1
|
Mehany T, González-Sáiz JM, Pizarro C. Improving the Biostability of Extra Virgin Olive Oil with Olive Fruit Extract During Prolonged Deep Frying. Foods 2025; 14:260. [PMID: 39856925 PMCID: PMC11765049 DOI: 10.3390/foods14020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
This study explores approaches to enhancing the biostability of extra virgin olive oil (EVOO) supplemented with olive fruit extract (OFE) enriched with hydroxytyrosol (HTyr). The investigation focuses on prolonged deep frying (DF) conditions at 170 °C and 210 °C, over durations ranging from 3 to 48 h, with the aim of improving sensorial attributes, polyphenolic content, and thermal oxidative stability. Parameters, such as acidity, peroxide value (PV), K232, K270, ΔK, phenolic compounds, and sensory attributes, were monitored. The PV did not exceed the standard limit in HTyr-EVOO at 210 °C/24 h; however, in non-supplemented EVOOs, it remained within the limits only up to 210 °C/18 h. Acidity stayed within the acceptable limit (≤0.8) at 170 °C/24 h in both enriched and non-enriched EVOOs. K232 values were ≤2.5 in HTyr-EVOO fried at 170 °C/18 h. K270 and ΔK did not exceed the limits in HTyr-EVOO at 170 °C/3 h, whereas they surpassed them in non-supplemented oils. Additionally, HTyr and tyrosol levels were significantly higher (p < 0.05) in HTyr-EVOOs. Phenolic compounds, including verbascoside, pinoresinol, 1-acetoxypinoresinol, and phenolic acids, such as chlorogenic, vanillic, homovanillic, 4-dihydroxybenzoic, and caffeic acids, were detected in HTyr-EVOOs. Oxidized secoiridoid derivatives increased significantly as DF progressed. Moreover, sensory analysis revealed that positive attributes in EVOOs-such as fruity, bitter, and pungent notes-decreased significantly with increasing temperature and frying duration (p < 0.05). Beyond 210 °C/6 h, these attributes were rated at zero. However, HTyr-EVOOs exhibited lower rancidity compared to non-enriched oils under identical conditions, attributed to the protective effect of HTyr. In conclusion, HTyr-EVOOs demonstrated thermal stability up to 210 °C/6 h, retaining desirable sensory qualities, higher phenolic content, and reduced degradation. These findings indicate that natural OFEs have strong potential as food additive in deep fried EVOOs, enhancing sensory properties, health benefits, and overall oil stability. This innovation provides a practical solution for the food industry by improving the biostability and versatility of EVOO. Further research is recommended to investigate various EVOO categories and oils from diverse origins.
Collapse
Affiliation(s)
| | | | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain; (T.M.); (J.M.G.-S.)
| |
Collapse
|
2
|
Mehany T, González-Sáiz JM, Martínez J, Pizarro C. Evaluation of Sensorial Markers in Deep-Fried Extra Virgin Olive Oils: First Report on the Role of Hydroxytyrosol and Its Derivatives. Foods 2024; 13:3953. [PMID: 39683025 DOI: 10.3390/foods13233953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Extra virgin olive oil (EVOO) is one of the main daily food items consumed around the world, particularly in the Mediterranean region, and it has unique organoleptic properties. This study aims to determine the best frying conditions of EVOO supplemented with natural exogenous antioxidants enriched in hydroxytyrosol (HTyr) and its derivatives from olive fruit extract (OFE) to conserve its positive sensorial attributes while minimizing its sensorial defects, in particular, rancidity under high thermal processes. In this study, an experienced panel assessed the sensory attributes of nine EVOO varieties, olive oil 0.4° (mixed virgin olive oil (VOO) with refined olive oil (ROO)), Orujo olive oil, and olive oil 1° (EVOO mixed with ROO), compared with two sunflower oil types, performed using a deep-frying (D-F) process with numerous variables, i.e., frying time, frying temperature, and the addition of polyphenols enriched with HTyr. Results showed that most EVOO samples were stable under D-F at 170 °C for 3 h, with added polyphenols (∼650 mg/kg). Moreover, at these best values, the results stated that Arbequina, Picual, Royuella, Hojiblanca, Arbosana, and Manzanilla oils have low rancidity scores with values of 0, 1.7, 1.8, 2.3, 3.1, and 3.7, respectively, and stable/higher positive sensorial attributes, i.e., fruity, bitter, and pungent properties; however, olive oil 1° and olive oil 0.4° have high rancidity and low positive sensorial attributes. Notably, OFE helps maintain bitterness close to control in Picual, Koroneiki, Empeltre, and Arbosana oils. Furthermore, amongst the 19 tested sensory descriptors, only 8 descriptors-namely, fusty/muddy sediment, winey/vinegary/acid/sour, frostbitten olives (wet wood), rancid, fruity (green), fruity (ripe), bitter, and pungent-were successfully developed to allow characterization of the sensory quality of various olive oil categories under D-F. The present research confirmed that OFE may be used to provide stable EVOOs with higher positive sensorial qualities and lower defects and could be used as a natural antioxidant and promising strategy during the D-F process with EVOOs, not only for domestic practices but also at the industrial level.
