1
|
Lin Y, Chu F, Huang Y, Miao J, Lai K. Inhibition of advanced glycation end-products in frozen-thawed and reheated pork by pigskin gelatin hydrolysates. Int J Biol Macromol 2025; 295:139598. [PMID: 39788263 DOI: 10.1016/j.ijbiomac.2025.139598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
This study investigated the effects of pigskin gelatin hydrolysates (PGH, 4 %) as a cryoprotectant on the formation of advanced glycation end-products (AGEs) in pre-heated pork subjected to freeze-thaw cycles and subsequent reheating. During the freeze-thaw process, PGH significantly mitigated the increase in α-dicarbonyl precursors (α-DPs) and AGEs compared to the control group. Specifically, the levels of glyoxal and methylglyoxal decreased by 4.26 % and 6.12 %, respectively, although this inhibition was not statistically significant (P > 0.05). The concentrations of Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) content in the PGH-treated group were 2.86 %-33.19 % and 4.33 %-24.02 % lower than those in the control group, respectively. After reheating (100 °C, 10 min), AGEs levels increased by 1.94 % to 123.21 %, while the levels of glyoxal and methylglyoxal decreased by 17.00 % and 15.24 %, respectively. The addition of PGH significantly reduced AGEs formation after reheating compared to the control (P < 0.01). These results suggest that PGH is effective as a cryoprotectant, inhibiting the formation of harmful AGEs during freeze-thaw cycles and subsequent reheating of pre-heated pork.
Collapse
Affiliation(s)
- Yi Lin
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Fuyu Chu
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China
| | - Yiqun Huang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410004, Hunan, China.
| | - Junjian Miao
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Keqiang Lai
- College of Food Science and Technology, Shanghai Ocean University, No. 999 Hucheng Huan Road, LinGang New City, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Xu X, Djohari KN, Jiang Y, Zhou W. Deciphering the inhibitory mechanisms of betanin and phyllocactin from Hylocereus polyrhizus peel on protein glycation, with insights into their application in bread. Food Chem 2024; 452:139594. [PMID: 38749142 DOI: 10.1016/j.foodchem.2024.139594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Protein glycation closely intertwines with the pathogenesis of various diseases, sparking a growing interest in exploring natural antiglycation agents. Herein, high-purity betacyanins (betanin and phyllocactin) derived from Hylocereus polyrhizus peel were studied for their antiglycation potential using an in vitro bovine serum albumin (BSA)-glucose model. Notably, betacyanins outperformed aminoguanidine, a recognized antiglycation agent, in inhibiting glycation product formation across different stages, especially advanced glycation end-products (AGEs). Interestingly, phyllocactin displayed stronger antiglycation activity than betanin. Subsequent mechanistic studies employing molecular docking analysis and fluorescence quenching assay unveiled that betacyanins interact with BSA endothermically and spontaneously, with hydrophobic forces playing a dominant role. Remarkably, phyllocactin demonstrated higher binding affinity and stability to BSA than betanin. Furthermore, the incorporation of betacyanins into bread dose-dependently suppressed AGEs formation during baking and shows promise for inhibiting in vivo glycation process post-consumption. Overall, this study highlights the substantial potential of betacyanins as natural antiglycation agents.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Kelly Natalia Djohari
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Yingfen Jiang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore 117543, Republic of Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou Industrial Park, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Zhang Y, Chen Y, Liu H, Sun B. Advances of nanoparticle derived from food in the control of α-dicarbonyl compounds-A review. Food Chem 2024; 444:138660. [PMID: 38330613 DOI: 10.1016/j.foodchem.2024.138660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
α-Dicarbonyl compounds (α-DCs) are predominantly generated through the thermal processing of carbohydrate and protein-rich food. They are pivotal precursors to hazard formation, such as advanced glycation end products (AGEs), acrylamide, and furan. Their accumulation within the body will be genotoxicity and neurotoxicity. Recently, significant advancements have been made in nanotechnology, leading to the widespread utilization of nanomaterials as functional components in addressing the detrimental impact of α-DCs. This review focuses on the control of α-DCs through the utilization of nanoparticle-based functional factors, which were prepared by using edible components as resources. Four emerging nanoparticles are introduced including phenolic compounds-derived nanoparticle, plant-derived nanoparticle, active peptides-derived nanoparticle, and functional minerals-derived nanoparticle. The general control mechanisms as well as the recent evidence pertaining to the aforementioned aspects were also discussed, hoping to valuable helpful references for the development of innovative α-DCs scavengers and identifying the further scope of research.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Yunhai Chen
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
4
|
Phyo SH, Ghamry M, Bao G, Zeng A, Zhao W. Potential inhibitory effect of highland barley protein hydrolysates on the formation of advanced glycation end-products (AGEs): A mechanism study. Int J Biol Macromol 2024; 268:131632. [PMID: 38643911 DOI: 10.1016/j.ijbiomac.2024.131632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
Advanced glycation end products (AGEs) can be caused during a glycoxidation reaction. This reaction is associated with complications of diabetes and the consequences of health problems. Therefore, we are exploring the prohibitory effect of highland barley protein hydrolysates (HBPHs) on AGE formation. Herein, first extracted the protein from highland barley with various pH conditions and then hydrolyzed using four different proteolytic enzymes (flavourzyme, trypsin, papain, pepsin) under different degrees of hydrolysis. We assessed three degrees of hydrolysates (lowest, middle, highest) of enzymes used to characterize the antioxidant activity and physicochemical properties. Among all the hydrolysates, flavourzyme-treated hydrolysates F-1, F-2, and F-3 indicated the high ability to scavenge DPPH (IC50 values of 0.97 %, 0.63 %, and 0.90 %), structural and functional properties. Finally, the inhibitory effect of the most active hydrolysates F-1, F-2, and F-3 against the AGEs formation was evaluated in multiple glucose-glycated bovine serum albumin (BSA) systems. Additionally, in a BSA system, F-3 exhibited the strong antiglycation activity, effectively suppressed the non-fluorescent AGE (CML), and the fructosamine level. Moreover, it decreased carbonyl compounds while also preventing the loss of thiol groups. Our results would be beneficial in the application of the food industry as a potential antiglycation agent for several chronic diseases.
