaping.
Collapse
Affiliation(s)
- Di Zhao
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Spain
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
36
|
Gray N, Halstead M, Valentin-Blasini L, Watson C, Pappas RS. Toxic Metals in Liquid and Aerosol from Pod-Type Electronic Cigarettes. J Anal Toxicol 2022; 46:69-75. [PMID: 33270129 PMCID: PMC9531718 DOI: 10.1093/jat/bkaa185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
High-quality, accurate data on liquid contents and aerosol emissions from electronic nicotine delivery systems (ENDS, e.g., e-cigarettes) are crucial to address potential health concerns as these devices evolve and mature. Metals are an important class of ENDS constituents that merit attention as they have various health implications. Proper sampling, handling and aerosol trapping materials are essential to generate accurate quantitative metal data and to reduce the likelihood of inaccurate results originating from inappropriate collection vessels and materials that contribute to high background levels. Published methods that meet these criteria were applied to the analyses of chromium, nickel, copper, zinc, cadmium, tin and lead in liquid and aerosol from mint/menthol and tobacco flavors of currently popular pod-based devices from three manufacturers. Metal concentrations from pods that had not been used for generating aerosol ranged from below our lowest reportable level to 0.164 µg/g for Cr, 61.3 µg/g for Ni, 927 µg/g for Cu, 14.9 µg/g for Zn, 58.2 µg/g for Sn and 2.56 µg/g for Pb. Cadmium was included in our analyte panel and was not present above detection limits in liquid or aerosol. Aerosol metal concentrations (using a 55-mL puff) ranged from below our lowest reportable level to 29.9 ng/10 puffs for Cr, 373 ng/10 puffs for Ni, 209 ng/10 puffs for Cu, 4,580 ng/10 puffs for Zn, 127 ng/10 puffs for Sn and 463 ng/10 puffs for Pb. Our results showed some metal delivery from all the products examined and highly variable metal levels between manufacturer, brand and package.
Collapse
Affiliation(s)
- Naudia Gray
- Tobacco and Volatiles Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S110-3, Atlanta, GA 30341, USA
| | - Mary Halstead
- Battelle Analytical Services, 2987 Clairmont Road, Suite 450, Atlanta, GA 30329, USA
| | - Liza Valentin-Blasini
- Tobacco and Volatiles Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S110-3, Atlanta, GA 30341, USA
| | - Clifford Watson
- Tobacco and Volatiles Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S110-3, Atlanta, GA 30341, USA
| | - R Steven Pappas
- Tobacco and Volatiles Branch, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S110-3, Atlanta, GA 30341, USA
| |
Collapse
|
37
|
Effect of Heating on Physicochemical Property of Aerosols during Vaping. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031892. [PMID: 35162914 PMCID: PMC8835267 DOI: 10.3390/ijerph19031892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
Many electronic cigarette manufacturers have offered different types of “high-end mods” that allow for controlled heating of the e-liquid. However, the controlled heating condition can drastically alter the inhaled aerosols’ physical properties and chemical substances, causing potential health risks. To investigate the contribution of heating on aerosol properties, we used four common power settings in the mods to conduct a physicochemical analysis. Our data showed that the aerosol mass and nicotine content in the aerosols increased at high power. Additionally, high power led to aerosolization of a viscous component in the e-liquid, increasing the viscosity of aerosol. However, the pH of the aerosol was constant regardless of the applied power. In addition, high-power operation made nicotine prone to oxidation, resulting in the color of the aerosol turning yellow. Lastly, we demonstrated that e-cigarette aerosol could contain various metals, including aluminum, arsenic, cadmium, chromium, copper, iron, magnesium, nickel, lead, and zinc. Even though these metal contents proportionally increased with the power setting, they remained far below the recommended exposure limits. Our finding demonstrates that the heating conditions of the e-cigarette change the physicochemical properties of the aerosols and their metal contents, thereby possibly affecting users’ oral and respiratory systems.