Collapse
Affiliation(s)
- Taha Mehany
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| | | | - Jorge Martínez
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| | - Consuelo Pizarro
- Department of Chemistry, University of La Rioja, 26006 Logroño, Spain
| |
Collapse
|
3
|
Ben Attia T, Bahri S, Ben Younes S, Nahdi A, Ben Ali R, Bel Haj Kacem L, El May MV, López-Maldonado EA, Mhamdi A. In-Depth Analysis of Olea europaea L. Leaf Extract: Alleviating Pulmonary Histological Disturbances, Pro-Inflammatory Responses, and Oxidative Stress from Isolated or Combined Exposure to Inhaled Toluene and Noise in Rats. BIOLOGY 2024; 13:896. [PMID: 39596850 PMCID: PMC11592325 DOI: 10.3390/biology13110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The primary objective of this study was to investigate the pulmonary damage resulting from isolated or combined exposure to inhaled toluene (300 ppm) and noise 85 dB (A), with a focus on evaluating the potential protective effects of Olea europaea L. leaf extract (OLE). Forty-eight male Wistar rats were divided into eight groups: control (C), OLE treatment (O), noise exposure (N), noise exposure with OLE treatment (N+OLE), toluene exposure (T), toluene exposure with OLE treatment (T + OLE), co-exposure to toluene and noise (NT), and co-exposure with OLE treatment (NT + OLE). OLE (40 mg/kg/day) was administered daily for six weeks via oral gavage. Exposure to toluene and noise resulted in significant disruption of the pulmonary tissue structure, accompanied by oxidative stress, as evidenced by increased lipid peroxidation, diminished catalase and superoxide dismutase activities, and elevated pro-inflammatory cytokines IL6, IL-β, and TNF-α. Notably, the administration of OLE effectively mitigated oxidative stress and inflammation and preserved pulmonary histology. In conclusion, exposure to toluene and its combination with noise significantly elevated oxidative stress, inflammatory responses, and histological disruptions in the lung tissue. In contrast, noise exposure alone is characterized by minimal effects, although it is still associated with an inflammatory response. Notably, Olea europaea L. leaf extract (OLE) exhibits a substantial protective role, effectively mitigating the adverse effects of combined exposure and highlighting its potential as a therapeutic agent for lung health.
Collapse
Affiliation(s)
- Takoua Ben Attia
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | - Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
- Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis 2010, Tunisia
- Laboratory of Quality Control, Herbes De Tunisie, Company AYACHI-Group, Mansoura, Siliana 6131, Tunisia
| | - Sonia Ben Younes
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
- Faculty of Sciences of Gafsa, University of Gafsa, Campus Sidi Ahmed Zarroug, Gafsa 2112, Tunisia
| | - Afef Nahdi
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | - Ridha Ben Ali
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | - Linda Bel Haj Kacem
- Research Unit n° 17ES15, Department of Pathology, Charles Nicolle Hospital, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Michèle Véronique El May
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| | | | - Abada Mhamdi
- Laboratory of Research “LR 23/ES/10”: Population Pathology, Environmental Aggressors, Alternative Therapy, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia; (S.B.Y.); (A.N.); (R.B.A.); (M.V.E.M.); (A.M.)