Collapse
Affiliation(s)
- Su Hlaing Phyo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China
| | - Guina Bao
- Xizang Highland Barley Agricultural Science & Technology Co., Ltd., No.66, 532 Yuyuan Rd., Jiang'an District, Shanghai City 200040, PR China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
5
|
Arasteh F, Barzegar M, Gavlighi HA. Potential inhibitory effect of fish, maize, and whey protein hydrolysates on advanced glycation end-products (AGEs). Food Sci Nutr 2023; 11:3075-3082. [PMID: 37324869 PMCID: PMC10261735 DOI: 10.1002/fsn3.3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Advanced glycation end-products (AGEs) are produced in the final stage of the Maillard reaction. AGEs formation may be inhibited by natural hydrolysates derived from plant or animal sources. The present study aimed to investigate the antiglycation potential of fish, maize, and whey protein hydrolysates. It was carried out in four model systems, Bovine serum albumin (BSA)-Glucose, BSA-Fructose, BSA-Sorbitol, and BSA-HFCS (high fructose corn syrup), by evaluation of fluorescent intensity of AGEs after seven days of reaction at 37°C. The results showed that the highest inhibitory effect belonged to 0.16% of FPH (fish protein hydrolysate, percent inhibition ~99.0%), whereas maize protein hydrolysate (MPH) had lower antiglycation activity in comparison with FPH. Among all hydrolysates, whey protein hydrolysate with the lowest degree of hydrolysis showed the weakest inhibitory activity. Overall, our results indicated that the investigated hydrolysates, particularly FPH, have promising antiglycation potential and can be recommended for the production of functional foods.
Collapse
Affiliation(s)
- Faezeh Arasteh
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Mohsen Barzegar
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Hassan Ahmadi Gavlighi
- Department of Food Science and Technology, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| |
Collapse
|
6
|
Zhang W, Liu C, Zhao J, Guo F, You J, Zhang L, Wang Y. Alkali-Induced Phenolic Acid Oxidation Enhanced Gelation of Ginkgo Seed Protein. Foods 2023; 12:foods12071506. [PMID: 37048327 PMCID: PMC10094424 DOI: 10.3390/foods12071506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The effect of alkali-induced oxidation of three phenolic acids, namely gallic acid, epigallocatechin gallate, and tannic acid, on the structure and gelation of ginkgo seed protein isolate (GSPI) was investigated. A mixture of 12% (w/v) GSPI and different concentrations of alkali-treated phenolic acids (0, 0.06, 0.24, and 0.48% w/w) were heated at 90 °C, pH 6.0, for 30 min to form composite gels. The phenolic treatment decreased the hydrophobicity of the GSPI sol while enhancing their rheological properties. Despite a reduced protein solubility, water holding capacity, stiffness, and viscoelasticity of the gels were improved by the treatments. Among them, the modification effect of 0.24% (w/v) EGCG was the most prominent. Through the analysis of microstructure and composition, it was found to be due to the covalent addition, disulfide bond formation, etc., between the quinone derivatives of phenolic acids and the side chains of nucleophilic amino acids. Phenolic acid modification of GSPI may be a potential ingredient strategy in its processing.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92182, USA
| | - Fengxian Guo
- Fujian Province Key Laboratory for Development of Bioactive Material from Marine Algae, College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Jieyu You
- Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luyan Zhang
- Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yaosong Wang
- Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
7
|
Zhao J, Sun Y, Yuan C, Li T, Liang Y, Zou H, Zhang J, Ren L. Quercetin ameliorates hepatic fat accumulation in high-fat diet-induced obese mice via PPARs. Food Funct 2023; 14:1674-1684. [PMID: 36691903 DOI: 10.1039/d2fo03013f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a natural pigment in food, quercetin possesses multiple biological activities and plays a crucial role in regulating metabolic syndrome. Herein, we aim to explore the potential mechanism of quercetin to ameliorate hepatic fat accumulation. In vivo experiments showed that quercetin significantly relieved inflammation response by decreasing the serum TNF-α and IL-6 levels and also improved high-fat diet-induced hepatic steatosis without other organ injuries. Quercetin can effectively reduce lipid aggregation and down-regulate the protein expression of PCK1 in HepG2 cells induced by oleic acid and palmitic acid, indicating that inhibiting gluconeogenesis leads to hepatic fat accumulation reduction. Furthermore, molecular docking results suggested that quercetin can bind to both PPARα and PPARγ, with an even more potent binding affinity than indeglitazar, a pan-agonist of PPARs. In conclusion, quercetin may regulate gluconeogenesis to ameliorate hepatic fat accumulation via targeting PPARα/γ.
Collapse
Affiliation(s)
- Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yantong Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuiping Yuan
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|