1
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
2
|
Fakfum P, Chuljerm H, Parklak W, Roytrakul S, Phaonakrop N, Lerttrakarnnon P, Kulprachakarn K. Plasma Proteomics of Type 2 Diabetes, Hypertension, and Co-Existing Diabetes/Hypertension in Thai Adults. Life (Basel) 2024; 14:1269. [PMID: 39459569 PMCID: PMC11509282 DOI: 10.3390/life14101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The study explored proteomics to better understand the relationship between type 2 diabetes (T2DM) and hypertension (HT) in Thai adults, using shotgun proteomics and bioinformatics analysis. Plasma samples were taken from 61 subjects: 14 healthy subjects (mean age = 40.85 ± 7.12), 13 with T2DM (mean age = 57.38 ± 6.03), 16 with HT (mean age = 66.87 ± 10.09), and 18 with coexisting T2DM/HT (mean age = 58.22 ± 10.65). Proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Protein-protein interactions were analyzed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) version 11.5. We identified six unique proteins in T2DM patients, including translationally controlled 1 (TPT1) and nibrin (NBN), which are associated with the DNA damage response. In HT patients, seven unique proteins were identified, among them long-chain fatty acid-CoA ligase (ASCL), which functions in the stimulation of triacylglycerol and cholesterol synthesis, and NADPH oxidase activator 1 (NOXA1), which is involved in high blood pressure via angiotensin II-induced reactive oxygen species (ROS)-generating systems. In coexisting T2DM/HT patients, six unique proteins were identified, of which two-microtubule-associated protein 1A (MAP1A)-might be involved in dementia via RhoB-p53 and diacylglycerol kinase beta (DGKB), associated with lipid metabolism. This study identified new candidate proteins that are possibly involved in the pathology of these diseases.
Collapse
Affiliation(s)
- Puriwat Fakfum
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Hataichanok Chuljerm
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Wason Parklak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Narumon Phaonakrop
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani 12120, Thailand; (S.R.); (N.P.)
| | - Peerasak Lerttrakarnnon
- Aging and Aging Palliative Care Research Cluster, Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanokwan Kulprachakarn
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (P.F.); (H.C.); (W.P.)
| |
Collapse
|
3
|
Geister E, Ard D, Patel H, Findley A, DeSouza G, Martin L, Knox H, Gavara N, Lugea A, Sabbatini ME. The Role of Twist1 in Chronic Pancreatitis-Associated Pancreatic Stellate Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1879-1897. [PMID: 39032603 PMCID: PMC11423762 DOI: 10.1016/j.ajpath.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/23/2024]
Abstract
In healthy pancreas, pancreatic stellate cells (PaSCs) synthesize the basement membrane, which is mainly composed of type IV collagen and laminin. In chronic pancreatitis (CP), PaSCs are responsible for the production of a rigid extracellular matrix (ECM) that is mainly composed of fibronectin and type I/III collagen. Reactive oxygen species evoke the formation of the rigid ECM by PaSCs. One source of reactive oxygen species is NADPH oxidase (Nox) enzymes. Nox1 up-regulates the expression of Twist1 and matrix metalloproteinase-9 (MMP-9) in PaSCs from mice with CP. This study determined the functional relationship between Twist1 and MMP-9, and other PaSC-produced proteins, and the extent to which Twist1 regulates digestion of ECM proteins in CP. Twist1 induced the expression of MMP-9 in mouse PaSCs. The action of Twist1 was not selective to MMP-9 because Twist1 induced the expression of types I and IV collagen, fibronectin, transforming growth factor, and α-smooth muscle actin. Luciferase assay indicated that Twist1 in human primary PaSCs increased the expression of MMP-9 at the transcriptional level in an NF-κB dependent manner. The digestion of type I/III collagen by MMP-9 secreted by PaSCs from mice with CP depended on Twist1. Thus, Twist1 in PaSCs from mice with CP induced rigid ECM production and MMP-9 transcription in an NF-κB-dependent mechanism that selectively displayed proteolytic activity toward type I/III collagen.
Collapse
Affiliation(s)
- Emma Geister
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Dalton Ard
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Heer Patel
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Alyssa Findley
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Godfrey DeSouza
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Lyndsay Martin
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Henry Knox
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Natasha Gavara
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, California
| | | |
Collapse
|
4
|
Liu Z, Liu S, Zhao Y, Wang Q. Biological Mediators and Partial Regulatory Mechanisms on Neuropathic Pain Associated With Chemotherapeutic Agents. Physiol Res 2024; 73:333-341. [PMID: 39027951 PMCID: PMC11299781 DOI: 10.33549/physiolres.935162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 07/27/2024] Open
Abstract
One of the most common issues caused by antineoplastic agents is chemotherapy-induced peripheral neuropathy (CIPN). In patients, CIPN is a sensory neuropathy accompanied by various motor and autonomic changes. With a high prevalence of cancer patients, CIPN is becoming a major problem for both cancer patients and for their health care providers. Nonetheless, there are lacking effective interventions preventing CIPN and treating the CIPN symptoms. A number of studies have demonstrated the cellular and molecular signaling pathways leading to CIPN using experimental models and the beneficial effects of some interventions on the CIPN symptoms related to those potential mechanisms. This review will summarize results obtained from recent human and animal studies, which include the abnormalities in mechanical and temperature sensory responses following chemotherapy such as representative bortezomib, oxaliplatin and paclitaxel. The underlying mechanisms of CIPN at cellular and molecular levels will be also discussed for additional in-depth studies needed to be better explored. Overall, this paper reviews the basic picture of CIPN and the signaling mechanisms of the most common antineoplastic agents in the peripheral and central nerve systems. A better understanding of the risk factors and fundamental mechanisms of CIPN is needed to develop effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Z Liu
- Tumor Center, The First Hospital of Jilin University, Changchun, Jilin, China.
| | | | | | | |
Collapse
|
5
|
Młynarska E, Biskup L, Możdżan M, Grygorcewicz O, Możdżan Z, Semeradt J, Uramowski M, Rysz J, Franczyk B. The Role of Oxidative Stress in Hypertension: The Insight into Antihypertensive Properties of Vitamins A, C and E. Antioxidants (Basel) 2024; 13:848. [PMID: 39061916 PMCID: PMC11273425 DOI: 10.3390/antiox13070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Hypertension stands as a pervasive global health challenge, contributing significantly to mortality rates worldwide. Various factors, including lifestyle choices and dietary habits, contribute to the development of hypertension. In recent years, oxidative stress has garnered significant attention as a factor influencing hypertension risk, prompting a shift in research focus towards exploring it as a potential target for prevention and treatment. Antioxidants found in our diet, such as vitamins C, E and carotenoids exhibit the ability to neutralize reactive oxygen species, thereby mitigating oxidative stress. In addition, Vitamin A has an antioxidant effect despite not being an antioxidant itself. Consequently, supplementation or increased intake of these antioxidants has been hypothesized to potentially lower blood pressure levels and aid in the management of hypertension, thereby potentially prolonging life expectancy. Research findings regarding this effect have been diverse. This paper examines the existing literature demonstrating favorable outcomes associated with antioxidant supplementation.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Laura Biskup
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Maria Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Olivia Grygorcewicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Zofia Możdżan
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jan Semeradt
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Michał Uramowski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
6
|
Lamb FS, Choi H, Miller MR, Stark RJ. Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels. Hypertension 2024; 81:752-763. [PMID: 38174563 PMCID: PMC10954410 DOI: 10.1161/hypertensionaha.123.19434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Collapse
Affiliation(s)
- Fred S Lamb
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Hyehun Choi
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Michael R Miller
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan J Stark
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
7
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
8
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
9
|
Ward J, Zhang S, Sikora A, Michalski R, Yin Y, D'Alessio A, McLoughlin RM, Jaquet V, Fieschi F, Knaus UG. VEO-IBD NOX1 variant highlights a structural region essential for NOX/DUOX catalytic activity. Redox Biol 2023; 67:102905. [PMID: 37820403 PMCID: PMC10571032 DOI: 10.1016/j.redox.2023.102905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic intestinal disorders that result from an inappropriate inflammatory response to the microbiota in genetically susceptible individuals, often triggered by environmental stressors. Part of this response is the persistent inflammation and tissue injury associated with deficiency or excess of reactive oxygen species (ROS). The NADPH oxidase NOX1 is highly expressed in the intestinal epithelium, and inactivating NOX1 missense mutations are considered a risk factor for developing very early onset IBD. Albeit NOX1 has been linked to wound healing and host defence, many questions remain about its role in intestinal homeostasis and acute inflammatory conditions. Here, we used in vivo imaging in combination with inhibitor studies and germ-free conditions to conclusively identify NOX1 as essential superoxide generator for microbiota-dependent peroxynitrite production in homeostasis and during early endotoxemia. NOX1 loss-of-function variants cannot support peroxynitrite production, suggesting that the gut barrier is persistently weakened in these patients. One of the loss-of-function NOX1 variants, NOX1 p. Asn122His, features replacement of an asparagine residue located in a highly conserved HxxxHxxN motif. Modelling the NOX1-p22phox complex revealed near the distal heme an internal pocket restricted by His119 and Asn122 that is part of the oxygen reduction site. Functional studies in several human NADPH oxidases show that substitution of asparagine with amino acids with larger side chains is not tolerated, while smaller side chains can support catalytic activity. Thus, we identified a previously unrecognized structural feature required for the electron transfer mechanism in human NADPH oxidases.
