1
|
Yuan LL, Liu JK. Hericinosides A-M, Cyathane Diterpene Glycosides with α-Glucosidase Inhibitory Activity from the Medicinal Fungus Hericium erinaceus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1389-1402. [PMID: 39743851 DOI: 10.1021/acs.jafc.4c10986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Thirteen new cyathane diterpene glycosides, hericinosides A-M (1-13), and six known analogs, were isolated from the rice media fermentation of the medicinal fungus Hericium erinaceus. The sugar parts of 1 and 2 were highly modified, forming a unique 5/6/7/5/5/5 ring new skeleton system. All structures were elucidated based on spectroscopic data, and their relative configurations were determined according to the ROESY analysis. Possible biosynthetic pathways for compounds 1-13 were discussed. Compounds 6 and 19 showed significant α-glucosidase inhibitory activity with IC50 values of 82.7 and 199.5 μM, respectively. The results will facilitate further studies to expand the use of diterpene glycosides from this mushroom for actual and potential biological properties in metabolic regulation.
Collapse
Affiliation(s)
- Lin-Lin Yuan
- Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
| | - Ji-Kai Liu
- Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
| |
Collapse
|
2
|
Chen SK, Li YH, Wang X, Guo YQ, Song XX, Nie SP, Yin JY. Evaluation of the "Relative Ordered Structure of Hericium erinaceus Polysaccharide" from Different Origins: Based on Similarity and Dissimilarity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17886-17898. [PMID: 37955257 DOI: 10.1021/acs.jafc.3c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Polysaccharides are organic compounds widely distributed in nature, but structural order and disorder remain a formidable problem. In this study, based on the theoretical framework of the "relative ordered structure of polysaccharide" proposed in our previous work, the structural order of Hericium erinaceus polysaccharides from different regions was evaluated by FT-IR, methylation analysis, and 1H NMR spectroscopy combined with chemometric methods. The results of principal component analysis and heatmap cluster analysis revealed that 18-subfractions exhibit four different structural types with representative glycoside linkage types: fucogalactoglucan, glucofucogalactan, fucoglucan, and glucan. The main chain of heteroglucans often consists of β-(1 → 6)-Glcp, β-(1 → 4)-Glcp, and β-(1 → 3)-Glcp residues, which are predominantly substituted at the O-3 and O-6 positions. The main chain structure of heterogalactans is α-(1 → 6)-Galp residues, which may be replaced by Fucp and Galp residues at O-2. Overall, our findings demonstrate the validity of the "relative ordered structure of polysaccharide" in Hericium erectus polysaccharides and simplify the complexity of polysaccharide structures.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Hao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| |
Collapse
|
3
|
Ren Y, Sun Q, Gao R, Sheng Y, Guan T, Li W, Zhou L, Liu C, Li H, Lu Z, Yu L, Shi J, Xu Z, Xue Y, Geng Y. Low Weight Polysaccharide of Hericium erinaceus Ameliorates Colitis via Inhibiting the NLRP3 Inflammasome Activation in Association with Gut Microbiota Modulation. Nutrients 2023; 15:nu15030739. [PMID: 36771444 PMCID: PMC9920828 DOI: 10.3390/nu15030739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC), one of the typical inflammatory bowel diseases caused by dysregulated immunity, still requires novel therapeutic medicine with high efficacy and low toxicity. Hericium erinaceus has been widely used to treat different health problems especially gastrointestinal sickness in China for thousands of years. Here, we isolated, purified, and characterized a novel low weight polysaccharide (HEP10, Mw: 9.9 kDa) from the mycelia of H. erinaceus in submerged culture. We explored the therapeutic effect of HEP10 on UC and explored its underlying mechanisms. On one hand, HEP10 suppressed the production of TNF-α, IL-1β, IL-6, inducible iNOS, and COX-2 in LPS challenged murine macrophage RAW264.7 cells, as well as in colons from DSS-induced colitis mice. On the other hand, HEP10 treatment markedly suppressed the activation of NLRP3 inflammasome, NF-κB, AKT, and MAPK pathways. Moreover, HEP10 reversed DSS-induced alternation of the gut community composition and structure by significantly increasing Akkermansia muciniphila and also promoting functional shifts in gut microbiota. Structural equation modeling also highlighted that HEP10 can change widely through gut microbiota. In conclusion, HEP10 has a better prebiotic effect than the crude polysaccharides of H. erinaceus, which can be used as a novel dietary supplement and prebiotic to ameliorate colitis.