Collapse
|
38
|
Mus S, Monzon J, Thrasher JF, Barnoya J. E-cigarette vending machines: a new access channel for youth in Guatemala City. Tob Control 2022:tobaccocontrol-2021-057102. [PMID: 35064013 PMCID: PMC9300763 DOI: 10.1136/tobaccocontrol-2021-057102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2021] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
|
39
|
Son Y, Khlystov A. An Automated Aerosol Collection and Extraction System to Characterize Electronic Cigarette Aerosols. Front Chem 2021; 9:764730. [PMID: 34805094 PMCID: PMC8600130 DOI: 10.3389/fchem.2021.764730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Electronic cigarette (e-cigarette) market increased by 122% during 2014–2020 and is expected to continue growing rapidly. Despite their popularity, e-cigarettes are known to emit dangerous levels of toxic compounds (e.g., carbonyls), but a lack of accurate and efficient testing methods is hindering the characterization of e-cigarette aerosols emitted by a wide variety of e-cigarette devices, e-liquids, and use patterns. The aim of this study is to fill this gap by developing an automated E-cigarette Aerosol Collection and Extraction System (E-ACES) consisting of a vaping machine and a collection/extraction system. The puffing system was designed to mimic e-cigarette use patterns (i.e., power output and puff topography) by means of a variable power-supply and a flow control system. The sampling system collects e-cigarette aerosols using a combination of glass wool and a continuously wetted denuder. After the collection stage, the system is automatically washed with absorbing and extracting liquids (e.g., methanol, an acetaldehyde-DNPH solution). The entire system is controlled by a computer. E-ACES performance was evaluated against conventional methods during measurements of nicotine and carbonyl emissions from a tank type e-cigarette. Nicotine levels measured using glass fiber filters and E-ACES were not significantly different: 201.2 ± 6.2 and 212.5 ± 17 μg/puff (p = 0.377), respectively. Differences in formaldehyde and acetaldehyde levels between filter-DNPH cartridges and the E-ACES were 14% (p = 0.057) and 13% (p = 0.380), respectively. The E-ACES showed reproducible nicotine and carbonyl testing results for the selected e-cigarette vaping conditions.
Collapse
Affiliation(s)
- Yeongkwon Son
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
| | - Andrey Khlystov
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV, United States
| |
Collapse
|
40
|
McDaniel C, Mallampati SR, Wise A. Metals in Cannabis Vaporizer Aerosols: Sources, Possible Mechanisms, and Exposure Profiles. Chem Res Toxicol 2021; 34:2331-2342. [PMID: 34705462 DOI: 10.1021/acs.chemrestox.1c00230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
In recent years, cannabis vaporizer cartridges have increased in popularity and availability, and there are concerns regarding exposure to heavy-metal compounds from their use. The physical components of the cartridge devices themselves have been implicated as a potential source of metal exposure, but it is not known if these metals migrate into the inhalable vapor. This study analyzes the components of vaporizer cartridges for 10 different metals and also collects aerosol mixtures from 13 randomly purchased commercially available cannabis cartridges from Washington State to compare their elemental profiles. Results indicate that chromium, copper, nickel, as well as smaller amounts of lead, manganese, and tin migrate into the cannabis oil and inhaled vapor phase, resulting in a possible acute intake of an amount of inhaled metals above the regulatory standard of multiple governmental bodies. Noncartridge heating methods of cannabis flower and concentrate were compared, and results indicate that the heating device itself is a source of metal contamination. As safety and compliance testing regulations evolve, it will be important to include more than the standard As, Cd, Hg, and Pb to the list of regulated metals.
Collapse
Affiliation(s)
- Charles McDaniel
- Medicine Creek Analytics, 3700 Pacific Highway East, Fife, Washington 98424, United States
| | | | - Amber Wise
- Medicine Creek Analytics, 3700 Pacific Highway East, Fife, Washington 98424, United States
| |
Collapse
|
41
|
Mara A, Langasco I, Deidda S, Caredda M, Meloni P, Deroma M, Pilo MI, Spano N, Sanna G. ICP-MS Determination of 23 Elements of Potential Health Concern in Liquids of e-Cigarettes. Method Development, Validation, and Application to 37 Real Samples. Molecules 2021; 26:6680. [PMID: 34771088 PMCID: PMC8588553 DOI: 10.3390/molecules26216680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 11/29/2022] Open
Abstract
The lack of interest in the determination of toxic elements in liquids for electronic cigarettes (e-liquids) has so far been reflected in the scarce number of accurate and validated analytical methods devoted to this aim. Since the strong matrix effects observed for e-liquids constitute an exciting analytical challenge, the main goal of this study was to develop and validate an ICP-MS method aimed to quantify 23 elements in 37 e-liquids of different flavors. Great attention has been paid to the critical phases of sample pre-treatment, as well as to the optimization of the ICP-MS conditions for each element and of the quantification. All samples exhibited a very low amount of the elements under investigation. Indeed, the sum of their average concentration was of ca. 0.6 mg kg-1. Toxic elements were always below a few tens of a μg per kg-1 and, very often, their amount was below the relevant quantification limits. Tobacco and tonic flavors showed the highest and the lowest concentration of elements, respectively. The most abundant elements came frequently from propylene glycol and vegetal glycerin, as confirmed by PCA. A proper choice of these substances could further decrease the elemental concentration in e-liquids, which are probably barely involved as potential sources of toxic elements inhaled by vapers.
