1
|
Zhang B, Sun C, Zhu Y, Qin H, Kong D, Zhang J, Shao B, Li X, Ren S, Wang H, Hao J, Wang H. Upregulation of TCPTP in Macrophages Is Involved in IL-35 Mediated Attenuation of Experimental Colitis. Mediators Inflamm 2024; 2024:3282679. [PMID: 38962170 PMCID: PMC11221972 DOI: 10.1155/2024/3282679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/13/2023] [Revised: 04/11/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024] Open
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease with complex etiology. Interleukin-35 (IL-35), as a cytokine with immunomodulatory function, has been shown to have therapeutic effects on UC, but its mechanism is not yet clear. Therefore, we constructed Pichia pastoris stably expressing IL-35 which enables the cytokines to reach the diseased mucosa, and explored whether upregulation of T-cell protein tyrosine phosphatase (TCPTP) in macrophages is involved in the mechanisms of IL-35-mediated attenuation of UC. After the successful construction of engineered bacteria expressing IL-35, a colitis model was successfully induced by giving BALB/c mice a solution containing 3% dextran sulfate sodium (DSS). Mice were treated with Pichia/IL-35, empty plasmid-transformed Pichia (Pichia/0), or PBS by gavage, respectively. The expression of TCPTP in macrophages (RAW264.7, BMDMs) and intestinal tissues after IL-35 treatment was detected. After administration of Pichia/IL-35, the mice showed significant improvement in weight loss, bloody stools, and shortened colon. Colon pathology also showed that the inflammatory condition of mice in the Pichia/IL-35 treatment group was alleviated. Notably, Pichia/IL-35 treatment not only increases local M2 macrophages but also decreases the expression of inflammatory cytokine IL-6 in the colon. With Pichia/IL-35 treatment, the proportion of M1 macrophages, Th17, and Th1 cells in mouse MLNs were markedly decreased, while Tregs were significantly increased. In vitro experiments, IL-35 significantly promoted the expression of TCPTP in macrophages stimulated with LPS. Similarly, the mice in the Pichia/IL-35 group also expressed more TCPTP than that of the untreated group and the Pichia/0 group.
Collapse
Affiliation(s)
- Baoren Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Chenglu Sun
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Yanglin Zhu
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hong Qin
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Dejun Kong
- School of MedicineNankai University, Tianjin, China
| | - Jingyi Zhang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Bo Shao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Xiang Li
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Shaohua Ren
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Hongda Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
| | - Jingpeng Hao
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Department of Anorectal SurgeryTianjin Medical University Second Hospital, Tianjin, China
| | - Hao Wang
- Department of General SurgeryTianjin Medical University General Hospital, Tianjin, China
- Tianjin General Surgery Institute, Tianjin, China
- Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China
| |
Collapse
|
2
|
Vu TL, Nguyen TKO, Song JA, Chong S, Choe H. Enhanced prokaryotic expression, purification, and biological activities of human keratinocyte growth factor. J Biotechnol 2024; 386:42-51. [PMID: 38552676 DOI: 10.1016/j.jbiotec.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Keratinocyte growth factor (KGF), also known as fibroblast growth factor 7 (FGF7), plays a critical role in embryonic development, cell proliferation, and differentiation. However, efficient production of recombinant KGF remains a challenge due to its low expression levels and high tendency for aggregation in Escherichia coli. This study aimed to enhance the expression and solubility of KGF by employing different protein tags-PDIb'a', MBP, and His-fused to the N-terminus of KGF. Among these, H-PDIb'a'-KGF demonstrated superior stability and was selected for large-scale production and purification. The purified KGF was confirmed through liquid chromatography with tandem mass spectrometry analysis, which showed an 81% fragment mass identification coverage. Biological activity assessments using human breast cancer MCF-7 cells indicated that purified KGF significantly increased cell proliferation, with an EC50 of 6.4 ± 0.5 pM. Interestingly, PDIb'a' alone also exhibited a stimulatory effect on MCF-7 cells. Furthermore, the purified KGF enhanced the wound healing of HaCaT keratinocytes in a dose-dependent manner. These findings provide valuable insights into the efficient production and functional characterization of recombinant KGF for potential applications in therapeutic interventions.