Collapse
Affiliation(s)
- Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Qige Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruonan Gao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yinyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tianyue Guan
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wang Li
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lingxi Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Lihua Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| |
Collapse
|
4
|
Ślusarczyk J, Adamska E, Czerwik-Marcinkowska J. Fungi and Algae as Sources of Medicinal and Other Biologically Active Compounds: A Review. Nutrients 2021; 13:3178. [PMID: 34579055 PMCID: PMC8464797 DOI: 10.3390/nu13093178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/26/2022] Open
Abstract
Many species of fungi including lichenized fungi (lichens) and algae have the ability to biosynthesize biologically active compounds. They produce, among others, polysaccharides with anticancer and immunostimulatory properties: (1) Background: This paper presents the characteristics of the most important bioactive compounds produced by fungi and algae; (2) Methods: Based on the example of the selected species of mushrooms, lichens and algae, the therapeutic properties of the secondary metabolites that they produce and the possibilities of their use are presented; (3) Results: The importance of fungi, especially large-fruited mushrooms, lichens and algae, in nature and human life is discussed, in particular, with regard to their use in the pharmaceutical industry and their nutritional value; (4) Conclusions: The natural organisms, such as fungi, lichenized fungi and algae, could be used as supplementary medicine, in the form of pharmaceutical preparations and food sources. Further advanced studies are required on the pharmacological properties and bioactive compounds of these organisms.
Collapse
Affiliation(s)
- Joanna Ślusarczyk
- Institute of Biology, Jan Kochanowski University, 25-420 Kielce, Poland;
| | - Edyta Adamska
- Department of Geobotany and Landscape Planning, Faculty of Biology and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland;
| | | |
Collapse
|
5
|
Identification and Determination of Compounds Unique to Hericium in an Edible New Zealand Mushroom Hericium novae-zealandiae. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Wang YX, Zhang T, Xin Y, Huang XJ, Yin JY, Nie SP. Comprehensive evaluation of alkali-extracted polysaccharides from Agrocybe cylindracea: Comparison on structural characterization. Carbohydr Polym 2021; 255:117502. [DOI: 10.1016/j.carbpol.2020.117502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022]
|
7
|
Structural Identification and Coagulation Effect of Flammulina velutipes Polysaccharides. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two polysaccharides were isolated successfully from Flammulina velutipes and identified as CHFVP-1 (24.44 kDa) and CHFVP-2 (1497 kDa). Based on the results of Fourier transform-infrared spectroscopy (FT-IR), gas chromatography (GC), gas chromatography–mass spectrometry (GC–MS), and nuclear magnetic resonance (NMR) spectroscopy regarding the structure of CHFVP-1 and CHFVP-2, CHFVP-1 was constructed with the backbone of→6)-α-D-Galp-(1→ and the branch of Galp by an →3,6)-α-D-Manp-(1→attached with T-β-D-Glcp or t-α-L-Fucp side chains. Meanwhile, the CHFVP-2 was a glucan with the construction of →6)-β-D-Glcp-(1→ and T-β-D-Glcp. Moreover, the coagulant activity in vitro of CHFVP-1 and CHFVP-2 was evaluated, and the results showed that CHFVP-1 exerts procoagulant activity by shortening the activated partial thromboplastin time (APTT) and thrombin time (TT), while CHFVP-2 did not reveal a definite coagulant activity. The finding would benefit the further application of F. velutipes in the field of medicine.