Collapse
Affiliation(s)
- Josie Ward
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Suisheng Zhang
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radoslaw Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Yuting Yin
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Aurora D'Alessio
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- Host-Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Vincent Jaquet
- Department of Pathology and Immunology and READS Unit, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France; Institut Universitaire de France (IUF), Paris, France.
| | - Ulla G Knaus
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
11
|
Valdivia A, Duran C, Lee M, Williams HC, Lee MY, San Martin A. Nox1-based NADPH oxidase regulates the Par protein complex activity to control cell polarization. Front Cell Dev Biol 2023; 11:1231489. [PMID: 37635877 PMCID: PMC10457011 DOI: 10.3389/fcell.2023.1231489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Cell migration is essential for many biological and pathological processes. Establishing cell polarity with a trailing edge and forming a single lamellipodium at the leading edge of the cell is crucial for efficient directional cell migration and is a hallmark of mesenchymal cell motility. Lamellipodia formation is regulated by spatial-temporal activation of the small GTPases Rac and Cdc42 at the front edge, and RhoA at the rear end. At a molecular level, partitioning-defective (Par) protein complex comprising Par3, Par6, and atypical Protein Kinase (aPKC isoforms ζ and λ/ι) regulates front-rear axis polarization. At the front edge, integrin clustering activates Cdc42, prompting the formation of Par3/Par6/aPKC complexes to modulate MTOC positioning and microtubule stabilization. Consequently, the Par3/Par6/aPKC complex recruits Rac1-GEF Tiam to activate Rac1, leading to lamellipodium formation. At the rear end, RhoA-ROCK phosphorylates Par3 disrupting its interaction with Tiam and inactivating Rac1. RhoA activity at the rear end allows the formation of focal adhesions and stress fibers necessary to generate the traction forces that allow cell movement. Nox1-based NADPH oxidase is necessary for PDGF-induced migration in vitro and in vivo for many cell types, including fibroblasts and smooth muscle cells. Here, we report that Nox1-deficient cells failed to acquire a normal front-to-rear polarity, polarize MTOC, and form a single lamellipodium. Instead, these cells form multiple protrusions that accumulate Par3 and active Tiam. The exogenous addition of H2O2 rescues this phenotype and is associated with the hyperactivation of Par3, Tiam, and Rac1. Mechanistically, Nox1 deficiency induces the inactivation of PP2A phosphatase, leading to increased activation of aPKC. These results were validated in Nox1y/- primary mouse aortic smooth muscle cells (MASMCs), which also showed PP2A inactivation after PDGF-BB stimulation consistent with exacerbated activation of aPKC. Moreover, we evaluated the physiological relevance of this signaling pathway using a femoral artery wire injury model to generate neointimal hyperplasia. Nox1y/- mice showed increased staining for the inactive form of PP2A and increased signal for active aPKC, suggesting that PP2A and aPKC activities might contribute to reducing neointima formation observed in the arteries of Nox1y/- mice.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Charity Duran
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Mingyoung Lee
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Holly C. Williams
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Moo-Yeol Lee
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Goyang, Republic of Korea
| | - Alejandra San Martin
- Division of Cardiology, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Science, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
12
|
Helm MM, Alaba T, Klimis-Zacas D, Izuora K, Basu A. Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials. Antioxidants (Basel) 2023; 12:1182. [PMID: 37371912 DOI: 10.3390/antiox12061182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiometabolic conditions are closely associated with inflammation and oxidative stress. Dietary berries may serve as a beneficial nutrition intervention to address the features of cardiometabolic dysfunction and associated oxidative stress. The high antioxidant status of dietary berries may increase antioxidant capacity and reduce biomarkers of oxidative stress. This systematic review was conducted to investigate these effects of dietary berries. The search was conducted using PubMed, Cochrane Library, Web of Science, and citation searching. Through this search we identified 6309 articles and 54 were included in the review. Each study's risk of bias was assessed using the 2019 Cochrane Methods' Risk of Bias 2 tool. Antioxidant and oxidative stress outcomes were evaluated, and the magnitude of effect was calculated using Cohen's d. A range of effectiveness was reported in the included studies and the quality of the studies differed between the parallel and crossover trials. Considering the inconsistency in reported effectiveness, future investigations are warranted to determine the acute and sustained reductions of oxidative stress biomarkers from dietary berry intake (PROSPERO registration# CRD42022374654).
Collapse
Affiliation(s)
- Macy M Helm
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Tolu Alaba
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Dorothy Klimis-Zacas
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Kenneth Izuora
- Section of Endocrinology, Department of Internal Medicine, University of Nevada, Las Vegas, NV 89102, USA
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
13
|
Mason H, Rai G, Kozyr A, De Jonge N, Gliniewicz E, Berg LJ, Wald G, Dorrier C, Henderson MJ, Zakharov A, Dyson T, Audley J, Pettinato AM, Padilha EC, Shah P, Xu X, Leto TL, Simeonov A, Zarember KA, McGavern DB, Gallin JI. Development of an improved and specific inhibitor of NADPH oxidase 2 to treat traumatic brain injury. Redox Biol 2023; 60:102611. [PMID: 36709665 PMCID: PMC9894920 DOI: 10.1016/j.redox.2023.102611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
NADPH oxidases (NOX's), and the reactive oxygen species (ROS) they produce, play an important role in host defense, thyroid hormone synthesis, apoptosis, gene regulation, angiogenesis and other processes. However, overproduction of ROS by these enzymes is associated with cardiovascular disease, fibrosis, traumatic brain injury (TBI) and other diseases. Structural similarities between NOX's have complicated development of specific inhibitors. Here, we report development of NCATS-SM7270, a small molecule optimized from GSK2795039, that inhibited NOX2 in primary human and mouse granulocytes. NCATS-SM7270 specifically inhibited NOX2 and had reduced inhibitory activity against xanthine oxidase in vitro. We also studied the role of several NOX isoforms during mild TBI (mTBI) and demonstrated that NOX2 and, to a lesser extent, NOX1 deficient mice are protected from mTBI pathology, whereas injury is exacerbated in NOX4 knockouts. Given the pathogenic role played by NOX2 in mTBI, we treated mice transcranially with NCATS-SM7270 after injury and revealed a dose-dependent reduction in mTBI induced cortical cell death. This inhibitor also partially reversed cortical damage observed in NOX4 deficient mice following mTBI. These data demonstrate that NCATS-SM7270 is an improved and specific inhibitor of NOX2 capable of protecting mice from NOX2-dependent cell death associated with mTBI.
Collapse
Affiliation(s)
- Hannah Mason
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Arina Kozyr
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Nathaniel De Jonge
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Emily Gliniewicz
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Lars J Berg
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Gal Wald
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Cayce Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark J Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Alexey Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Tristan Dyson
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Audley
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Anthony M Pettinato
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Elias Carvalho Padilha
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Thomas L Leto
- Molecular Defenses Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, 20850, USA
| | - Kol A Zarember
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - John I Gallin
- Clinical Pathophysiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Calpain Regulates Reactive Oxygen Species Production during Capacitation through the Activation of NOX2 and NOX4. Int J Mol Sci 2023; 24:ijms24043980. [PMID: 36835392 PMCID: PMC9967964 DOI: 10.3390/ijms24043980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Capacitation is a series of physiological, biochemical, and metabolic changes experienced by mammalian spermatozoa. These changes enable them to fertilize eggs. The capacitation prepares the spermatozoa to undergo the acrosomal reaction and hyperactivated motility. Several mechanisms that regulate capacitation are known, although they have not been fully disclosed; among them, reactive oxygen species (ROS) play an essential role in the normal development of capacitation. NADPH oxidases (NOXs) are a family of enzymes responsible for ROS production. Although their presence in mammalian sperm is known, little is known about their participation in sperm physiology. This work aimed to identify the NOXs related to the production of ROS in guinea pig and mouse spermatozoa and define their participation in capacitation, acrosomal reaction, and motility. Additionally, a mechanism for NOXs' activation during capacitation was established. The results show that guinea pig and mouse spermatozoa express NOX2 and NOX4, which initiate ROS production during capacitation. NOXs inhibition by VAS2870 led to an early increase in the capacitation and intracellular concentration of Ca2+ in such a way that the spermatozoa also presented an early acrosome reaction. In addition, the inhibition of NOX2 and NOX4 reduced progressive motility and hyperactive motility. NOX2 and NOX4 were found to interact with each other prior to capacitation. This interaction was interrupted during capacitation and correlated with the increase in ROS. Interestingly, the association between NOX2-NOX4 and their activation depends on calpain activation, since the inhibition of this Ca2+-dependent protease prevents NOX2-NOX4 from dissociating and ROS production. The results indicate that NOX2 and NOX4 could be the most important ROS producers during guinea pig and mouse sperm capacitation and that their activation depends on calpain.
Collapse
|
15
|
Herfindal AM, Rocha SDC, Papoutsis D, Bøhn SK, Carlsen H. The ROS-generating enzyme NADPH oxidase 1 modulates the colonic microbiota but offers minor protection against dextran sulfate sodium-induced low-grade colon inflammation in mice. Free Radic Biol Med 2022; 188:298-311. [PMID: 35752373 DOI: 10.1016/j.freeradbiomed.2022.06.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
The enzyme NADPH oxidase 1 (NOX1) is a major producer of superoxide which together with other reactive oxygen and nitrogen species (ROS/RNS) are implicated in maintaining a healthy epithelial barrier in the gut. While previous studies have indicated NOX1's involvement in microbial modulation in the small intestine, less is known about the effects of NOX1-dependent ROS/RNS formation in the colon. We investigated the role of NOX1 in the colon of NOX1 knockout (KO) and wild type (WT) mice, under mild and subclinical low-grade colon inflammation induced by 1% dextran sulfate sodium (DSS). Ex vivo imaging of ROS/RNS in the colon revealed that absence of NOX1 strongly decreased ROS/RNS production, particularly during DSS treatment. Furthermore, while absence of NOX1 did not affect disease activity, some markers of inflammation (mRNA: Tnfa, Il6, Ptgs2; protein: lipocalin 2) in the colonic mucosa tended to be higher in NOX1 KO than in WT mice following DSS treatment. Lack of NOX1 also extensively modulated the bacterial community in the colon (16S rRNA gene sequencing), where NOX1 KO mice were characterized mainly by lower α-diversity (richness and evenness), higher abundance of Firmicutes, Akkermansia, and Oscillibacter, and lower abundance of Bacteroidetes and Alistipes. Together, our data suggest that NOX1 is pivotal for colonic ROS/RNS production in mice both during steady-state (i.e., no DSS treatment) and during 1% DSS-induced low-grade inflammation and for modulation of the colonic microbiota, with potential beneficial consequences for intestinal health.