Collapse
Affiliation(s)
- Thi Luong Vu
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Thi Kieu Oanh Nguyen
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Jung-A Song
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Seonha Chong
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, South Korea.
| |
Collapse
|
3
|
Kim YS, Lee HJ, Handoko GA, Kim J, Kim SB, Won M, Park JH, Ahn J. Production of a 135-residue long N-truncated human keratinocyte growth factor 1 in Escherichia coli. Microb Cell Fact 2023; 22:98. [PMID: 37170276 PMCID: PMC10173505 DOI: 10.1186/s12934-023-02097-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Palifermin (trade name Kepivance®) is an amino-terminally truncated recombinant human keratinocyte growth factor 1 (KGF-1) with 140 residues that has been produced using Escherichia coli to prevent and treat oral mucositis following radiation or chemotherapy. In this study, an amino-terminally shortened KGF-1 variant with 135 residues was produced and purified in E. coli, and its cell proliferation activity was evaluated. RESULTS We expressed soluble KGF-1 fused to thioredoxin (TRX) in the cytoplasmic fraction of E. coli to improve its production yield. However, three N-truncated forms (KGF-1 with 140, 138, and 135 residues) were observed after the removal of the TRX protein from the fusion form by cleavage of the human enterokinase light chain C112S (hEKL C112S). The shortest KGF-1 variant, with 135 residues, was expressed by fusion with TRX via the hEKL cleavage site in E. coli and purified at high purity (> 99%). Circular dichroism spectroscopy shows that purified KGF-1135 had a structure similar to that of the KGF-1140 as a random coiled form, and MCF-7 cell proliferation assays demonstrate its biological activity. CONCLUSIONS We identified variations in N-terminus-truncated KGF-1 and selected the most stable form. Furthermore, by a simple two-step purification, highly purified KGF-1135 was obtained that showed biological activity. These results demonstrate that KGF-1135 may be considered an alternative protein to KGF-1.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Seong-Bo Kim
- Bio-Living Engineering Major, Global Leaders College, Yonsei University, 50 Yonsei-ro, Shinchon-dong, Seodaemun-gu, Seoul, 03722, Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
4
|
Kim YS, Lee HJ, Handoko GA, Kim J, Won M, Park JH, Ahn J. High-level production of keratinocyte growth factor 2 in Escherichia coli. Protein Expr Purif 2023; 204:106229. [PMID: 36641112 DOI: 10.1016/j.pep.2022.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023]
Abstract
Recombinant human keratinocyte growth factor 2 (KGF-2), also known as repifermin, is used in various therapeutic applications. However, KGF-2 production has not been optimized for facilitating large-scale production. Therefore, we attempted to attain high-level production of bioactive KGF-2. KGF-2 was fused with 6HFh8 (6HFh8-KGF-2) at the tobacco etch virus protease cleavage site. The 6HFh8-KGF-2 was expressed in Escherichia coli with high expression levels of approximately 33% and 20% of soluble protein in flask culture and 5 L fermentation, respectively. 6HFh8-KGF-2 was purified via nickel affinity chromatography. To maintain a stable form of KGF-2, the conditions of the cleavage reaction were optimized based on the isoelectric point. KGF-2 was purified via ion-exchange chromatography to high purity (>99%) with an optimal purification yield (91%). Circular dichroism spectroscopy demonstrated that purified KGF-2 had a secondary structure and thermal stability similar to that of commercial KGF-2. Bioactivity assays indicated that purified KGF-2 could induce MCF-7 cell proliferation in the same manner as commercial KGF-2. These results demonstrate that bioactive KGF-2 was overexpressed in E. coli and purified to high quality. Our findings indicated that bioactive KGF-2 can be produced in large quantities in E. coli.