Collapse
Affiliation(s)
- Andrea Mara
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| | - Ilaria Langasco
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| | - Sara Deidda
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| | - Marco Caredda
- AGRIS Sardegna, Loc. Bonassai, S.S. 291 Km 18.6, 07100 Sassari, Italy;
| | - Paola Meloni
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| | - Mario Deroma
- Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39/a, 07100 Sassari, Italy;
| | - Maria I. Pilo
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| | - Nadia Spano
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| | - Gavino Sanna
- Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, Via Vienna 2, 07100 Sassari, Italy; (A.M.); (I.L.); (S.D.); (P.M.); (M.I.P.); (N.S.)
| |
Collapse
|
42
|
Olmedo P, Rodrigo L, Grau-Pérez M, Hilpert M, Navas-Acién A, Téllez-Plaza M, Pla A, Gil F. Metal exposure and biomarker levels among e-cigarette users in Spain. ENVIRONMENTAL RESEARCH 2021; 202:111667. [PMID: 34256077 DOI: 10.1016/j.envres.2021.111667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/26/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 05/11/2023]
Abstract
The use of electronic cigarettes (e-cigarettes) has increased due to the belief that they are healthier than tobacco cigarettes. E-cigarettes contain a metallic heating coil (composed of Ni, Cr, Al and other metals) to heat a solution (commonly called e-liquid) and convert it into an aerosol. This aerosol is inhaled (vaped) by the users who can be potentially exposed to a wide variety of metals. We investigated the possible transfer of metals from the coil to the e-liquid and the generated aerosol, and how the exposure to this aerosol can increase metal body burden in e-cigarette users. We recruited 75 e-cigarette users (50 who only vaped and 25 dual users who vaped and smoked) and 25 controls who neither vaped nor smoked. E-liquid samples before (dispenser e-liquid) and after (tank e-liquid) being added to their devices were collected. Aerosol samples were collected using a condensation method. All participants provided urine and hair samples. All samples were analyzed for metals by ICP-MS. We observed higher metal concentrations in the aerosol and tank e-liquid (in contact with the coil) compared to the dispenser e-liquid (before contact with the coil). The median concentrations for some of the metals with the most remarkable increases in aerosol and tank e-liquid vs. dispenser e-liquid were 36.90 and 62.73 vs. 18.29 μg/kg for Al; 6.71 and 28.97 vs. 0.98 μg/kg for Cr; 91.39 and 414.47 vs. 1.64 μg/kg for Ni; 738.99 and 744.24 vs. 16.56 μg/kg for Zn; and 10.17 and 22.31 vs. 0.88 μg/kg for Pb. We also found detectable and potentially high concentrations of other metals such as Mn, Cu, Sb and Sn. In urine, increases in the median levels (μg/g creatinine) in vapers/duals vs. controls were observed for some metals, including Cr (0.34/0.28 vs. 0.20), Cu (1.72/2.36 vs. 1.46), Sn (0.26/0.31 vs. 0.18) and Pb (0.39/0.44 vs. 0.22). In hair, there were no differences in metal concentrations among the three groups. In conclusion, e-cigarettes are likely a source of metals such as Cr, Cu, Ni, Pb or Sn. These metals come from the device, likely the heating resistance, as their concentrations were low in the dispenser e-liquid and higher in the aerosol and the e-liquid left in the tank. Although the exposure to e-cigarette aerosol can have an influence in the body burden of metals, aerosol metal levels were not clearly associated with metal levels in biological samples such as urine or hair in e-cigarette users in this study.