Collapse
Affiliation(s)
- Anne Mari Herfindal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Sérgio Domingos Cardoso Rocha
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway; Faculty of Biosciences, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Dimitrios Papoutsis
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Siv Kjølsrud Bøhn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P. O. Box 5003, N-1432, Ås, Norway.
| |
Collapse
|
16
|
Vendrov AE, Stevenson MD, Lozhkin A, Hayami T, Holland NA, Yang X, Moss N, Pan H, Wickline SA, Stockand JD, Runge MS, Madamanchi NR, Arendshorst WJ. Renal NOXA1/NOX1 Signaling Regulates Epithelial Sodium Channel and Sodium Retention in Angiotensin II-induced Hypertension. Antioxid Redox Signal 2022; 36:550-566. [PMID: 34714114 PMCID: PMC8978567 DOI: 10.1089/ars.2021.0047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Aims: NADPH oxidase (NOX)-derived reactive oxygen species (ROS) are implicated in the pathophysiology of hypertension in chronic kidney disease patients. Genetic deletion of NOX activator 1 (Noxa1) subunit of NOX1 decreases ROS under pathophysiological conditions. Here, we investigated the role of NOXA1-dependent NOX1 activity in the pathogenesis of angiotensin II (Ang II)-induced hypertension (AIH) and possible involvement of abnormal renal function. Results: NOXA1 is present in epithelial cells of Henle's thick ascending limb and distal nephron. Telemetry showed lower basal systolic blood pressure (BP) in Noxa1-/-versus wild-type mice. Ang II infusion for 1 and 14 days increased NOXA1/NOX1 expression and ROS in kidney of male but not female wild-type mice. Mean BP increased 30 mmHg in wild-type males, with smaller increases in Noxa1-deficient males and wild-type or Noxa1-/- females. In response to an acute salt load, Na+ excretion was similar in wild-type and Noxa1-/- mice before and 14 days after Ang II infusion. However, Na+ excretion was delayed after 1-2 days of Ang II in male wild-type versus Noxa1-/- mice. Ang II increased epithelial Na+ channel (ENaC) levels and activation in the collecting duct principal epithelial cells of wild-type but not Noxa1-/- mice. Aldosterone induced ROS levels and Noxa1 and Scnn1a expression and ENaC activity in a mouse renal epithelial cell line, responses abolished by Noxa1 small-interfering RNA. Innovation and Conclusion: Ang II activation of renal NOXA1/NOX1-dependent ROS enhances tubular ENaC expression and Na+ reabsorption, leading to increased BP. Attenuation of AIH in females is attributed to weaker NOXA1/NOX1-dependent ROS signaling and efficient natriuresis. Antioxid. Redox Signal. 36, 550-566.
Collapse
Affiliation(s)
- Aleksandr E Vendrov
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mark D Stevenson
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrey Lozhkin
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Takayuki Hayami
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nathan A Holland
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Xi Yang
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas Moss
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida, Tampa, Florida, USA
| | - Samuel A Wickline
- Department of Cardiovascular Sciences, University of South Florida, Tampa, Florida, USA
| | - James D Stockand
- Department of Cellular and Integrative Physiology, University of Texas Health Science Centre at San Antonio, San Antonio, Texas, USA
| | - Marschall S Runge
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nageswara R Madamanchi
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Xu L, Balzarolo M, Robinson EL, Lorenz V, Verde GD, Joray L, Mochizuki M, Kaufmann BA, Valstar G, de Jager SCA, den Ruijter HM, Heymans S, Pfister O, Kuster GM. NOX1 mediates metabolic heart disease in mice and is upregulated in monocytes of humans with diastolic dysfunction. Cardiovasc Res 2021; 118:2973-2984. [PMID: 34849611 DOI: 10.1093/cvr/cvab349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Microvascular inflammation plays an important role in the pathogenesis of diastolic dysfunction (DD) and metabolic heart disease. NOX1 is expressed in vascular and immune cells and has been implicated in the vascular pathology of metabolic disease. However, its contribution to metabolic heart disease is less understood. METHODS AND RESULTS NOX1-deficient mice (KO) and male wild-type (WT) littermates were fed a high-fat high-sucrose diet (HFHS) and injected streptozotocin (75 mg/kg i.p.) or control diet (CTD) and sodium citrate. Despite similar weight gain and increase in fasting blood glucose and insulin, only WT-HFHS but not KO-HFHS mice developed concentric cardiac hypertrophy and elevated left ventricular filling pressure. This was associated with increased endothelial adhesion molecule expression, accumulation of Mac-2-, IL-1β- and NLRP3-positive cells and nitrosative stress in WT-HFHS but not KO-HFHS hearts. Nox1 mRNA was solidly expressed in CD45+ immune cells isolated from healthy mouse hearts, but was negligible in cardiac CD31+ endothelial cells. However, in vitro, Nox1 expression increased in response to LPS in endothelial cells and contributed to LPS-induced upregulation of Icam-1. Nox1 was also upregulated in mouse bone marrow-derived macrophages in response to LPS. In peripheral monocytes from age- and sex-matched symptomatic patients with and without DD, NOX1 was significantly higher in patients with DD compared to those without DD. CONCLUSIONS NOX1 mediates endothelial activation and contributes to myocardial inflammation and remodeling in metabolic disease in mice. Given its high expression in monocytes of humans with DD, NOX1 may represent a potential target to mitigate heart disease associated with DD. TRANSLATIONAL PERSPECTIVE In their multifactorial pathogenesis, diastolic dysfunction (DD) and heart failure with preserved ejection fraction (HFpEF) still remain poorly understood. They frequently occur in patients with obesity and metabolic syndrome. Microvascular inflammation and dysfunction have recently been recognized as major driving forces. We show that genetic deletion of Nox1 prevents cardiac inflammation, remodeling and dysfunction in metabolic disease in mice and find NOX1 upregulated in peripheral monocytes of patients with DD. These findings add to our understanding how obesity, inflammation and heart disease are linked, which is a prerequisite to find therapeutic strategies beyond the control of co-morbidities in HFpEF.
Collapse
Affiliation(s)
- Lifen Xu
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Melania Balzarolo
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Emma L Robinson
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Vera Lorenz
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Giacomo Della Verde
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lydia Joray
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Michika Mochizuki
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Beat A Kaufmann
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gideon Valstar
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Saskia C A de Jager
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hester M den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stephane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Belgium, Leuven.,Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, Maastricht, 6229 ER The Netherlands.,ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, Utrecht, 3511 EP The Netherlands
| | - Otmar Pfister
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Gabriela M Kuster
- Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland.,Department of Cardiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
18
|
Innate immunity and clinical hypertension. J Hum Hypertens 2021; 36:503-509. [PMID: 34689174 DOI: 10.1038/s41371-021-00627-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023]
Abstract
Emerging evidence has supported a role of inflammation and immunity in the genesis of hypertension. In humans and experimental models of hypertension, cells of the innate and adaptive immune system enter target tissues, including vessels and the kidney, and release powerful mediators including cytokines, matrix metalloproteinases and reactive oxygen species that cause tissue damage, fibrosis and dysfunction. These events augment the blood pressure elevations in hypertension and promote end-organ damage. Factors that activate immune cells include sympathetic outflow, increased sodium within microenvironments where these cells reside, and signals received from the vasculature. In particular, the activated endothelium releases reactive oxygen species and interleukin (IL)-6 which in turn stimulate transformation of monocytes to become antigen presenting cells and produce cytokines like IL-1β and IL-23, which further affect T cell function to produce IL-17A. Genetic deletion or neutralization of these cytokines ameliorates hypertension and end-organ damage. In this review, we will consider in depth features of the hypertensive milieu that lead to these events and consider new treatment approaches to limit the untoward effects of inflammation in hypertension.
Collapse
|
19
|
Gutiérrez-González LH, Rivas-Fuentes S, Guzmán-Beltrán S, Flores-Flores A, Rosas-García J, Santos-Mendoza T. Peptide Targeting of PDZ-Dependent Interactions as Pharmacological Intervention in Immune-Related Diseases. Molecules 2021; 26:molecules26216367. [PMID: 34770776 PMCID: PMC8588348 DOI: 10.3390/molecules26216367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
PDZ (postsynaptic density (PSD95), discs large (Dlg), and zonula occludens (ZO-1)-dependent interactions are widely distributed within different cell types and regulate a variety of cellular processes. To date, some of these interactions have been identified as targets of small molecules or peptides, mainly related to central nervous system disorders and cancer. Recently, the knowledge of PDZ proteins and their interactions has been extended to various cell types of the immune system, suggesting that their targeting by viral pathogens may constitute an immune evasion mechanism that favors viral replication and dissemination. Thus, the pharmacological modulation of these interactions, either with small molecules or peptides, could help in the control of some immune-related diseases. Deeper structural and functional knowledge of this kind of protein–protein interactions, especially in immune cells, will uncover novel pharmacological targets for a diversity of clinical conditions.
Collapse
Affiliation(s)
- Luis H. Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Selma Rivas-Fuentes
- Department of Research on Biochemistry, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Angélica Flores-Flores
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
| | - Jorge Rosas-García
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados, Mexico City 07360, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Immunopharmacology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (A.F.-F.); (J.R.-G.)