Collapse
|
8
|
Chen Y, Wang T, Zhang X, Zhang F, Linhardt RJ. Structural and immunological studies on the polysaccharide from spores of a medicinal entomogenous fungus Paecilomyces cicadae. Carbohydr Polym 2021; 254:117462. [DOI: 10.1016/j.carbpol.2020.117462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023]
|
9
|
The Impact of Mushroom Polysaccharides on Gut Microbiota and Its Beneficial Effects to Host: A Review. Carbohydr Polym 2020; 250:116942. [DOI: 10.1016/j.carbpol.2020.116942] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
|
10
|
Wang T, Dong Z, Zhou D, Sun K, Zhao Y, Wang B, Chen Y. Structure and immunostimulating activity of a galactofuranose-rich polysaccharide from the bamboo parasite medicinal fungus Shiraia bambusicola. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112833. [PMID: 32289476 DOI: 10.1016/j.jep.2020.112833] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shiraia bambusicola is a parasitic fungus on the twigs of bamboos. Its relatively large stroma has high medicinal value and can treat a variety of diseases such as rheumatoid arthritis, cold stomach pain, sciatica, injuries, chronic bronchitis, and infantile. It is widely distributed in many provinces in Southern China and also is also found in Japan. AIM OF THE STUDY Medicinal fungi were important resources for bioactive polysaccharides. To explore bioactive polysaccharides from Shiraia bambusicola, a heteropolysaccharide SB2-1 was purified and obtained from S. bambusicola and its immunostimulating activity was researched. MATERIALS AND METHODS The polysaccharide from S. bambusicola was extracted and purified using enzyme assisted extraction, ethanol precipitation, anion-exchange and size-exclusion chromatography. Molecular weight of polysaccharide was estimated by high performance gel permeation chromatography. Monosaccharide compositions were determined by high performance liquid chromatography after pre-column derivatization and UV detection. Structure information was elucidated by IR spectrum, GC-MS analysis after methylation and gradual acid hydrolysis of the polysaccharide. The RAW264.7 cells were used to study the immunostimulating activity in vitro. RESULTS Physicochemical and structural analyses showed that SB2-1 was a neutral heteropolysaccharide with molecular weight at 22.2 kDa and consisted of glucose, galactose and mannose at a ratio of 2.0:1.5:1.0. The structure of SB2-1 was a branched polysaccharides composed of a mannan core and side chains consisted of glucose and galactose. The mannan core was composed of (1→2)-Manp as the main chain. Glucose with (1→4)-D-Glcp, (1→2)-D-Glcp and (1→6)-D-Glcp at different degrees of polymerization were linked at C-6 and C-3 of the (1→2)-Manp as the side chains. The galactose with the linages of (1→6)-D-Galf, →2)-D-Galf(1→ and terminal D-Galf(1→ also existed in the side chain. The study on the immunostimulating activities of SB2-1 and its core structure P-2 were investigated on RAW264.7 macrophages. The results showed that SB2-1 could activate RAW264.7 macrophage and significantly improve its phagocytic ability by neutral red uptake experiment. Meanwhile, SB2-1 increased significantly higher inducible nitric oxide synthase (iNOS) production and the productions of IL-1, IL-6, IL-12 and TNF-α. The effect of SB2-1 was better than its core structure P-2 produced by gradual acid hydrolysis, which meant the side chains played an important role in the immunostimulating activities. CONCLUSIONS The investigation demonstrated that the galactofuranose-containing mannogalactoglucan was characteristic polysaccharides in S. bambusicola and could enhance the activation of macrophages.
Collapse
Affiliation(s)
- Teng Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Zhe Dong
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Dejian Zhou
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Kunlai Sun
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Yuqin Zhao
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Bin Wang
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, Zhoushan, 316000, People's Republic of China; Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, 1 South Haida Road, Zhoushan, 316000, People's Republic of China.
| |
Collapse
|
11
|
A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells. Int J Biol Macromol 2020; 154:1460-1470. [DOI: 10.1016/j.ijbiomac.2019.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/21/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
|
12
|
Mitsou EK, Saxami G, Stamoulou E, Kerezoudi E, Terzi E, Koutrotsios G, Bekiaris G, Zervakis GI, Mountzouris KC, Pletsa V, Kyriacou A. Effects of Rich in Β-Glucans Edible Mushrooms on Aging Gut Microbiota Characteristics: An In Vitro Study. Molecules 2020; 25:E2806. [PMID: 32570735 PMCID: PMC7355846 DOI: 10.3390/molecules25122806] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Alterations of gut microbiota are evident during the aging process. Prebiotics may restore the gut microbial balance, with β-glucans emerging as prebiotic candidates. This study aimed to investigate the impact of edible mushrooms rich in β-glucans on the gut microbiota composition and metabolites by using in vitro static batch culture fermentations and fecal inocula from elderly donors (n = 8). Pleurotus ostreatus, P. eryngii, Hericium erinaceus and Cyclocybe cylindracea mushrooms derived from various substrates were examined. Gut microbiota composition (quantitative PCR (qPCR)) and short-chain fatty acids (SCFAs; gas chromatography (GC)) were determined during the 24-h fermentation. P. eryngii induced a strong lactogenic effect, while P. ostreatus and C. cylindracea induced a significant bifidogenic effect (p for all <0.05). Furthermore, P. eryngii produced on wheat straw and the prebiotic inulin had comparable Prebiotic Indexes, while P. eryngii produced on wheat straw/grape marc significantly increased the levels of tested butyrate producers. P. ostreatus, P. eryngii and C. cylindracea had similar trends in SCFA profile; H. erinaceus mushrooms were more diverse, especially in the production of propionate, butyrate and branched SCFAs. In conclusion, mushrooms rich in β-glucans may exert beneficial in vitro effects in gut microbiota and/or SCFAs production in elderly subjects.