| |
Collapse
|
4
|
Chahdoura H, Mzoughi Z, Ziani BEC, Chakroun Y, Boujbiha MA, Bok SE, M'hadheb MB, Majdoub H, Mnif W, Flamini G, Mosbah H. Effect of Flavoring with Rosemary, Lemon and Orange on the Quality, Composition and Biological Properties of Olive Oil: Comparative Study of Extraction Processes. Foods 2023; 12:foods12061301. [PMID: 36981228 PMCID: PMC10048770 DOI: 10.3390/foods12061301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
The goal of this work was to investigate the impact of the flavoring of some aromatic plants/spices, including rosemary (R), lemon (L) and orange (O) at the concentration of 5% and 35% (w/w) added by 2 methods (conventional maceration and direct flavoring), on quality attributes, chemical changes and oxidative stability of extra virgin olive oil (EVOO). Six flavored oils were obtained (EVOO + O, O + O, EVOO + R, O + R, EVOO + L and O + L). The physicochemical parameters (water content, refractive index, acidity and peroxide value, extinction coefficient, fatty acids, volatile aroma profiles, Rancimat test, phenols and pigments composition) of the flavored oils were investigated. Based on the results obtained, it was observed that flavoring with a conventional process provided increased oxidative stability to the flavored oils, especially with rosemary (19.38 ± 0.26 h), compared to that of unflavored oil. The volatile profiles of the different flavored oils revealed the presence of 34 compounds with the dominance of Limonene. The fatty acid composition showed an abundance of mono-unsaturated fatty acids followed by poly-unsaturated ones. Moreover, a high antioxidant activity, a significant peripheral analgesic effect (77.7% of writhing inhibition) and an interesting gastroprotective action (96.59% of ulcer inhibition) have been observed for the rosemary-flavored oil. Indeed, the flavored olive oils of this study could be used as new functional foods, leading to new customers and further markets.
Collapse
Affiliation(s)
- Hassiba Chahdoura
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Zeineb Mzoughi
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Borhane E C Ziani
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques CRAPC, Tipaza 42000, Algeria
| | - Yasmine Chakroun
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Mohamed Ali Boujbiha
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| | - Safia El Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Department of Biology, Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia
| | - Manel Ben M'hadheb
- Unité de Recherche UR17ES30 "Génomique, Biotechnologie et Stratégies Antivirales", Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, BP74, Avenue Tahar Hadded, Monastir 5000, Tunisia
| | - Hatem Majdoub
- Laboratory of Interfaces and Advanced Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia
| | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences at Bisha, University of Bisha, P.O. Box 199, Bisha 61922, Saudi Arabia
| | - Guido Flamini
- Diparitmento di Farmacia, Via Bonanno 6, 56126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Habib Mosbah
- Laboratory of Bioresources: Integrative Biology and Valorization (BIOLIVAL), Higher Institute of Biotechnology of Monastir, University of Monastir, Avenue TaherHadded BP 74, Monastir 5000, Tunisia
| |
Collapse
|
5
|
Ahmad N, Anwar F, Zuo Y, Aslam F, Shahid M, Abbas A, Farhat LB, H. Al-Mijalli S, Iqbal M. Wild olive fruits: phenolics profiling, antioxidants, antimicrobial, thrombolytic and haemolytic activities. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Chatzikonstantinou AV, Giannakopoulou Α, Spyrou S, Simos YV, Kontogianni VG, Peschos D, Katapodis P, Polydera AC, Stamatis H. Production of hydroxytyrosol rich extract from Olea europaea leaf with enhanced biological activity using immobilized enzyme reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:29624-29637. [PMID: 34676481 DOI: 10.1007/s11356-021-17081-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
As olive leaves constitute the main by-product of the olive oil industry with important environmental and economic impact, there is an increasing demand for its valorization. In the present work, we report the development and application of immobilized enzyme batch bioreactors for the chemo-enzymatic treatment of an aqueous Olea europaea leaf extract rich in oleuropein to produce an extract enriched in hydroxytyrosol and other oleuropein hydrolysis products. To this end, a robust biocatalyst was developed through the immobilization of β-glucosidase on chitosan-coated magnetic beads which exhibited high hydrolytic stability after 240 h of incubation at 37 °C. The biocatalyst was successfully used in both a rotating bed-reactor and a stir-tank reactor for the modification of the olive leaf extract leading to high conversion yields of oleuropein (exceeding 90%), while an up to 2.5 times enrichment in hydroxytyrosol was achieved. Over 20 phenolic compounds (from different classes of phytochemicals such as flavonoids, secoiridoids, and their derivatives) were identified, in the extract before and after its modification through various chromatographic and spectroscopic techniques. Finally, the biological activity of both extracts was evaluated. Compared to the non-modified extract, the modified one demonstrated 20% higher antioxidant activity, seven-fold higher antibacterial activity, and enhanced cytotoxicity against leiomyosarcoma cells.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece.