- Correspondence: ; Tel.: +52-55-54871700 (ext. 5243)
| |
Collapse
|
20
|
Herb M, Gluschko A, Schramm M. Reactive Oxygen Species: Not Omnipresent but Important in Many Locations. Front Cell Dev Biol 2021; 9:716406. [PMID: 34557488 PMCID: PMC8452931 DOI: 10.3389/fcell.2021.716406] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS), such as the superoxide anion or hydrogen peroxide, have been established over decades of research as, on the one hand, important and versatile molecules involved in a plethora of homeostatic processes and, on the other hand, as inducers of damage, pathologies and diseases. Which effects ROS induce, strongly depends on the cell type and the source, amount, duration and location of ROS production. Similar to cellular pH and calcium levels, which are both strictly regulated and only altered by the cell when necessary, the redox balance of the cell is also tightly regulated, not only on the level of the whole cell but in every cellular compartment. However, a still widespread view present in the scientific community is that the location of ROS production is of no major importance and that ROS randomly diffuse from their cellular source of production throughout the whole cell and hit their redox-sensitive targets when passing by. Yet, evidence is growing that cells regulate ROS production and therefore their redox balance by strictly controlling ROS source activation as well as localization, amount and duration of ROS production. Hopefully, future studies in the field of redox biology will consider these factors and analyze cellular ROS more specifically in order to revise the view of ROS as freely flowing through the cell.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Alexander Gluschko
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| |
Collapse
|
21
|
Gavazzi G, Faury G. NOX- and ROS-Driven Hypertension in Elastin Insufficiency. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab035. [PMID: 35330621 PMCID: PMC8788823 DOI: 10.1093/function/zqab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 01/06/2023]
Affiliation(s)
- Gaëtan Gavazzi
- CHU Grenoble Alpes, CNRS UMR5525, Univ. Grenoble Alpes, Clinical Geriatrics Department and GREPI-TIMC-IMAG, 38000 Grenoble, France
| | | |
Collapse
|
22
|
Higaki A, Mahmoud AUM, Paradis P, Schiffrin EL. Automated Detection and Diameter Estimation for Mouse Mesenteric Artery Using Semantic Segmentation. J Vasc Res 2021; 58:379-387. [PMID: 34182554 DOI: 10.1159/000516842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pressurized myography is useful for the assessment of small artery structures and function. However, this procedure requires technical expertise for sample preparation and effort to choose an appropriate sized artery. In this study, we developed an automatic artery/vein differentiation and a size measurement system utilizing machine learning algorithms. METHODS AND RESULTS We used 654 independent mouse mesenteric artery images for model training. The model yielded an Intersection-over-Union of 0.744 ± 0.031 and a Dice coefficient of 0.881 ± 0.016. The vessel size and lumen size calculated from the predicted vessel contours demonstrated a strong linear correlation with manually determined vessel sizes (R = 0.722 ± 0.048, p < 0.001 for vessel size and R = 0.908 ± 0.027, p < 0.001 for lumen size). Last, we assessed the relation between the vessel size before and after dissection using a pressurized myography system. We observed a strong positive correlation between the wall/lumen ratio before dissection and the lumen expansion ratio (R = 0.832, p < 0.01). Using multivariate binary logistic regression, 2 models estimating whether the vessel met the size criteria (lumen size of 160-240 μm) were generated with an area under the receiver operating characteristic curve of 0.761 for the upper limit and 0.747 for the lower limit. CONCLUSION The U-Net-based image analysis method could streamline the experimental approach.
Collapse
Affiliation(s)
- Akinori Higaki
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Department of Cardiology, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Ahmad U M Mahmoud
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montreal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
23
|
Wang Y, Lv W, Li Y, Liu D, He X, Liu T. Ampelopsin Improves Cognitive Impairment in Alzheimer's Disease and Effects of Inflammatory Cytokines and Oxidative Stress in the Hippocampus. Curr Alzheimer Res 2021; 17:44-51. [PMID: 31797758 DOI: 10.2174/1567205016666191203153447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/17/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Neuroinflammation and oxidative stress have significant effects on cognitive deficiency in the pathophysiological development of Alzheimer's disease (AD). In the present study, we studied the influences of Ampelopsin (AMP) on proinflammatory cytokines (PICs, IL-1β, IL-6 and TNF-α), and products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, a product of oxidative stress); and 8-hydroxy-2'-deoxyguanosine (8-OHdG, a key biomarker of protein oxidation) in the hippocampus using a rat model of AD. METHODS ELISA was used to examine PICs and oxidative stress production; and western blotting to examine NADPH oxidase (NOXs). The Spatial working memory tests and Morris water maze were utilized to assess cognitive functions. RESULTS We observed amplification of IL-1β, IL-6 and TNF-α as well as 8-iso PGF2α and 8-OHdG in the hippocampus of AD rats. AMP attenuated upregulation of PICs and oxidative stress production. AMP also inhibited NOX4 in the AD rat hippocampus. Notably, AMP mostly improved learning performance in AD rat and this was linked to signal pathways of PIC and oxidative stress. CONCLUSION AMP plays a significant role in improving the memory deficiency in AD rats via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that AMP is likely to prospect in preventing and relieving development of the cognitive dysfunctions in AD as a complementary alternative intervention.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Wei Lv
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yueyang Li
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Dandan Liu
- Center of Physical Examination, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xiuting He
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ting Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
24
|
Single-Dose Toxicity Study on ML171, a Selective NOX1 Inhibitor, in Mice. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5515478. [PMID: 34195263 PMCID: PMC8181097 DOI: 10.1155/2021/5515478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/01/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
Background ML171 is a potent nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor with isoform selectivity only for NOX1. This study is aimed at investigating the safety of ML171 after a single intraperitoneal (IP) injection in mice. Methods The toxicity of a single dose of ML171 was evaluated in 6-week-old Institute of Cancer Research (ICR) mice in a good laboratory practice (GLP) laboratory. Twenty-five mice of each sex were assigned to five groups: negative control, vehicle control, and 125, 250, and 500 mg/kg of ML171. All mice were acclimatized for one week before beginning the study. Mice received an IP injection of ML171 or vehicle. The general condition and mortality of the animals were observed. The mice were sacrificed to evaluate histopathology 14 days after the administration of ML171 or vehicle. Results Bodyweights were not significantly different in any group. Three males and one female died due to ML171 administration in the 500 mg/kg dose group. Autopsies of the surviving mice did not reveal any significant abnormalities after the injection of 125 mg/kg of ML171. However, the anterior lobe edge of the liver was thickened and adhesions between the liver and adjacent organs were observed in mice treated with 250 or 500 mg/kg of ML171. In addition, hypertrophy of centrilobular hepatocytes and inflammatory cell infiltration were observed after injection of 250 and 500 mg/kg of ML171. Conclusion Our results indicate that the lethal IP injection dose of ML171 is 500 mg/kg for both males and females. Mortality were not observed for lower doses of ML171. The safe dose of single IP ML171 in ICR mice was 250 mg/kg or less. Further studies are needed to confirm the safety of ML171 in the human body.
Collapse
|
25
|
Qin W, Jeffers A, Owens S, Chauhan P, Komatsu S, Qian G, Guo X, Ikebe M, Idell S, Tucker TA. NOX1 Promotes Mesothelial-Mesenchymal Transition through Modulation of Reactive Oxygen Species-mediated Signaling. Am J Respir Cell Mol Biol 2021; 64:492-503. [PMID: 33513310 PMCID: PMC8008807 DOI: 10.1165/rcmb.2020-0077oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/29/2021] [Indexed: 11/24/2022] Open
Abstract
Pleural organization may occur after empyema or complicated parapneumonic effusion and can result in restrictive lung disease with pleural fibrosis (PF). Pleural mesothelial cells (PMCs) may contribute to PF through acquisition of a profibrotic phenotype, mesothelial-mesenchymal transition (MesoMT), which is characterized by increased expression of α-SMA (α-smooth muscle actin) and other myofibroblast markers. Although MesoMT has been implicated in the pathogenesis of PF, the role of the reactive oxygen species and the NOX (nicotinamide adenine dinucleotide phosphate oxidase) family in pleural remodeling remains unclear. Here, we show that NOX1 expression is enhanced in nonspecific human pleuritis and is induced in PMCs by THB (thrombin). 4-Hydroxy-2-nonenal, an indicator of reactive oxygen species damage, was likewise increased in our mouse model of pleural injury. NOX1 downregulation blocked THB- and Xa (factor Xa)-mediated MesoMT, as did pharmacologic inhibition of NOX1 with ML-171. NOX1 inhibition also reduced phosphorylation of Akt, p65, and tyrosine 216-GSK-3β, signaling molecules previously shown to be implicated in MesoMT. Conversely, ML-171 did not reverse established MesoMT. NOX4 downregulation attenuated TGF-β- and THB-mediated MesoMT. However, NOX1 downregulation did not affect NOX4 expression. NOX1- and NOX4-deficient mice were also protected in our mouse model of Streptococcus pneumoniae-mediated PF. These data show that NOX1 and NOX4 are critical determinants of MesoMT.
Collapse
Affiliation(s)
- Wenyi Qin
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Ann Jeffers
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Shuzi Owens
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Prashant Chauhan
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Satoshi Komatsu
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Guoqing Qian
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Xia Guo
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Mitsuo Ikebe
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Steven Idell
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Torry A Tucker
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, Texas
| |
Collapse
|
26
|
Schickling BM, Miller FJ. Outside-in Signaling by Adventitial Fibroblasts. Arterioscler Thromb Vasc Biol 2021; 41:711-713. [PMID: 33762812 DOI: 10.1161/atvbaha.120.315466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Francis J Miller
- Department of Medicine, Duke University, Durham, NC.,Wake Forest University, Winston-Salem, NC.,Veterans Affairs Medical Center, Salisbury, NC
| |
Collapse
|
27
|
Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors. Antioxidants (Basel) 2021; 10:antiox10030497. [PMID: 33806982 PMCID: PMC8004975 DOI: 10.3390/antiox10030497] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors. Objectives: To establish whether PDI and Nox-1 cooperate to control platelet function. Methods: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors. Results: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1−/− platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals. Conclusions: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.