Collapse
Affiliation(s)
- Evdokia K. Mitsou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Georgia Saxami
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Emmanuela Stamoulou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Evangelia Kerezoudi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Eirini Terzi
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| | - Georgios Koutrotsios
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.B.); (G.I.Z.)
| | - Georgios Bekiaris
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.B.); (G.I.Z.)
| | - Georgios I. Zervakis
- Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece; (G.K.); (G.B.); (G.I.Z.)
| | | | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece;
| | - Adamantini Kyriacou
- Department of Nutrition and Dietetics, Harokopio University, 17671 Athens, Greece; (E.K.M.); (G.S.); (E.S.); (E.K.); (E.T.)
| |
Collapse
|
13
|
Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus. Carbohydr Polym 2019; 222:114996. [DOI: 10.1016/j.carbpol.2019.114996] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023]
|
14
|
Wang XY, Zhang DD, Yin JY, Nie SP, Xie MY. Recent developments in Hericium erinaceus polysaccharides: extraction, purification, structural characteristics and biological activities. Crit Rev Food Sci Nutr 2018; 59:S96-S115. [DOI: 10.1080/10408398.2018.1521370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Duo-duo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Wu F, Zhou C, Zhou D, Ou S, Zhang X, Huang H. Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities. Food Funct 2018; 9:294-306. [DOI: 10.1039/c7fo01389b] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hericium erinaceus polysaccharide (HEP-S) can significantly stimulate the immunomodulatory activity on murine macrophages and spleen lymphocytes.
Collapse
Affiliation(s)
- Fangfang Wu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Chunhui Zhou
- Guangdong Apollo Group Co
- Ltd
- Guangzhou 510665
- China
| | - Dandan Zhou
- Guangdong Apollo Group Co
- Ltd
- Guangzhou 510665
- China
| | - Shiyi Ou
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoai Zhang
- Agrobiological Gene Research Center
- Guangdong Academy of Agricultural Sciences
- Guangzhou 510640
- China
| | - Huihua Huang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
16
|
Hao C, Yang J, Liang T, Zhang J, Sun R. Structural elucidation and morphological observation of a polysaccharide from Pleurotus eryngii obtained by alkaline extraction. J Carbohydr Chem 2017. [DOI: 10.1080/07328303.2017.1354994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, P.R. China
| | - Juanjuan Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, P.R. China
| | - Tao Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, P.R. China
| | - Jing Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, P.R. China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, P.R. China
| |
Collapse
|
17
|
He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: A review. Int J Biol Macromol 2017; 97:228-237. [DOI: 10.1016/j.ijbiomac.2017.01.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
|
18
|
Huang X, Nie S. The structure of mushroom polysaccharides and their beneficial role in health. Food Funct 2016; 6:3205-17. [PMID: 26345165 DOI: 10.1039/c5fo00678c] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mushroom is a kind of fungus that has been popular for its special flavour and renowned biological values. The polysaccharide contained in mushroom is regarded as one of the primary bioactive constituents and is beneficial for health. The structural features and bioactivities of mushroom polysaccharides have been studied extensively. It is believed that the diverse biological bioactivities of polysaccharides are closely related to their structure or conformation properties. In this review, the structural characteristics, conformational features and bioactivities of several mushroom polysaccharides are summarized, and their beneficial mechanisms and the relationships between their structure and bioactivities are also discussed.