| | - Αrchontoula Giannakopoulou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Stamatia Spyrou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Vassiliki G Kontogianni
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Petros Katapodis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Angeliki C Polydera
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece
| | - Haralambos Stamatis
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece.
- Nanomedicine and Nanobiotechnology Research Group, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
7
|
Uslu N, Özcan MM. The combined effects of ripening degree and fermentation process on biochemical properties of table olives and oils of Ayvalık and Gemlik varieties. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The purpose of this study was to investigate the effect of variety, ripening degree, and also fermentation process on the bioactive compounds of olives, and on the fatty acid compositions of olive oils. The highest oil content was determined in fermented green olives (70.02% in Gemlik variety; 66.87% in Ayvalık variety). The fermentation process caused a notable reduction in both total phenolic content (from 2558.30–2894.40 to 699.10–1087.00 mg/kg), and antioxidant activity values (from 81.46–81.20 to 26.00–63.75%) of green olives in brine. Verbascoside was identified as the main phenolic compound (1150.95–1311.25 mg/kg). It was observed that oleuropein, hydroxytyrosol, tyrosol, and rutin contents of olives decreased after fermentation process. Concerning the fatty acid compositions of olive oils, oleic (70.13–75.47% for Gemlik; 67.36–70.22% for Ayvalık) and linoleic acid (6.18–11.13% for Gemlik; 10.13–12.94% for Ayvalık) contents showed differences regarding variety and maturation degree. However, there are minor variations in fatty acid composition according to fermentation.
Collapse
Affiliation(s)
- Nurhan Uslu
- Department of Food Engineering , Faculty of Agriculture, University of Selçuk , Konya , Turkey
| | - M. Musa Özcan
- Department of Food Engineering , Faculty of Agriculture, University of Selçuk , Konya , Turkey
| |
Collapse
|
8
|
Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040273] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The changes in the state of the climate have a high impact on perennial fruit crops thus threatening food availability. Indeed, climatic factors affect several plant aspects, such as phenological stages, physiological processes, disease-pest frequency, yield, and qualitative composition of the plant tissues and derived products. To mitigate the effects of climatic parameters variability, plants implement several strategies of defense, by changing phenological trends, altering physiology, increasing carbon sequestration, and metabolites synthesis. This review was divided into two sections. The first provides data on climate change in the last years and a general consideration on their impact, mitigation, and resilience in the production of food crops. The second section reviews the consequences of climate change on the industry of two woody fruit crops models (evergreen and deciduous trees). The research focused on, citrus, olive, and loquat as evergreen trees examples; while grape, apple, pear, cherry, apricot, almond, peach, kiwi, fig, and persimmon as deciduous species. Perennial fruit crops originated by a complex of decisions valuable in a long period and involving economic and technical problems that farmers may quickly change in the case of annual crops. However, the low flexibility of woody crops is balanced by resilience in the long-life cycle.