Collapse
Affiliation(s)
- Pablo Olmedo
- Department of Legal Medicine and Toxicology. School of Medicine, University of Granada, Granada, Spain
| | - Lourdes Rodrigo
- Department of Legal Medicine and Toxicology. School of Medicine, University of Granada, Granada, Spain
| | - María Grau-Pérez
- Area of Cardiometabolic and Renal Risk, Biomedical Research Institute Hospital Clinic de Valencia (INCLIVA), Valencia, Spain
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ana Navas-Acién
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - María Téllez-Plaza
- Department of Chronic Disease Epidemiology. Carlos III Health Institute, Madrid, Spain
| | - Antonio Pla
- Department of Legal Medicine and Toxicology. School of Medicine, University of Granada, Granada, Spain
| | - Fernando Gil
- Department of Legal Medicine and Toxicology. School of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
43
|
Re DB, Hilpert M, Saglimbeni B, Strait M, Ilievski V, Coady M, Talayero M, Wilmsen K, Chesnais H, Balac O, Glabonjat RA, Slavkovich V, Yan B, Graziano J, Navas-Acien A, Kleiman NJ. Exposure to e-cigarette aerosol over two months induces accumulation of neurotoxic metals and alteration of essential metals in mouse brain. ENVIRONMENTAL RESEARCH 2021; 202:111557. [PMID: 34245728 PMCID: PMC8578258 DOI: 10.1016/j.envres.2021.111557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/28/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 05/15/2023]
Abstract
Despite a recent increase in e-cigarette use, the adverse human health effects of exposure to e-cigarette aerosol, especially on the central nervous system (CNS), remain unclear. Multiple neurotoxic metals have been identified in e-cigarette aerosol. However, it is unknown whether those metals accumulate in the CNS at biologically meaningful levels. To answer this question, two groups of mice were whole-body exposed twice a day, 5 days a week, for two months, to either a dose of e-cigarette aerosol equivalent to human secondhand exposure, or a 5-fold higher dose. After the last exposure, the olfactory bulb, anterior and posterior frontal cortex, striatum, ventral midbrain, cerebellum, brainstem, remaining brain tissue and spinal cord were collected for metal quantification by inductively coupled plasma mass spectrometry and compared to tissues from unexposed control mice. The two-month exposure caused significant accumulation of several neurotoxic metals in various brain areas - for some metals even at the low exposure dose. The most striking increases were measured in the striatum. For several metals, including Cr, Cu, Fe, Mn, and Pb, similar accumulations are known to be neurotoxic in mice. Decreases in some essential metals were observed across the CNS. Our findings suggest that chronic exposure to e-cigarette aerosol could lead to CNS neurotoxic metal deposition and endogenous metal dyshomeostasis, including potential neurotoxicity. We conclude that e-cigarette-mediated metal neurotoxicity may pose long-term neurotoxic and neurodegenerative risks for e-cigarette users and bystanders.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA.