Collapse
Affiliation(s)
- Xiaojun Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
| | | |
Collapse
|
19
|
Li QZ, Wu D, Zhou S, Liu YF, Li ZP, Feng J, Yang Y. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydr Polym 2016; 144:196-204. [PMID: 27083809 DOI: 10.1016/j.carbpol.2016.02.051] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
HPB-3, a heteropolysaccharide, with a mean molecular weight of 1.5×10(4)Da, was obtained from the maturating-stage IV, V and VI fruiting body of Hericium erinaceus, exhibited higher macrophages stimulation activities, was able to upregulate the functional events mediated by activated macrophages, such as production of nitric oxide (NO). Monosaccharide composition analysis showed that HPB-3 comprised l-fucose, d-galactose and d-glucose in the ratio of 5.2:23.9:1. Its chemical structure was characterized by sugar and methylation analysis, along with (1)H and (13)C NMR spectroscopy, including (1)H-(1)H COSY, TOCSY, NOESY, HMQC and HMBC experiments. The results indicated that HPB-3 contained a-(1/6)-linked galactopyranosyl backbone, partially with a side chain composed of α-l-fucopyranose at the O-2 position. The predicted primary structure of the polysaccharide was established as below.
Collapse
Affiliation(s)
- Qiao-Zhen Li
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Di Wu
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Shuai Zhou
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Yan-Fang Liu
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Zheng-Peng Li
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Jie Feng
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China
| | - Yan Yang
- Shanghai Academy of Agricultural Sciences, Institute of Edible Fungi, Shanghai 201403, PR China; National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization, South, Ministry of Agriculture, PR China.
| |
Collapse
|
20
|
Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1105-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Wang M, Gao Y, Xu D, Gao Q. A polysaccharide from cultured mycelium of Hericium erinaceus and its anti-chronic atrophic gastritis activity. Int J Biol Macromol 2015; 81:656-61. [PMID: 26314904 DOI: 10.1016/j.ijbiomac.2015.08.043] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/23/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
A polysaccharide named EP-1 was found by screening cultured mycelium of Hericium erinaceus, which was extracted and subjected to precipitation with ethanol, hollow-fiber ultrafiltration and ion-exchange chromatography. The polysaccharide has a molecular weight of approximately 3100Da and is composed of glucose, mannose and galactose, thus being a heteroglycan. EP-1 has a backbone of α-d-Glc(1→3) and β-d-Glc(1→3). The β-d-Glc(1→3) and α-d-Gal-(1→3) were regarded as branches attached to the C-4 position. The α-d-Man was regarded as a terminal residue. The anti-CAG activity was evaluated in experimental systems using a cell model for identification. The polysaccharide significantly inhibited the growth of MC cells obtained from human gastric mucosa epithelium (GES-1) cells transformed by MNNG, which were used as a chronic atrophic gastritis cell model. It also interfered with the MC cells by inducing cell cycle arrest. Thus, EP-1 shows potential for the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun 130117, China; International Collaborative Research Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yang Gao
- Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Duoduo Xu
- Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Qipin Gao
- International Collaborative Research Center, Changchun University of Chinese Medicine, Changchun 130117, China; Research and Development Center, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
22
|
Friedman M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7108-23. [PMID: 26244378 DOI: 10.1021/acs.jafc.5b02914] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The culinary and medicinal mushroom Hericium erinaceus is widely consumed in Asian countries, but apparently not in the United States, for its nutritional and health benefits. To stimulate broader interest in the reported beneficial properties, this overview surveys and consolidates the widely scattered literature on the chemistry (isolation and structural characterization) of polysaccharides and secondary metabolites such as erinacines, hericerins, hericenones, resorcinols, steroids, mono- and diterpenes, and volatile aroma compounds, nutritional composition, food and industrial uses, and exceptional nutritional and health-promoting aspects of H. erinaceus. The reported health-promoting properties of the mushroom fruit bodies, mycelia, and bioactive pure compounds include antibiotic, anticarcinogenic, antidiabetic, antifatigue, antihypertensive, antihyperlipodemic, antisenescence, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties and improvement of anxiety, cognitive function, and depression. The described anti-inflammatory, antioxidative, and immunostimulating properties in cells, animals, and humans seem to be responsible for the multiple health-promoting properties. A wide range of research advances and techniques are described and evaluated. The collated information and suggestion for further research might facilitate and guide further studies to optimize the use of the whole mushrooms and about 70 characterized actual and potential bioactive secondary metabolites to help prevent or treat human chronic, cognitive, and neurological diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