Collapse
|
28
|
Tosetti B, Ward B, Grumme D, Herb M, Schramm M, Utermöhlen O, Heukamp LC, Krönke M, Krut O. NOX2 Deficiency Permits Sustained Survival of S. aureus in Macrophages and Contributes to Severity of Infection. Front Immunol 2021; 12:633629. [PMID: 33868252 PMCID: PMC8044967 DOI: 10.3389/fimmu.2021.633629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although the crucial role of professional phagocytes for the clearance of S. aureus infections is well-established, several studies indicate an adverse role of leukocytes in the dissemination of S. aureus during infection. Since only little is known about macrophages in this context, we analyzed the role of macrophages, and in particular reactive oxygen species deficiency, for the seeding of S. aureus metastases. Infection of bone marrow-derived macrophages (BMDM) with S. aureus revealed that NADPH oxidase 2 (NOX2-) deficient, but not NOX1- or NOX4-deficient, BMDM failed to clear intracellular S. aureus. Despite of larger intracellular bacterial burden, NOX2-deficient BMDM showed significantly improved survival. Intravenous injection of mice with in vitro-infected BMDMs carrying intracellular viable S. aureus led to higher bacterial loads in kidney and liver of mice compared to injection with plain S. aureus. An even higher frequency of liver abscesses was observed in mice infected with S. aureus-loaded nox2 -/- BMDM. Thus, the improved intracellular survival of S. aureus and improved viability of NOX2-deficient BMDM is associated with an aggravated metastatic dissemination of S. aureus infection. A combination of vancomycin and the intracellularly active antibiotic rifampicin led to complete elimination of S. aureus from liver within 48 h, which was not achieved with vancomycin treatment alone, underscoring the impact of intracellular S. aureus on the course of disease. The results of our study indicate that intracellular S. aureus carried by macrophages are sufficient to establish a systemic infection. This suggests the inclusion of intracellularly active antibiotics in the therapeutic regimen of invasive S. aureus infections, especially in patients with NADPH oxidase deficiencies such as chronic granulomatous disease.
Collapse
Affiliation(s)
- Bettina Tosetti
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Beate Ward
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Daniela Grumme
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,German Center for Infection Research, Bonn-Cologne, Germany
| | - Oleg Krut
- Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
29
|
Ouerd S, Idris-Khodja N, Trindade M, Ferreira NS, Berillo O, Coelho SC, Neves MF, Jandeleit-Dahm KA, Paradis P, Schiffrin EL. Endothelium-restricted endothelin-1 overexpression in type 1 diabetes worsens atherosclerosis and immune cell infiltration via NOX1. Cardiovasc Res 2021; 117:1144-1153. [PMID: 32533834 PMCID: PMC7983005 DOI: 10.1093/cvr/cvaa168] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/15/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
AIMS NADPH oxidase (NOX) 1 but not NOX4-dependent oxidative stress plays a role in diabetic vascular disease, including atherosclerosis. Endothelin (ET)-1 has been implicated in diabetes-induced vascular complications. We showed that crossing mice overexpressing human ET-1 selectively in endothelium (eET-1) with apolipoprotein E knockout (Apoe-/-) mice enhanced high-fat diet-induced atherosclerosis in part by increasing oxidative stress. We tested the hypothesis that ET-1 overexpression in the endothelium would worsen atherosclerosis in type 1 diabetes through a mechanism involving NOX1 but not NOX4. METHODS AND RESULTS Six-week-old male Apoe-/- and eET-1/Apoe-/- mice with or without Nox1 (Nox1-/y) or Nox4 knockout (Nox4-/-) were injected intraperitoneally with either vehicle or streptozotocin (55 mg/kg/day) for 5 days to induce type 1 diabetes and were studied 14 weeks later. ET-1 overexpression increased 2.5-fold and five-fold the atherosclerotic lesion area in the aortic sinus and arch of diabetic Apoe-/- mice, respectively. Deletion of Nox1 reduced aortic arch plaque size by 60%; in contrast, Nox4 knockout increased lesion size by 1.5-fold. ET-1 overexpression decreased aortic sinus and arch plaque alpha smooth muscle cell content by ∼35% and ∼50%, respectively, which was blunted by Nox1 but not Nox4 knockout. Reactive oxygen species production was increased two-fold in aortic arch perivascular fat of diabetic eET-1/Apoe-/- and eET-1/Apoe-/-/Nox4-/- mice but not eET-1/Apoe-/-/Nox1y/- mice. ET-1 overexpression enhanced monocyte/macrophage and CD3+ T-cell infiltration ∼2.7-fold in the aortic arch perivascular fat of diabetic Apoe-/- mice. Both Nox1 and Nox4 knockout blunted CD3+ T-cell infiltration whereas only Nox1 knockout prevented the monocyte/macrophage infiltration in diabetic eET-1/Apoe-/- mice. CONCLUSION Endothelium ET-1 overexpression enhances the progression of atherosclerosis in type 1 diabetes, perivascular oxidative stress, and inflammation through NOX1.
Collapse
MESH Headings
- Animals
- Aorta/enzymology
- Aorta/pathology
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Endothelin-1/genetics
- Endothelin-1/metabolism
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/pathology
- Fibrosis
- Humans
- Macrophages/enzymology
- Macrophages/immunology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Monocytes/enzymology
- Monocytes/immunology
- NADPH Oxidase 1/genetics
- NADPH Oxidase 1/metabolism
- Oxidative Stress
- Plaque, Atherosclerotic
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Up-Regulation
- Mice
Collapse
Affiliation(s)
- Sofiane Ouerd
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Noureddine Idris-Khodja
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Michelle Trindade
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Olga Berillo
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Suellen C Coelho
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Mario F Neves
- Department of Clinical Medicine, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Montréal, QC, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, #B-127 3755 Cote Ste-Catherine Road, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
30
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
31
|
Troia A, Knutsen RH, Halabi CM, Malide D, Yu ZX, Wardlaw-Pickett A, Kronquist EK, Tsang KM, Kovacs A, Mecham RP, Kozel BA. Inhibition of NOX1 Mitigates Blood Pressure Increases in Elastin Insufficiency. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab015. [PMID: 34223172 PMCID: PMC8248879 DOI: 10.1093/function/zqab015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
Elastin (ELN) insufficiency leads to the cardiovascular hallmarks of the contiguous gene deletion disorder, Williams-Beuren syndrome, including hypertension and vascular stiffness. Previous studies showed that Williams-Beuren syndrome deletions, which extended to include the NCF1 gene, were associated with lower blood pressure (BP) and reduced vascular stiffness. NCF1 encodes for p47phox, the regulatory component of the NOX1 NADPH oxidase complex that generates reactive oxygen species (ROS) in the vascular wall. Dihydroethidium and 8-hydroxyguanosine staining of mouse aortas confirmed that Eln heterozygotes (Eln+/- ) had greater ROS levels than the wild-types (Eln+/+ ), a finding that was negated in vessels cultured without hemodynamic stressors. To analyze the Nox effect on ELN insufficiency, we used both genetic and chemical manipulations. Both Ncf1 haploinsufficiency (Ncf1+/- ) and Nox1 insufficiency (Nox1-/y ) decreased oxidative stress and systolic BP in Eln+/- without modifying vascular structure. Chronic treatment with apocynin, a p47phox inhibitor, lowered systolic BP in Eln+/- , but had no impact on Eln+/+ controls. In vivo dosing with phenylephrine (PE) produced an augmented BP response in Eln+/- relative to Eln+/+ , and genetic modifications or drug-based interventions that lower Nox1 expression reduced the hypercontractile response to PE in Eln+/- mice to Eln+/+ levels. These results indicate that the mechanical and structural differences caused by ELN insufficiency leading to oscillatory flow can perpetuate oxidative stress conditions, which are linked to hypertension, and that by lowering the Nox1-mediated capacity for vascular ROS production, BP differences can be normalized.
Collapse
Affiliation(s)
- Angela Troia
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Russell H Knutsen
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carmen M Halabi
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniela Malide
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zu Xi Yu
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda Wardlaw-Pickett
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elise K Kronquist
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kit Man Tsang
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Attila Kovacs
- Department of Internal Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Beth A Kozel
- National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA,Address correspondence to B.A.K. (e-mail: )
| |
Collapse
|
32
|
Daugherty AM. Hypertension-related risk for dementia: A summary review with future directions. Semin Cell Dev Biol 2021; 116:82-89. [PMID: 33722505 DOI: 10.1016/j.semcdb.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
Chronic hypertension, or high blood pressure, is the most prevalent vascular risk factor that accelerates cognitive aging and increases risk for Alzheimer's disease and related dementia. Decades of observational and clinical trials have demonstrated that midlife hypertension is associated with greater gray matter atrophy, white matter damage commiserate with demyelination, and functional deficits as compared to normotension over the adult lifespan. Critically, hypertension is a modifiable dementia risk factor: successful blood pressure control with antihypertensive treatment improves outcomes as compared to uncontrolled hypertension, but does not completely negate the risk for dementia. This suggests that hypertension-related risk for neural and cognitive decline in aging cannot be due to elevations in blood pressure alone. This summary review describes three putative pathways for hypertension-related dementia risk: oxidative damage and metabolic dysfunction; systemic inflammation; and autonomic control of heart rate variability. The same processes contribute to pre-clinical hypertension, and therefore hypertension may be an early symptom of an aging nervous system that then exacerbates cumulative and progressive neurodegeneration. Current evidence is reviewed and future directions for research are outlined, including blood biomarkers and novel neuroimaging methods that may be sensitive to test the specific hypotheses.