Collapse
Affiliation(s)
- Young Su Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Hye-Jeong Lee
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea
| | - Gabriella Aphrodita Handoko
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Jaehui Kim
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Minho Won
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea.
| | - Jung-Ho Park
- Bio-Evaluation Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, KRIBB, Cheongju, 20736, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
5
|
Rational Design and Production of Bioactive Analogs of Recombinant Human Keratinocyte Growth Factor (rhKGF) with Reduced Aggregation Propensity. Protein J 2023; 42:37-54. [PMID: 36683078 DOI: 10.1007/s10930-023-10089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/07/2023] [Indexed: 01/24/2023]
Abstract
Recombinant human keratinocyte growth factor (rhKGF) is a highly aggregation-prone therapeutic protein. The present study aimed to reduce aggregation propensity of rhKGF by engineering the aggregation hotspots. Initially, 21 mutants were designed based on the previously-identified aggregation-prone regions (APRs) and then four of them including mutants No. 4 (L91K, I119K), 7 (V13S, L91K), 14 (L91D, I119D), and 21 (A51E) were selected based on molecular dynamics (MD) simulations for further experimental studies. The recombinantly produced rhKGF and mutants were analyzed regarding secondary structure, thermal stability, aggregation propensity, and biological activity. Far-UV CD spectroscopy showed that the mutants have similar secondary structure with rhKGF. A51E mutant showed enhanced stability and decreased monomer loss under heat stress suggesting its reduced aggregation propensity compared to rhKGF. Mutant No. 14 showed higher stability and less aggregation tendency than mutant No. 4 indicating that only mutations decreasing pI of rhKGF are effective in reducing its aggregation tendency. All of the mutants were at least as potent as rhKGF in stimulating proliferation of MCF-7 epithelial cells. Our results identified A51E as an equally potent, more stable, and less aggregation-prone analog of rhKGF which could be a promising alternative drug candidate for the commercially available rhKGF (Palifermin).
Collapse
|
6
|
Sadeghi S, Kalhor H, Panahi M, Abolhasani H, Rahimi B, Kalhor R, Mehrabi A, Vahdatinia M, Rahimi H. Keratinocyte growth factor in focus: A comprehensive review from structural and functional aspects to therapeutic applications of palifermin. Int J Biol Macromol 2021; 191:1175-1190. [PMID: 34606789 DOI: 10.1016/j.ijbiomac.2021.09.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Palifermin (Kepivance™) is the first therapeutic approved by the Food and Drug Administration for preventing and managing the oral mucositis provoked by myelotoxic and mucotoxic therapies. Palifermin is a recombinant protein generated from human keratinocyte growth factor (KGF) and imitates the function of endogenous KGF. KGF is an epithelial mitogen involved in various biological processes which belongs to the FGF family. KGF possesses a high level of receptor specificity and plays an important role in tissue repair and maintaining of the mucosal barrier integrity. Based on these unique features, palifermin was developed to enhance the growth of damaged epithelial tissues. Administration of palifermin has shown success in the reduction of toxicities of chemotherapy and radiotherapy, and improvement of the patient's quality of life. Notwithstanding all merits, the clinical application of palifermin is limited owing to its instability and production challenges. Hence, a growing number of ongoing researches are designed to deal with these problems and enhance the physicochemical and pharmaceutical properties of palifermin. In the current review, we discuss KGF structure and function, potential therapeutic applications of palifermin, as well as the latest progress in the production of recombinant human KGF and its challenges ahead.