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| | - Brianna Saglimbeni
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Madeleine Strait
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Maxine Coady
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Maria Talayero
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Kai Wilmsen
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; Master in Public Health Program, Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Helene Chesnais
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA
| | - Olgica Balac
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ronald A Glabonjat
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Beizhan Yan
- NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA; Lamont-Doherty Earth Observatory, Geochemistry Department, 203 Comer, 61 Route 9W - PO Box 1000, Palisades, NY, 10964-8000, USA
| | - Joseph Graziano
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Columbia University, New York, NY, 10032, USA; NIEHS Center for Environmental Health in Northern Manhattan, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
44
|
Tehrani MW, Newmeyer MN, Rule AM, Prasse C. Characterizing the Chemical Landscape in Commercial E-Cigarette Liquids and Aerosols by Liquid Chromatography-High-Resolution Mass Spectrometry. Chem Res Toxicol 2021; 34:2216-2226. [PMID: 34610237 PMCID: PMC11317110 DOI: 10.1021/acs.chemrestox.1c00253] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The surge in electronic cigarette (e-cig) use in recent years has raised questions on chemical exposures that may result from vaping. Previous studies have focused on measuring known toxicants, particularly those present in traditional cigarettes, while fewer have investigated unknown compounds and transformation products formed during the vaping process in these diverse and constantly evolving products. The primary aim of this work was to apply liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and chemical fingerprinting techniques for the characterization of e-liquids and aerosols from a selection of popular e-cig products. We conducted nontarget and quantitative analyses of tobacco-flavored e-liquids and aerosols generated using four popular e-cig products: one disposable, two pod, and one tank/mod. Aerosols were collected using a condensation device and analyzed in solution alongside e-liquids by LC-HRMS. The number of compounds detected increased from e-liquids to aerosols in three of four commercial products, as did the proportion of condensed-hydrocarbon-like compounds, associated with combustion. Kendrick mass defect analysis suggested that some of the additional compounds detected in aerosols belonged to homologous series resulting from decomposition of high-molecular-weight compounds during vaping. Lipids in inhalable aerosols have been associated with severe respiratory effects, and lipid-like compounds were observed in aerosols as well as e-liquids analyzed. Six potentially hazardous additives and contaminants, including the industrial chemical tributylphosphine oxide and the stimulant caffeine, were identified and quantified in the e-cig liquids and aerosols analyzed. The obtained findings demonstrate the potential of nontarget LC-HRMS to identify previously unknown compounds and compound classes in e-cig liquids and aerosols, which is critical for the assessment of chemical exposures resulting from vaping.
Collapse
Affiliation(s)
- Mina W. Tehrani
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA
| | - Matthew N. Newmeyer
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA
| | - Ana M. Rule
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA
| | - Carsten Prasse
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA
- Whiting School of Engineering, Johns Hopkins University, Baltimore MD, 21218, USA
| |
Collapse
|
45
|
Gade M, Comfort N, Re DB. Sex-specific neurotoxic effects of heavy metal pollutants: Epidemiological, experimental evidence and candidate mechanisms. ENVIRONMENTAL RESEARCH 2021; 201:111558. [PMID: 34224706 PMCID: PMC8478794 DOI: 10.1016/j.envres.2021.111558] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/26/2021] [Revised: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 05/19/2023]
Abstract
The heavy metals lead (Pb), mercury (Hg), and cadmium (Cd) are ubiquitous environmental pollutants and are known to exert severe adverse impacts on the nervous system even at low concentrations. In contrast, the heavy metal manganese (Mn) is first and foremost an essential nutrient, but it becomes neurotoxic at high levels. Neurotoxic metals also include the less prevalent metalloid arsenic (As) which is found in excessive concentrations in drinking water and food sources in many regions of the world. Males and females often differ in how they respond to environmental exposures and adverse effects on their nervous systems are no exception. Here, we review the different types of sex-specific neurotoxic effects, such as cognitive and motor impairments, that have been attributed to Pb, Hg, Mn, Cd, and As exposure throughout the life course in epidemiological as well as in experimental toxicological studies. We also discuss differential vulnerability to these metals such as distinctions in behaviors and occupations across the sexes. Finally, we explore the different mechanisms hypothesized to account for sex-based differential susceptibility including hormonal, genetic, metabolic, anatomical, neurochemical, and epigenetic perturbations. An understanding of the sex-specific effects of environmental heavy metal neurotoxicity can aid in the development of more efficient systematic approaches in risk assessment and better exposure mitigation strategies with regard to sex-linked susceptibilities and vulnerabilities.
Collapse
Affiliation(s)
- Meethila Gade
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Nicole Comfort
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Diane B Re
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA; NIEHS Center of Northern Manhattan, Columbia University, New York, NY, USA; Motor Neuron Center for Biology and Disease, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Bonner E, Chang Y, Christie E, Colvin V, Cunningham B, Elson D, Ghetu C, Huizenga J, Hutton SJ, Kolluri SK, Maggio S, Moran I, Parker B, Rericha Y, Rivera BN, Samon S, Schwichtenberg T, Shankar P, Simonich MT, Wilson LB, Tanguay RL. The chemistry and toxicology of vaping. Pharmacol Ther 2021; 225:107837. [PMID: 33753133 PMCID: PMC8263470 DOI: 10.1016/j.pharmthera.2021.107837] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.