Collapse
Affiliation(s)
- Ana M Daugherty
- Department of Psychology, Department of Psychiatry and Behavioral Neurosciences, Institute of Gerontology, Wayne State University, 5057 Woodward Ave., Detroit, MI, USA.
| |
Collapse
|
33
|
Gaspar RS, Ferreira PM, Mitchell JL, Pula G, Gibbins JM. Platelet-derived extracellular vesicles express NADPH oxidase-1 (Nox-1), generate superoxide and modulate platelet function. Free Radic Biol Med 2021; 165:395-400. [PMID: 33548451 PMCID: PMC7985666 DOI: 10.1016/j.freeradbiomed.2021.01.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Platelets release platelet-derived extracellular vesicles (PDEVs) upon activation - in a process that is regulated by generation of reactive oxygen species (ROS). Platelet NADPH oxidase-1 (Nox-1) contributes to ROS generation and thrombus formation downstream of the collagen receptor GPVI. OBJECTIVES We aimed to investigate whether PDEVs contain Nox-1 and whether this is relevant for PDEV-induced platelet activation. METHODS PDEVs were isolated through serial centrifugation after platelet activation with thrombin receptor agonist TRAP-6 (activated PDEVs) or in the absence of agonist (resting PDEVs). The physical properties of PDEVs were analyzed through nanoparticle tracking analysis. Nox-1 levels, fibrinogen binding and P-selectin exposure were measured using flow cytometry, and protein levels quantified by immunoblot analysis. ROS were quantified using DCF fluorescence and electron paramagnetic resonance. RESULTS Nox-1 was found to be increased on the platelet outer membrane upon activation and was present in PDEVs. PDEVs induced platelet activation, while co-addition of GPVI agonist collagen-related peptide (CRP) did not potentiate this response. PDEVs were shown to be able to generate superoxide in a process at least partially mediated by Nox-1, while Nox-1 inhibition with ML171 (also known as 2-APT) did not influence PDEV production. Finally, inhibition of Nox-1 abrogated PDEV-mediated platelet activation. CONCLUSIONS PDEVs are able to generate superoxide, bind to and activate platelets in a process mediated by Nox-1. These data provide novel mechanisms by which Nox-1 potentiates platelet responses, thus proposing Nox-1 inhibition as a feasible strategy to treat and prevent thrombotic diseases.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK.
| | - Plinio M Ferreira
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joanne L Mitchell
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - Giordano Pula
- University Medical Center Eppendorf Hamburg, Institute for Clinical Chemistry and Laboratory Medicine, Hamburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| |
Collapse
|
34
|
Functions of ROS in Macrophages and Antimicrobial Immunity. Antioxidants (Basel) 2021; 10:antiox10020313. [PMID: 33669824 PMCID: PMC7923022 DOI: 10.3390/antiox10020313] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are a chemically defined group of reactive molecules derived from molecular oxygen. ROS are involved in a plethora of processes in cells in all domains of life, ranging from bacteria, plants and animals, including humans. The importance of ROS for macrophage-mediated immunity is unquestioned. Their functions comprise direct antimicrobial activity against bacteria and parasites as well as redox-regulation of immune signaling and induction of inflammasome activation. However, only a few studies have performed in-depth ROS analyses and even fewer have identified the precise redox-regulated target molecules. In this review, we will give a brief introduction to ROS and their sources in macrophages, summarize the versatile roles of ROS in direct and indirect antimicrobial immune defense, and provide an overview of commonly used ROS probes, scavengers and inhibitors.
Collapse
|
35
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
36
|
NOX5-induced uncoupling of endothelial NO synthase is a causal mechanism and theragnostic target of an age-related hypertension endotype. PLoS Biol 2020; 18:e3000885. [PMID: 33170835 PMCID: PMC7654809 DOI: 10.1371/journal.pbio.3000885] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5—but not NOX1, NOX2, or NOX4—with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed—upon aging—severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension. The causes of hypertension are not understood; treatments are symptomatic and prevent only few of the associated risks. This study applies network medicine to identify a subgroup of patients with NADPH oxidase 5-induced uncoupling of nitric oxide synthase as the cause of age-related hypertension, enabling a first-in-class mechanism-based treatment of hypertension.
Collapse
|
37
|
Pushpakumar S, Ren L, Juin SK, Majumder S, Kulkarni R, Sen U. Methylation-dependent antioxidant-redox imbalance regulates hypertensive kidney injury in aging. Redox Biol 2020; 37:101754. [PMID: 33080442 PMCID: PMC7575806 DOI: 10.1016/j.redox.2020.101754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/20/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
The prevalence of hypertension increases with age, and oxidative stress is a major contributing factor to the pathogenesis of hypertension-induced kidney damage in aging. The nicotinamide adenine dinucleotide phosphate (NADPH) family is one of the major sources of reactive oxygen species (ROS) generation, and several NADPH oxidase isoforms are highly expressed in the kidney. Although epigenetic protein modification plays a role in organ injury, the methylation of the oxidant-antioxidant defense system and their role in hypertension-induced kidney damage in aging remains underexplored. The present study investigated the role of NADPH oxidase 4, superoxide dismutases (SODs), catalase, and NOS in Ang-II induced kidney damage in aging. Wild type (WT, C57BL/6J) mice aged 12-14 and 75-78 weeks were used and treated with or without Ang-II (1000 ng/kg/min) for 4 weeks with control mice receiving saline. Aged mice with or without Ang-II exhibited higher mean BP, lower renal blood flow, and decreased renal vascular density compared to young mice. While superoxide, 4-HNE, p22phox, Nox4, iNOS were increased in the aged kidney, the expression of eNOS, MnSOD, CuSOD, catalase, Sirt1, and -3 as well as the ratio of GSH/GSSG, and activities of SODs and catalase were decreased compared to young control mice. The changes further deteriorated with Ang-II treatment. In Ang-II treated aged mice, the expressions of DNMTs were increased and associated with increased methylation of SODs, Sirt1, and Nox4. We conclude that hypermethylation of antioxidant enzymes in the aged kidney during hypertension worsens redox imbalance leading to kidney damage.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Lu Ren
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Subir Kumar Juin
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Suravi Majumder
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Rohan Kulkarni
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
38
|
Jung HY, Oh SH, Ahn JS, Oh EJ, Kim YJ, Kim CD, Park SH, Kim YL, Cho JH. NOX1 Inhibition Attenuates Kidney Ischemia-Reperfusion Injury via Inhibition of ROS-Mediated ERK Signaling. Int J Mol Sci 2020; 21:ijms21186911. [PMID: 32967113 PMCID: PMC7554761 DOI: 10.3390/ijms21186911] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023] Open
Abstract
The protective effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) 1 inhibition against kidney ischemia-reperfusion injury (IRI) remain uncertain. The bilateral kidney pedicles of C57BL/6 mice were clamped for 30 min to induce IRI. Madin–Darby Canine Kidney (MDCK) cells were incubated with H2O2 (1.4 mM) for 1 h to induce oxidative stress. ML171, a selective NOX1 inhibitor, and siRNA against NOX1 were treated to inhibit NOX1. NOX expression, oxidative stress, apoptosis assay, and mitogen-activated protein kinase (MAPK) pathway were evaluated. The kidney function deteriorated and the production of reactive oxygen species (ROS), including intracellular H2O2 production, increased due to IRI, whereas IRI-mediated kidney dysfunction and ROS generation were significantly attenuated by ML171. H2O2 evoked the changes in oxidative stress enzymes such as SOD2 and GPX in MDCK cells, which was mitigated by ML171. Treatment with ML171 and transfection with siRNA against NOX1 decreased the upregulation of NOX1 and NOX4 induced by H2O2 in MDCK cells. ML171 decreased caspase-3 activity, the Bcl-2/Bax ratio, and TUNEL-positive tubule cells in IRI mice and H2O2-treated MDCK cells. Among the MAPK pathways, ML171 affected ERK signaling by ERK phosphorylation in kidney tissues and tubular cells. NOX1-selective inhibition attenuated kidney IRI via inhibition of ROS-mediated ERK signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jang-Hee Cho
- Correspondence: ; Tel.: +82-10-6566-7551; Fax: +82-53-426-2046
| |
Collapse
|
39
|
Vara D, Tarafdar A, Celikag M, Patinha D, Gulacsy CE, Hounslea E, Warren Z, Ferreira B, Koeners MP, Caggiano L, Pula G. NADPH oxidase 1 is a novel pharmacological target for the development of an antiplatelet drug without bleeding side effects. FASEB J 2020; 34:13959-13977. [PMID: 32851720 DOI: 10.1096/fj.202001086rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 12/25/2022]
Abstract
Growing evidence supports a central role of NADPH oxidases (NOXs) in the regulation of platelets, which are circulating cells involved in both hemostasis and thrombosis. Here, the use of Nox1-/- and Nox1+/+ mice as experimental models of human responses demonstrated a critical role of NOX1 in collagen-dependent platelet activation and pathological arterial thrombosis, as tested in vivo by carotid occlusion assays. In contrast, NOX1 does not affect platelet responses to thrombin and normal hemostasis, as assayed in tail bleeding experiments. Therefore, as NOX1 inhibitors are likely to have antiplatelet effects without associated bleeding risks, the NOX1-selective inhibitor 2-acetylphenothiazine (2APT) and a series of its derivatives generated to increase inhibitory potency and drug bioavailability were tested. Among the 2APT derivatives, 1-(10H-phenothiazin-2-yl)vinyl tert-butyl carbonate (2APT-D6) was selected for its high potency. Both 2APT and 2APT-D6 inhibited collagen-dependent platelet aggregation, adhesion, thrombus formation, superoxide anion generation, and surface activation marker expression, while responses to thrombin or adhesion to fibrinogen were not affected. In vivo administration of 2APT or 2APT-D6 led to the inhibition of mouse platelet aggregation, oxygen radical output, and thrombus formation, and carotid occlusion, while tail hemostasis was unaffected. Differently to in vitro experiments, 2APT-D6 and 2APT displayed similar potency in vivo. In summary, NOX1 inhibition with 2APT or its derivative 2APT-D6 is a viable strategy to control collagen-induced platelet activation and reduce thrombosis without deleterious effects on hemostasis. These compounds should, therefore, be considered for the development of novel antiplatelet drugs to fight cardiovascular diseases in humans.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Anuradha Tarafdar
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Meral Celikag
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Daniela Patinha
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | - Ellie Hounslea
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Zach Warren
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Barbara Ferreira
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Maarten P Koeners
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lorenzo Caggiano
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
40
|
Zhang W, Sun L, Yang X, Wang R, Wang H. Inhibition of NADPH oxidase within midbrain periaqueductal gray decreases pain sensitivity in Parkinson's disease via GABAergic signaling pathway. Physiol Res 2020; 69:711-720. [PMID: 32584140 DOI: 10.33549/physiolres.934478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hypersensitive pain response is observed in patients with Parkinson's disease (PD). However, the signal pathways leading to hyperalgesia still need to be clarified. Chronic oxidative stress is one of the hallmarks of PD pathophysiology. Since the midbrain periaqueductal gray (PAG) is an important component of the descending inhibitory pathway controlling on central pain transmission, we examined the role NADPH oxidase (NOX) of the PAG in regulating exaggerated pain evoked by PD. PD was induced by central microinjection of 6-hydroxydopamine to lesion the left medial forebrain bundle of rats. Then, Western Blot analysis and ELISA were used to determine NOXs and products of oxidative stress (i.e., 8-isoprostaglandin F2alpha and 8-hydroxy-2'-deoxyguanosine). Pain responses to mechanical and thermal stimulation were further examined in control rats and PD rats. In results, among the NOXs, protein expression of NOX4 in the PAG of PD rats was significantly upregulated, thereby the products of oxidative stress were increased. Blocking NOX4 pathway in the PAG attenuated mechanical and thermal pain responses in PD rats and this was accompanied with decreasing production of oxidative stress. In addition, inhibition of NOX4 largely restored the impaired GABA within the PAG. Stimulation of GABA receptors in the PAG of PD rats also blunted pain responses. In conclusions, NOX4 activation of oxidative stress in the PAG of PD rats is likely to impair the descending inhibitory GABAergic pathways in regulating pain transmission and thereby plays a role in the development of pain hypersensitivity in PD. Inhibition of NOX4 has beneficial effects on the exaggerated pain evoked by PD.