Collapse
|
9
|
Soleimanifard M, Sadeghi Mahoonak A, Ghorbani M, Heidari R, Sepahvand A. The formulation optimization and properties of novel oleuropein-loaded nanocarriers. Journal of Food Science and Technology 2019; 57:327-337. [PMID: 31975736 DOI: 10.1007/s13197-019-04065-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2019] [Accepted: 08/26/2019] [Indexed: 11/26/2022]
Abstract
The present study sought to encapsulate oleuropein as a nutraceutical compound in order to investigate its physical properties and stability. We extracted the phenolic compounds of virgin olive leaf by ethanol-water and acetone-water solvents. The purity of this extract was confirmed by analytical high-performance liquid chromatography using oleuropein standard. Oleuropein was encapsulated with different components (lecithin, linoleic acid, glycerol monostearate, soybean oil, and Tween 80), and the effect of their contents on oleuropein-nanostructured lipid carrier (NLC) characteristics was checked by dynamic light scattering test. Moreover, several features of the optimal nanocarrier, including zeta potential, structural, morphology, stability, as well as thermal behavior were studied. The results of optimal NLC exhibited a high zeta potential as well as supreme stability versus aggregation. Thermal study indicated that oleuropein was well embedded into NLCs. The scanning electron microscope images showed that NLC samples had many spherical particles in the form of chain structure. The stable nanocarriers did not exhibit any oleuropein leakage following their analyses for 90 days at - 18, 6, and 25 °C in aqueous suspension.
Collapse
Affiliation(s)
- Mansooreh Soleimanifard
- 1Department of Food Science and Technology, College of Food Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464 Iran
| | - Alireza Sadeghi Mahoonak
- 1Department of Food Science and Technology, College of Food Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464 Iran
| | - Mohammad Ghorbani
- 1Department of Food Science and Technology, College of Food Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, 4918943464 Iran
| | - Rohollah Heidari
- 2Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, 68149-89468 Iran
| | - Asghar Sepahvand
- 3Faculty of Parasitology, Lorestan University of Medical Sciences and Health Services, Khorramabad, Iran
| |
Collapse
|
10
|
Smeriglio A, Denaro M, Mastracci L, Grillo F, Cornara L, Shirooie S, Nabavi SM, Trombetta D. Safety and efficacy of hydroxytyrosol-based formulation on skin inflammation: in vitro evaluation on reconstructed human epidermis model. Daru 2019; 27:283-293. [PMID: 31129807 PMCID: PMC6593001 DOI: 10.1007/s40199-019-00274-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/09/2019] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Atopic dermatitis is a multifactorial immune-mediated skin disorder characterized by an alteration of epidermal barrier function and onset of skin lesions, which range from mild erythema to severe lichenification. Treatment consists in hydration with possible use of topical or immunomodulatory corticosteroids, which, however sometimes showed side effects. Recently, the interest in natural compounds has grown significantly and among these, hydroxytyrosol (HT) plays a pivotal role due to its strong and well-known anti-inflammatory activity. OBJECTIVES The aim of this study was to investigate the safety and efficacy of Fenolia® Eudermal Cream 15 (HT-based formulation) on epidermal barrier impaired as consequence of skin injury. METHODS Whit this purpose, morphologic and structural as well as anti-inflammatory evaluations, after treatment with pro-inflammatory mediators (PBS 1 X and LPS) and HT-based formulation on reconstructed human epidermis (RHE) were carried out by qualitative (hematoxylin/eosin- and immunostaining) and quantitative (MTT assay, IL-1α and IL-8 release by ELISA) techniques. Furthermore, HT absorption through the epidermal barrier was evaluated by RP-LC-DAD analysis. RESULTS A rise in the thickness of the epidermis as well as an appropriate maturation and protein expression (Loricrin, Fillagrin, E-Cadherin and Cytokeratins 5&6) were detected in treated RHE samples. In particular, the HT-based formulation was found to stimulate cell proliferation, as evidenced by the significant increase in Ki67 expression, which suggests the involvement of repair mechanisms, increasing epithelial regeneration and differentiation and improving the epidermal barrier effect. Furthermore, HT-based formulation showed a statistically significant anti-inflammatory activity by reducing both IL-1α and IL-8 release by RHE tissues, greater than the reference drug dexamethasone. Finally, excellent transcutaneous absorption values were found for HT, demonstrating how this new formulation increases the availability of the bioactive compound. CONCLUSIONS In light of these results, Fenolia® Eudermal Cream 15 could be an effective agent to counteract atopic dermatitis. Graphical abstract Safety and efficacy of hydroxytyrosol-based formulation on skin inflammation: in vitro evaluation on reconstructed human epidermis model.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando Stagno d'Alcontres, 31, Viale SS. Annunziata, 98166, Messina, ME, Italy.