Collapse
Affiliation(s)
- Emily Bonner
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Chang
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Emerson Christie
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Victoria Colvin
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Daniel Elson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Christine Ghetu
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Juliana Huizenga
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Stephanie Maggio
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Ian Moran
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Bethany Parker
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Samantha Samon
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Trever Schwichtenberg
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Lindsay B Wilson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
47
|
Alzoubi KH, Batran RM, Al-Sawalha NA, Khabour OF, Karaoghlanian N, Shihadeh A, Eissenberg T. The effect of electronic cigarettes exposure on learning and memory functions: behavioral and molecular analysis. Inhal Toxicol 2021; 33:234-243. [PMID: 34311661 DOI: 10.1080/08958378.2021.1954732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Objective: Electronic cigarettes (ECIGs) are battery-powered devices that emit vaporized solutions for the user to inhale. ECIGs are marketed as a less harmful alternative to combustible cigarettes. The current study examined the effects of ECIG aerosol exposure on learning and memory, expression of brain derived neurotrophic factor (BDNF), and the activity of antioxidant enzymes in the hippocampus.Methods: Male Wistar rats were exposed to ECIG aerosol, by a whole-body exposure system, 1 h/day for 1 week, 4 weeks, and 12 weeks. Spatial learning and memory were tested using the Radial Arm Water Maze (RAWM). Hippocampal BDNF protein level, and oxidative stress biomarkers (GPx, SOD, GSH, GSSG, GSH/GSSG ratio) were also assessed.Results: ECIG aerosol exposure for 4 and 12 weeks impaired both short- and long- term memory and induced reductions in the hippocampus BDNF, SOD and GPx activities, and GSH/GSSG ratio (p < 0.05). No changes in any examined biomarkers were observed after 1-week exposure to ECIG aerosol (p > 0.05).Conclusions: ECIG aerosol exposure impaired functional memory and elicited changes in brain chemistry that are consistent with reduced function and oxidative stress.
Collapse
Affiliation(s)
- Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Rahaf M Batran
- Department of Legal Medicine, Toxicology and Forensic Sciences, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Nareg Karaoghlanian
- Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Alan Shihadeh
- Mechanical Engineering Department, American University of Beirut, Beirut, Lebanon.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas Eissenberg
- Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA.,Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
48
|
Li Y, Burns AE, Tran LN, Abellar KA, Poindexter M, Li X, Madl AK, Pinkerton KE, Nguyen TB. Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes. Chem Res Toxicol 2021; 34:1640-1654. [PMID: 33949191 DOI: 10.1021/acs.chemrestox.1c00070] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
E-cigarette aerosol is a complex mixture of gases and particles with a composition that is dependent on the e-liquid formulation, puffing regimen, and device operational parameters. This work investigated mainstream aerosols from a third generation device, as a function of coil temperature (315-510 °F, or 157-266 °C), puff duration (2-4 s), and the ratio of propylene glycol (PG) to vegetable glycerin (VG) in e-liquid (100:0-0:100). Targeted and untargeted analyses using liquid chromatography high-resolution mass spectrometry, gas chromatography, in situ chemical ionization mass spectrometry, and gravimetry were used for chemical characterizations. PG and VG were found to be the major constituents (>99%) in both phases of the aerosol. Most e-cigarette components were observed to be volatile or semivolatile under the conditions tested. PG was found almost entirely in the gas phase, while VG had a sizable particle component. Nicotine was only observed in the particle phase. The production of aerosol mass and carbonyl degradation products dramatically increased with higher coil temperature and puff duration, but decreased with increasing VG fraction in the e-liquid. An exception is acrolein, which increased with increasing VG. The formation of carbonyls was dominated by the heat-induced dehydration mechanism in the temperature range studied, yet radical reactions also played an important role. The findings from this study identified open questions regarding both pathways. The vaping process consumed PG significantly faster than VG under all tested conditions, suggesting that e-liquids become more enriched in VG and the exposure to acrolein significantly increases as vaping continues. It can be estimated that a 30:70 initial ratio of PG:VG in the e-liquid becomes almost entirely VG when 60-70% of e-liquid remains during the vaping process at 375 °F (191 °C). This work underscores the need for further research on the puffing lifecycle of e-cigarettes.