23
|
An evaluation system for characterization of polysaccharides from the fruiting body of Hericium erinaceus and identification of its commercial product. Carbohydr Polym 2015; 124:201-7. [DOI: 10.1016/j.carbpol.2015.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
|
24
|
Kim MK, Choi WY, Lee HY. Enhancement of the neuroprotective activity of Hericium erinaceus mycelium co-cultivated with Allium sativum extract. Arch Physiol Biochem 2015; 121:19-25. [PMID: 25354984 DOI: 10.3109/13813455.2014.974618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study investigated the neuroprotective effects of Hericium erinaceus mycelium enriched with garlic extract (HGE) on rat pheochromocytoma nerve cells (PC12). The survival rates of the PC12 nerve cells and the neurite-bearing cells after the addition of HGE were estimated as 3.5 × 10(3) viable cells/ml and 2.3 × 10(3) viable cells/ml, respectively, which were 50% and 30% higher, respectively, compared with the untreated group. For the in vivo ischemia experiments, after treatment with the HGE extract, the hippocampal CA1 region was more strongly stained (>20%) than the control group, and the HGE extract also promoted higher staining levels than HFB, HM and HGEF, and even the garlic extract. This result indicates that HGE must have neuroprotective effects. Furthermore, HGE greatly decreased p21 gene expression to approximately 70% of the control and decreased p21 gene expression to even lower levels compared with HM, HGEF and the garlic extract. This work suggests that a synergistic effect of the H. erinaceus mycelium and the garlic extract (mainly allicin) exist because the amount of allicin in HGE (5.81 µg/ml) was lower than the garlic extract itself (6.89 µg/ml).
Collapse
Affiliation(s)
- Myong Ki Kim
- Department of Natural Medicine Resources, Semyung University , Chungbuk , South Korea
| | | | | |
Collapse
|
25
|
Maity P, Pattanayak M, Maity S, Nandi AK, Sen IK, Behera B, Maiti TK, Mallick P, Sikdar SR, Islam SS. A partially methylated mannogalactan from hybrid mushroom pfle 1p: purification, structural characterization, and study of immunoactivation. Carbohydr Res 2014; 395:1-8. [DOI: 10.1016/j.carres.2014.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/04/2014] [Accepted: 06/06/2014] [Indexed: 11/24/2022]
|
26
|
Purification and partial characterization of a novel hemagglutinating glycoprotein from the cultured mycelia of Hericium erinaceus. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
27
|
|
28
|
Wang M, Gao Y, Xu D, Konishi T, Gao Q. Hericium erinaceus (Yamabushitake): a unique resource for developing functional foods and medicines. Food Funct 2014; 5:3055-64. [DOI: 10.1039/c4fo00511b] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This article provides valuable scientific information for Hericium erinaceus and shows its potential for the development of new functional foods and drugs.
Collapse
Affiliation(s)
- Mingxing Wang
- Affiliated hospital
- Changchun University of Chinese Medicine
- Changchun, China
- International Collaborative Research Center
- Changchun University of Chinese Medicine
| | - Yang Gao
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun, China
| | - Duoduo Xu
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun, China
| | - Tetsuya Konishi
- International Collaborative Research Center
- Changchun University of Chinese Medicine
- Changchun, China
- Niigata University of Pharmacy and Applied Life Sciences (NUPALS)
- Niigata, Japan
| | - Qipin Gao
- International Collaborative Research Center
- Changchun University of Chinese Medicine
- Changchun, China
- Research and Development Center
- Changchun University of Chinese Medicine
| |
Collapse
|
29
|
Slusarczyk J, Malinowska E, Krzyczkowski W, Kuraś M. Influence of inorganic and organic selenium on number of living mycelial cells and their ultrastructure in culture of Hericium erinaceum (Bull.: Fr. Pers.). ACTA BIOLOGICA HUNGARICA 2013; 64:96-105. [PMID: 23567834 DOI: 10.1556/abiol.64.2013.1.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycelium of the white-rot fungus (Hericium erinaceum (Bull.: Fr. Pers.) produces polysaccharides showing anticancer and immunostimulating activity. In our previous works, we have shown that organic selenitetriglycerides (Selol) contribute to the increase of biosynthesis of exopolysaccharides (EPS) having antioxidative properties and containing large amounts of selenium. The present work is a study of influence of inorganic and organic form of selenium on viability of H. erinaceum mycelium and on ultrastructural changes taking place during its development in submerged culture. The mycelium was grown on media containing sodium selenite (Na2SeO3), a mixture of Na2SeO3 + Selol2% and on control medium (no selenium added). It was shown that mycelium cultured for 3 days in control conditions on standard media contained almost 100% of living cells, with over 80% after 24 days. Treatment with 100 ppm of Na2SeO3 lowered the number of viable cells to 11.8% and 9.1% after 3 and 24 days, respectively. The addition of 2% Selol caused the amounts of living cells to remain at ca 90%. Apparently, Selol helped the cells to cope with the toxic activity of inorganic selenium ions. The addition of sodium selenite induced degradative changes in cell organelles. Such changes were not observed in the case of Na2SeO3 + Selol mixture, in which case cells contained numerous ribosomes and small lipid bodies.