Collapse
Affiliation(s)
- W Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China.
| | | | | | | | | |
Collapse
|
41
|
Sun L, Ji S, Xing J. Inhibition of microRNA-155 Alleviates Neurological Dysfunction Following Transient Global Ischemia and Contribution of Neuroinflammation and Oxidative Stress in the Hippocampus. Curr Pharm Des 2020; 25:4310-4317. [PMID: 31556851 DOI: 10.2174/1381612825666190926162229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Central pro-inflammatory cytokine (PIC) signal is involved in neurological deficits after transient global ischemia induced by cardiac arrest (CA). The present study was to examine the role of microRNA- 155 (miR-155) in regulating IL-1β, IL-6 and TNF-α in the hippocampus of rats with induction of CA. We further examined the levels of products of oxidative stress 8-isoprostaglandin F2α (8-iso PGF2α, indication of oxidative stress); and 8-hydroxy-2'-deoxyguanosine (8-OHdG, indication of protein oxidation) after cerebral inhibition of miR-155. METHODS CA was induced by asphyxia and followed by cardiopulmonary resuscitation in rats. ELISA and western blot analysis were used to determine the levels of PICs and products of oxidative stress; and the protein expression of NADPH oxidase (NOXs) in the hippocampus. In addition, neurological severity score and brain edema were examined to assess neurological functions. RESULTS We observed amplification of IL-1β, IL-6 and TNF-α along with 8-iso PGF2α and 8-OHdG in the hippocampus of CA rats. Cerebral administration of miR-155 inhibitor diminished upregulation of PICs in the hippocampus. This also attenuated products of oxidative stress and upregulation of NOX4. Notably, inhibition of miR-155 improved neurological severity score and brain edema and this was linked to signal pathways of PIC and oxidative stress. CONCLUSION We showed the significant role of blocking miR-155 signal in improving the neurological function in CA rats likely via inhibition of signal pathways of neuroinflammation and oxidative stress, suggesting that miR-155 may be a target in preventing and/or alleviating development of the impaired neurological functions during CA-evoked global cerebral ischemia.
Collapse
Affiliation(s)
- Lichao Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shouqin Ji
- Jiutai District People's Hospital of Changchun, Changchun, Jilin 130500, China
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
42
|
Wolf A, Herb M, Schramm M, Langmann T. The TSPO-NOX1 axis controls phagocyte-triggered pathological angiogenesis in the eye. Nat Commun 2020; 11:2709. [PMID: 32483169 PMCID: PMC7264151 DOI: 10.1038/s41467-020-16400-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Aberrant immune responses including reactive phagocytes are implicated in the etiology of age-related macular degeneration (AMD), a major cause of blindness in the elderly. The translocator protein (18 kDa) (TSPO) is described as a biomarker for reactive gliosis, but its biological functions in retinal diseases remain elusive. Here, we report that tamoxifen-induced conditional deletion of TSPO in resident microglia using Cx3cr1CreERT2:TSPOfl/fl mice or targeting the protein with the synthetic ligand XBD173 prevents reactivity of phagocytes in the laser-induced mouse model of neovascular AMD. Concomitantly, the subsequent neoangiogenesis and vascular leakage are prevented by TSPO knockout or XBD173 treatment. Using different NADPH oxidase-deficient mice, we show that TSPO is a key regulator of NOX1-dependent neurotoxic ROS production in the retina. These data define a distinct role for TSPO in retinal phagocyte reactivity and highlight the protein as a drug target for immunomodulatory and antioxidant therapies for AMD.
Collapse
Affiliation(s)
- Anne Wolf
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany
| | - Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Michael Schramm
- Institute for Medical Microbiology, Immunology and Hygiene, D-50931, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, D-50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, D-50931, Cologne, Germany.
| |
Collapse
|
43
|
Signorello MG, Ravera S, Leoncini G. Lectin-induced oxidative stress in human platelets. Redox Biol 2020; 32:101456. [PMID: 32063518 PMCID: PMC7264469 DOI: 10.1016/j.redox.2020.101456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Previously we have shown that wheat germ agglutinin (WGA) and, with minor potency, Phaseolus vulgaris agglutinin (PHA), but not lens culinarian agglutinin (LCA), induce platelet aggregation, through the PLCƴ2 activation by the concerted action of src/syk and PI3K/BTK pathways. In this study, we have investigated platelet oxidative stress induced by lectins. Several parameters indicative of oxidative stress, such as reactive oxygen species (ROS), superoxide anion, lipid peroxidation and the efficiency of the aerobic metabolism, have been measured. It was found that ROS, superoxide anion formation and lipid peroxidation are significantly increased upon platelet treatment with WGA and PHA while LCA is ineffective. WGA is always more effective than PHA in all experimental conditions tested. In addition, the involvement of NADPH oxidase 1, syk and PI3K in oxidative stress induced by WGA and PHA has been shown. Concerning the lectins effect on aerobic metabolism, WGA and PHA, but not LCA, act as uncoupling agents, determining an increase of oxygen consumption and a decrease of ATP synthesis, with a consequent decrease of P/O value. These results are confirmed by the impairment of platelets proton gradient formation, evaluated by membrane potential, in platelets treated with WGA and PHA. In conclusion lectins, especially WGA, induce oxidative stress in platelets and decrease energy availability through modifications of membrane structure leading to the inefficiency of the aerobic machinery that steers platelets toward death as suggested by the decreased metabolic activity of platelets and the increased lactic dehydrogenase release.
Collapse
Affiliation(s)
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genova, 16132, Italy
| | - Giuliana Leoncini
- Department of Pharmacy, Biochemistry Lab, University of Genoa, Genova, 16132, Italy.
| |
Collapse
|
44
|
Sombié HK, Sorgho AP, Kologo JK, Ouattara AK, Yaméogo S, Yonli AT, Djigma FW, Tchelougou D, Somda D, Kiendrébéogo IT, Bado P, Nagalo BM, Nagabila Y, Adoko ETHD, Zabsonré P, Millogo H, Simporé J. Glutathione S-transferase M1 and T1 genes deletion polymorphisms and risk of developing essential hypertension: a case-control study in Burkina Faso population (West Africa). BMC MEDICAL GENETICS 2020; 21:55. [PMID: 32188413 PMCID: PMC7081581 DOI: 10.1186/s12881-020-0990-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Glutathione S-transferases play a key role in the detoxification of persistent oxidative stress products which are one of several risks factors that may be associated with many types of disease processes such as cancer, diabetes, and hypertension. In the present study, we characterize the null genotypes of GSTM1 and GSTT1 in order to investigate the association between them and the risk of developing essential hypertension. METHODS We conducted a case-control study in Burkina Faso, including 245 subjects with essential hypertension as case and 269 control subjects with normal blood pressure. Presence of the GSTT1 and GSTM1 was determined using conventional multiplex polymerase chain reaction followed by gel electrophoresis analysis. Biochemical parameters were measured using chemistry analyzer CYANExpert 130. RESULTS Chi-squared test shows that GSTT1-null (OR = 1.82; p = 0.001) and GSTM1-active/GSTT1-null genotypes (OR = 2.33; p < 0.001) were significantly higher in cases than controls; the differences were not significant for GSTM1-null, GSTM1-null/GSTT1-active and GSTM1-null/GSTT1-null (p > 0.05). Multinomial logistic regression revealed that age ≥ 50 years, central obesity, family history of hypertension, obesity, alcohol intake and GSTT1 deletion were in decreasing order independent risk factors for essential hypertension. Analysis by gender, BMI and alcohol showed that association of GSTT1-null with risk of essential hypertension seems to be significant when BMI < 30 Kg/m2, in non-smokers and in alcohol users (all OR ≥ 1.77; p ≤ 0.008). Concerning GSTT1, GSTM1 and cardiovascular risk markers levels in hypertensive group, we found that subjects with GSTT1-null genotype had higher waist circumference and higher HDL cholesterol level than those with GSTT1-active (all p < 0.005), subjects with GSTM1-null genotype had lower triglyceride than those with GSTM1-active (p = 0.02) and subjects with the double deletion GSTM1-null/GSTT1-null had higher body mass index, higher waist circumference and higher HDL cholesterol than those with GSTM1-active/GSTT1-active genotype (all p = 0.01). CONCLUSION Our results confirm that GSTT1-null genotype is significantly associated with risk of developing essential hypertension in Burkinabe, especially when BMI < 30 Kg/m2, in non-smokers and in alcohol users, and it showed that the double deletion GSTM1-null/GSTT1-null genotypes may influence body lipids repartition.