Collapse
Affiliation(s)
- Yichen Li
- Department of Environmental Toxicology, University of California at Davis, Davis, California 95616, United States
| | - Amanda E Burns
- Department of Environmental Toxicology, University of California at Davis, Davis, California 95616, United States
| | - Lillian N Tran
- Department of Environmental Toxicology, University of California at Davis, Davis, California 95616, United States
| | - Karizza A Abellar
- Department of Chemistry, University of California at Davis, Davis, California 95616, United States
| | - Morgan Poindexter
- Center for Health and the Environment, University of California at Davis, Davis, California 95616, United States
| | - Xiaohan Li
- Center for Health and the Environment, University of California at Davis, Davis, California 95616, United States
| | - Amy K Madl
- Center for Health and the Environment, University of California at Davis, Davis, California 95616, United States
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California at Davis, Davis, California 95616, United States
| | - Tran B Nguyen
- Department of Environmental Toxicology, University of California at Davis, Davis, California 95616, United States
| |
Collapse
|
49
|
Saleh QM, Hensel EC, Eddingsaas NC, Robinson RJ. Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4380. [PMID: 33924226 PMCID: PMC8074776 DOI: 10.3390/ijerph18084380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/10/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022]
Abstract
This work investigated the effects of manufacturing variations, including coil resistance and initial pod mass, on coil lifetime and aerosol generation of Vuse ALTO pods. Random samples of pods were used until failure (where e-liquid was consumed, and coil resistance increased to high value indicating a coil break). Initial coil resistance, initial pod mass, and e-liquid net mass ranged between 0.89 to 1.14 [Ω], 6.48 to 6.61 [g], and 1.88 to 2.00 [g] respectively. Coil lifetime was µ (mean) = 158, σ (standard deviation) = 21.5 puffs. Total mass of e-liquid consumed until coil failure was µ = 1.93, σ = 0.035 [g]. TPM yield per puff of all test pods for the first session (brand new pods) was µ = 0.0123, σ = 0.0003 [g]. Coil lifetime and TPM yield per puff were not correlated with either variation in initial coil resistance or variation in initial pod mass. The absence of e-liquid in the pod is an important factor in causing coil failure. Small bits of the degraded coil could be potentially introduced to the aerosol. This work suggests that further work is required to investigate the effect of e-liquid composition on coil lifetime and TPM yield per puff.
Collapse
Affiliation(s)
- Qutaiba M. Saleh
- Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Edward C. Hensel
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Nathan C. Eddingsaas
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Risa J. Robinson
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| |
Collapse
|
50
|
Hilpert M, Ilievski V, Hsu SY, Rule AM, Olmedo P, Drazer G. E-cigarette aerosol collection using converging and straight tubing Sections: Physical mechanisms. J Colloid Interface Sci 2021; 584:804-815. [PMID: 33268068 PMCID: PMC7736306 DOI: 10.1016/j.jcis.2020.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/30/2022]
Abstract
HYPOTHESIS Identification and quantification of harmful chemicals in e-cigarette aerosol requires collecting the aerosolized e-liquid for chemical analysis. In 2016, Olmedo at al. empirically developed a simple method for aerosol collection by directing the aerosol through a sequence of alternating straight and converging tubing sections, which drain the recovered e-liquid into a collection vial. The tubing system geometry and flow conditions promote inertial impaction of aerosolized e-liquid on tube walls, where it deposits and flows into the collection vial. EXPERIMENTS We use high-speed optical imaging to visualize aerosol transport in proxies of the collection system. We also determined collection efficiencies of various configurations of the collection system. FINDINGS A turbulent jet emerges from converging conical sections and impinges onto the wall of downstream tubing sections, resulting in inertial impaction and deposition of the aerosol. For inertial impaction to occur the tip radius of the converging section must be small enough for a jet to be formed and the sequence of tubing sections must be curved in a polygon-like manner such that the jet emerging from a converging section impinges on the downstream tube wall. The collection efficiency is significantly smaller without such curvature.
Collapse
Affiliation(s)
- Markus Hilpert
- Department of Environmental Health Sciences, Columbia University, United States.
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Columbia University, United States
| | - Shao-Yiu Hsu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins University, United States
| | - Pablo Olmedo
- Department of Legal Medicine and Toxicology, University of Granada, Spain
| | - German Drazer
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, United States
| |
Collapse
|