Collapse
Affiliation(s)
- Joanna Slusarczyk
- Department of Ecology and Environmental Protection, Jan Kochanowski University, Świętokrzyska, Poland.
| | | | | | | |
Collapse
|
30
|
Zhang AQ, Xu M, Fu L, Sun PL. Structural elucidation of a novel mannogalactan isolated from the fruiting bodies of Pleurotus geesteranus. Carbohydr Polym 2013; 92:236-40. [DOI: 10.1016/j.carbpol.2012.08.105] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/17/2012] [Accepted: 08/26/2012] [Indexed: 11/24/2022]
|
31
|
Structure of a water-soluble heteropolysaccharide from fruiting bodies of Hericium erinaceus. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2011.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
ZHANG ANQIANG, DENG YINGLIN, SUN PEILONG, MENG XIANGHE, ZHANG JINGSONG. STRUCTURAL ELUCIDATION OF A NEUTRAL WATER-SOLUBLE α-D-GLUCAN FROM THE FUNGUS OF HERICIUM ERINACEUS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2010.00492.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
GE QING, ZHANG ANQIANG, SUN PEILONG. ISOLATION, PURIFICATION AND STRUCTURAL CHARACTERIZATION OF A NOVEL WATER-SOLUBLE GLUCAN FROM THE FRUITING BODIES OF PHELLINUS BAUMII PILÁT. J Food Biochem 2010. [DOI: 10.1111/j.1745-4514.2010.00359.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Malinowska E, Krzyczkowski W, Herold F, Łapienis G, Ślusarczyk J, Suchocki P, Kuraś M, Turło J. Biosynthesis of selenium-containing polysaccharides with antioxidant activity in liquid culture of Hericium erinaceum. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Smiderle FR, Olsen LM, Carbonero ER, Marcon R, Baggio CH, Freitas CS, Santos ARS, Torri G, Gorin PAJ, Iacomini M. A 3-O-methylated mannogalactan from Pleurotus pulmonarius: structure and antinociceptive effect. PHYTOCHEMISTRY 2008; 69:2731-2736. [PMID: 18834999 DOI: 10.1016/j.phytochem.2008.08.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/13/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
A polysaccharide (Mw 2.39x10(4)g/mol) was extracted with cold water from the basidiomycete Pleurotus pulmonarius, and its antinociceptive and anti-inflammatory properties were evaluated. It was a mannogalactan (MG), whose structure was characterized using mono- and two-dimensional NMR spectroscopy, methylation analysis, and a controlled Smith degradation. It had a main chain of (1-->6)-linked alpha-D-galactopyranosyl and 3-O-methyl-alpha-D-galactopyranosyl units, both of which are partially substituted at O-2 by beta-D-mannopyranosyl non-reducing ends. The MG was tested for its effects on the acetic acid-induced writhing reaction in mice, a typical model for inflammatory pain, causing a marked and dose-dependent inhibition of the nociceptive response, with ID50 of 16.2 (14.7-17.7)mg/kg and inhibition of 93+/-3% at a dose of 30mg/kg. An inflammatory response was not inhibited.
Collapse
Affiliation(s)
- F R Smiderle
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, CP 19046, 81531-980 Curitiba PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|