Collapse
Affiliation(s)
- Herman Karim Sombié
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Abel Pegdwendé Sorgho
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Jonas Koudougou Kologo
- Saint Camille Hospital of Ouagadougou (HOSCO), 01 P.O. Box 444, Ouagadougou 01, Burkina Faso.,University Hospital Center-Yalgado Ouédraogo (CHUYO), 01 P.O. Box 676, Ouagadougou, Burkina Faso
| | - Abdoul Karim Ouattara
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso. .,Pietro Annigoni Biomolecular Research Center (CERBA), P.O. Box 364, Ouagadougou 01, Burkina Faso.
| | - Sakinata Yaméogo
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Albert Théophane Yonli
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso.,Pietro Annigoni Biomolecular Research Center (CERBA), P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Florencia Wendkuuni Djigma
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso.,Pietro Annigoni Biomolecular Research Center (CERBA), P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Daméhan Tchelougou
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Dogfounianalo Somda
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | | | - Prosper Bado
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Bolni Marius Nagalo
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso
| | - Youssoufou Nagabila
- Saint Camille Hospital of Ouagadougou (HOSCO), 01 P.O. Box 444, Ouagadougou 01, Burkina Faso
| | | | - Patrice Zabsonré
- University Hospital Center-Yalgado Ouédraogo (CHUYO), 01 P.O. Box 676, Ouagadougou, Burkina Faso
| | - Hassanata Millogo
- Pietro Annigoni Biomolecular Research Center (CERBA), P.O. Box 364, Ouagadougou 01, Burkina Faso
| | - Jacques Simporé
- Laboratory of Molecular Biology and Genetics (LABIOGENE), UFR/SVT, University Joseph Ki-Zerbo, 03 P.O. Box 7021, Ouagadougou 03, Burkina Faso.,Saint Camille Hospital of Ouagadougou (HOSCO), 01 P.O. Box 444, Ouagadougou 01, Burkina Faso.,Pietro Annigoni Biomolecular Research Center (CERBA), P.O. Box 364, Ouagadougou 01, Burkina Faso.,Faculty of Medicine, University Saint Thomas d'Aquin, P.O. Box 10212, Ouagadougou, Burkina Faso
| |
Collapse
|
45
|
Xia D, Halder B, Godoy C, Chakraborty A, Singla B, Thomas E, Shuja JB, Kashif H, Miller L, Csanyi G, Sabbatini ME. NADPH oxidase 1 mediates caerulein-induced pancreatic fibrosis in chronic pancreatitis. Free Radic Biol Med 2020; 147:139-149. [PMID: 31837426 PMCID: PMC7227077 DOI: 10.1016/j.freeradbiomed.2019.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory disorders of the pancreas are divided into acute (AP) and chronic (CP) forms. Both states of pancreatitis are a result of pro-inflammatory mediators, including reactive oxygen species (ROS). One of the sources of ROS is NADPH oxidase (Nox). The rodent genome encodes Nox1-4, Duox1 and Duox2. Our purpose was to assess the extent to which Nox enzymes contribute to the pathogenesis of both AP and CP using Nox-deficient mice. Using RT-PCR, Nox1 was found in both isolated mouse pancreatic acini and pancreatic stellate cells (PaSCs). Subsequently, mice with genetically deleted Nox1 were further studied and showed that the histo-morphologic characteristics of caerulein-induced CP, but not caerulein-induced AP, was ameliorated in Nox1 KO mice. We also found that the lack of Nox1 impaired caerulein-induced ROS generation in PaSCs. Using Western blotting, we found that AKT mediates the fibrotic effect of Nox1 in a mouse model of CP. We also found a decrease in phospho-ERK and p38MAPK levels in Nox1 KO mice with CP, but not with AP. Both CP-induced TGF-β up-regulation and NF-ĸB activation were impaired in pancreas from Nox1 KO mice. Western blotting indicated increases in proteins involved in fibrosis and acinar-to-ductal metaplasia in WT mice with CP. No change in those proteins were observed in Nox1 KO mice. The lack of Nox1 lowered mRNA levels of CP-induced matrix metalloproteinase MMP-9 and E-cadherin repressor Twist in PaSCs. CONCLUSION: Nox1-derived ROS in PaSCs mediate the fibrotic process of CP by activating the downstream redox-sensitive signaling pathways AKT and NF-ĸB, up-regulating MMP-9 and Twist, and producing α-smooth muscle actin and collagen I and III.
Collapse
Affiliation(s)
- Di Xia
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Bithika Halder
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Catalina Godoy
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Eyana Thomas
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Jasim B Shuja
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Hisham Kashif
- Department of Biological Sciences, Augusta University, Augusta, GA, USA
| | - Laurence Miller
- Department of Psychological Sciences, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Maria E Sabbatini
- Department of Biological Sciences, Augusta University, Augusta, GA, USA.
| |
Collapse
|
46
|
França KC, Martinez PA, Prado ML, Lo SM, Borges BE, Zanata SM, San Martin A, Nakao LS. Quiescin/sulfhydryl oxidase 1b (QSOX1b) induces migration and proliferation of vascular smooth muscle cells by distinct redox pathways. Arch Biochem Biophys 2020; 679:108220. [PMID: 31812669 DOI: 10.1016/j.abb.2019.108220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/24/2023]
Abstract
Quiescent and contractile VSMC can switch to proliferative and migratory phenotype in response to growth factors and cytokines, an effect underscored by Nox family NADPH oxidases, particularly Nox1. We previously showed that quiescin/sulfhydryl oxidase 1 (QSOX1) has a role in neointima formation in balloon-injured rat carotid. Here, we investigated the intracellular redox mechanisms underlying these effects in primary VSMC. Our results show that exogenous incubation with wild type QSOX1b (wt QSOX), or with secreted QSOX1, but not with the inactive C452S QSOX 1b (C452S QSOX) or secreted inactive C455S QSOX1, induces VSMC migration and chemotaxis. PEG-catalase (PEG-CAT) prevented, while PEG-superoxide dismutase (PEG-SOD) increased migration induced by wt QSOX. Moreover, wt QSOX-induced migration was abrogated in NOX1-null VSMC. In contrast, both wt QSOX and C452S QSOX, and both secreted QSOX1 and C455S QSOX1, induce cell proliferation. Such effect was unaltered by PEG-CAT, while being inhibited by PEG-SOD. However, QSOX1-induced proliferation was not significantly affected in NOX1-null VSMC, compared with WT VSMC. These results indicate that hydrogen peroxide and superoxide mediate, respectively, migration and proliferation. However, Nox1 was required only for QSOX1-induced migration. In parallel, QSOX1-induced proliferation was independent of its redox activity, although mediated by intracellular superoxide.
Collapse
Affiliation(s)
- Karime C França
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Pierina A Martinez
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Maiara L Prado
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Sze M Lo
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Beatriz E Borges
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | - Silvio M Zanata
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil
| | | | - Lia S Nakao
- Department of Basic Pathology, Universidade Federal Do Paraná, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
47
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
48
|
Barton M, Meyer MR, Prossnitz ER. Nox1 downregulators: A new class of therapeutics. Steroids 2019; 152:108494. [PMID: 31518594 PMCID: PMC6891104 DOI: 10.1016/j.steroids.2019.108494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Chronic non-communicable diseases share the pathomechanism of increased reactive oxygen species (ROS) production by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, known as Nox. The recent discovery that expression of Nox1, a Nox isoform that has been implicated in the pathogenesis of cardiovascular and kidney disease and cancer is regulated by the expression and activity of G protein-coupled estrogen receptor (GPER) led to the identification of orally active small-molecule GPER blockers as selective Nox1 downregulators (NDRs). Preclinical studies using NDRs have demonstrated beneficial effects in vascular disease, hypertension, and glomerular renal injury. These findings suggest the therapeutic potential of NDRs, which reduce Nox1 protein levels, not only for cardiovascular disease conditions including arterial hypertension, pulmonary hypertension, heart failure with preserved ejection fraction (HFpEF), and chronic renal disease, but also for other non-communicable diseases, such as cerebrovascular disease and vascular dementia, Alzheimer's disease, autoimmune diseases and cancer, in which elevated Nox1-derived ROS production plays a causal role.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland; Andreas Grüntzig Foundation, Zürich, Switzerland.
| | - Matthias R Meyer
- Division of Cardiology, Triemli City Hospital, Zürich, Switzerland; Institute of Primary Care, University of Zürich, Zürich, Switzerland
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, Health Sciences Center, Albuquerque, NM, USA; University of New Mexico Comprehensive Cancer Center, University of New Mexico, Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
49
|
Biggar KK, Zhang J, Storey KB. Navigating oxygen deprivation: liver transcriptomic responses of the red eared slider turtle to environmental anoxia. PeerJ 2019; 7:e8144. [PMID: 31788367 PMCID: PMC6883951 DOI: 10.7717/peerj.8144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/01/2019] [Indexed: 01/15/2023] Open
Abstract
The best facultative anaerobes among vertebrates are members of the genera Trachemys (pond slider turtles) and Chrysemys (painted turtles), and are able to survive without oxygen for up to 12 to 18 weeks at ∼3 °C. In this study, we utilized RNAseq to profile the transcriptomic changes that take place in response to 20 hrs of anoxia at 5 °C in the liver of the red eared slide turtle (Trachemys scripta elegans). Sequencing reads were obtained from at least 18,169 different genes and represented a minimum 49x coverage of the C. picta bellii exome. A total of 3,105 genes showed statistically significant changes in gene expression between the two animal groups, of which 971 also exhibited a fold change equal to or greater than 50% of control normoxic values. This study also highlights a number of anoxia-responsive molecular pathways that are may be important to navigating anoxia survival. These pathways were enriched in mRNA found to significantly increase in response to anoxia and included molecular processes such as DNA damage repair and metabolic reprogramming. For example, our results indicate that the anoxic turtle may utilize succinate metabolism to yield a molecule of GTP in addition to the two molecules that results from lactate production, and agrees with other established models of anoxia tolerance. Collectively, our analysis provides a snapshot of the molecular landscape of the anoxic turtle and may provide hints into the how this animal is capable of surviving this extreme environmental stress.
Collapse
Affiliation(s)
- Kyle K. Biggar
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jing Zhang
- The hospital for sick children, Neuroscience and Mental Health, Toronto, Ontario, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
50
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 326] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|