Collapse
Affiliation(s)
- Solmaz Sadeghi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hourieh Kalhor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran; Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hoda Abolhasani
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Applied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Kalhor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran; Department of Genetics, Colleague of Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirmehdi Mehrabi
- Department of Pharmacoeconomy & Administrative Pharmacy, School Of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahsa Vahdatinia
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamzeh Rahimi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Development of reporter gene assays to determine the bioactivity of biopharmaceuticals. Biotechnol Adv 2020; 39:107466. [DOI: 10.1016/j.biotechadv.2019.107466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 02/06/2023]
|
8
|
Ibarra LN, Alves AEODA, Antonino JD, Prado GS, Pinto CEM, Soccol CR, Vasconcelos ÉARD, Grossi-de-Sa MF. Enzymatic activity of a recombinant β-1,4-endoglucanase from the Cotton Boll Weevil (Anthonomus grandis) aiming second generation ethanol production. Sci Rep 2019; 9:19580. [PMID: 31862955 PMCID: PMC6925290 DOI: 10.1038/s41598-019-56070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/22/2023] Open
Abstract
In the last years, the production of ethanol fuel has started to change with the introduction of second-generation ethanol (2 G Ethanol) in the energy sector. However, in Brazil, the process of obtaining 2 G ethanol did not reach a basic standard to achieve relevant and economically viable results. Several studies have currently been addressed to solve these issues. A critical stage in the bioethanol production is the deployment of efficient and stable enzymes to catalyze the saccharification step into the process of biomass conversion. The present study comprises a screening for genes coding for plant biomass degradation enzymes, followed by cloning a selected gene, addressing its heterologous expression, and characterizing enzymatic activity towards cellulose derived substrates, with a view to second-generation ethanol production. A cDNA database of the Cotton Boll Weevil, Anthonomus grandis (Coleoptera: Curculionidae), an insect that feeds on cotton plant biomass, was used as a source of plant biomass degradation enzyme genes. A larva and adult midgut-specific β-1,4-Endoglucanase-coding gene (AgraGH45-1) was cloned and expressed in the yeast Pichia pastoris. Its amino acid sequence, including the two catalytic domains, shares high identity with other Coleoptera Glycosyl Hydrolases from family 45 (GH45). AgraGH45-1 activity was detected in a Carboxymethylcellulose (CMC) and Hydroxyethylcellulose (HEC) degradation assay and the optimal conditions for enzymatic activity was pH 5.0 at 50 °C. When compared to commercial cellulase from Aspergillus niger, Agra GH45-1 was 1.3-fold more efficient to degrade HEC substrate. Together, these results show that AgraGH45-1 is a valid candidate to be engineered and be tested for 2 G ethanol production.
Collapse
Affiliation(s)
- Liz Nathalia Ibarra
- Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-980, Brazil.,Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil
| | - Ana Elizabeth Oliveira de Araújo Alves
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade de Brasília - UnB, Biology Institute, Brasília, DF, 70910-900, Brazil
| | - José Dijair Antonino
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade Federal Rural de Pernambuco - UFRPE, Recife-PE, 52171-900, Brazil
| | - Guilherme Souza Prado
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade Católica de Brasília - UCB, Brasília, DF, 70790-160, Brazil
| | - Clidia Eduarda Moreira Pinto
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade de Brasília - UnB, Biology Institute, Brasília, DF, 70910-900, Brazil
| | | | | | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, 70770-917, Brazil.,Universidade Católica de Brasília - UCB, Brasília, DF, 70790-160, Brazil
| |
Collapse
|
9
|
Bioactivity Determination of a Therapeutic Recombinant Human Keratinocyte Growth Factor by a Validated Cell-based Bioassay. Molecules 2019; 24:molecules24040699. [PMID: 30769959 PMCID: PMC6412437 DOI: 10.3390/molecules24040699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The therapeutic recombinant human keratinocyte growth factor 1 (rhKGF-1) was approved by the FDA for oral mucositis resulting from hematopoietic stem cell transplantation for hematological malignancies in 2004. However, no recommended bioassay for rhKGF-1 bioactivity has been recorded in the U.S. Pharmacopoeia. In this study, we developed an rhKGF-1-dependent bioassay for determining rhKGF-1 bioactivity based on HEK293 and HaCat cell lines that stably expressed the luciferase reporter driven by the serum response element (SRE) and human fibroblast growth factor receptor (FGFR2) IIIb. A good responsiveness to rhKGF-1 and rhKGF-2 shared by target HEK293/HaCat cell lines was demonstrated. Our stringent validation was completely focused on specificity, linearity, accuracy, precision, and robustness according to the International Council for Harmonization (ICH) Q2 (R1) guidelines, AAPS/FDA Bioanalytical Workshop and the Chinese Pharmacopoeia. We confirmed the reliability of the method in determining rhKGF bioactivity. The validated method is highly timesaving, sensitive, and simple, and is especially valuable for providing information for quality control during the manufacture, research, and development of therapeutic rhKGF.
Collapse
|