- Fondazione Prof. A. Imbesi, University of Messina, Piazza Pugliatti, 1, Messina, ME, Italy.
| | - Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando Stagno d'Alcontres, 31, Viale SS. Annunziata, 98166, Messina, ME, Italy
- Fondazione Prof. A. Imbesi, University of Messina, Piazza Pugliatti, 1, Messina, ME, Italy
| | - Luca Mastracci
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, GE, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genoa, GE, Italy
| | - Federica Grillo
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Viale Benedetto XV, 6, 16132, Genoa, GE, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, Genoa, GE, Italy
| | - Laura Cornara
- Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, GE, Italy
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Shahid Beheshti Boulevard, Kermanshah, 6715847141, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Nosrati Alley, Sheikh Bahai South Avenue, Mollasadra St, Vanak Sq, Tehran, 1435916471, Iran
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Via Ferdinando Stagno d'Alcontres, 31, Viale SS. Annunziata, 98166, Messina, ME, Italy
| |
Collapse
|
11
|
Antioxidant Activity and Anthocyanin Contents in Olives ( cv Cellina di Nardò) during Ripening and after Fermentation. Antioxidants (Basel) 2019; 8:antiox8050138. [PMID: 31109100 PMCID: PMC6562514 DOI: 10.3390/antiox8050138] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/17/2022] Open
Abstract
The olive tree “Cellina di Nardò” (CdN) is one of the most widespread cultivars in Southern Italy, mainly grown in the Provinces of Lecce, Taranto, and Brindisi over a total of about 60,000 hectares. Although this cultivar is mainly used for oil production, the drupes are also suitable and potentially marketable as table olives. When used for this purpose, olives are harvested after complete maturation, which gives to them a naturally black color due to anthocyanin accumulation. This survey reports for the first time on the total phenolic content (TPC), anthocyanin characterization, and antioxidant activity of CdN olive fruits during ripening and after fermentation. The antioxidant activity (AA) was determined using three different methods. Data showed that TPC increased during maturation, reaching values two times higher in completely ripened olives. Anthocyanins were found only in mature olives and the concentrations reached up to 5.3 g/kg dry weight. AA was determined for the four ripening stages, and was particularly high in the totally black olive fruit, in accordance with TPC and anthocyanin amounts. Moreover, the CdN olives showed a higher TPC and a greater AA compared to other black table olives produced by cultivars commonly grown for this purpose. These data demonstrate the great potential of black table CdN olives, a product that combines exceptional organoleptic properties with a remarkable antioxidant capacity.
Collapse
|
12
|
Benlarbi F, Stoker P, Yousfi M. Investigation of antioxidant and antihemolytic activities of Algerian defatted olive fruits (olea europaea L.) at two ripening stages. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2018. [DOI: 10.3233/mnm-17187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Olive fruits have become extremely valuable because they have important nutrient properties and have shown positive benefits for human health. The chemical composition and organoleptic characteristics may be influenced by genotype and some agronomic factors like olive drupe harvesting date. OBJECTIVE: In this study, the greatest interest is to clarify and to give more information for Algerian Olea europaea L. by investigation of their total phenolic and flavonoid contents, phenolic compounds identification, total antioxidant capacity and antihemolytic activity at two levels of the olive ripening process. METHODS: Colorimetric methods were used to quantify total phenolic and flavonoid contents. The phenolic composition was done by HPLC technique. The antioxidant activity was assessed by measuring radical scavenging activity against 2,2’-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) radical cation (ABTS• +) expressed as Trolox Equivalent Antioxidant Capacity (TEAC), Ferric Reducing Antioxidant Power (FRAP) and antihemolytic activity. RESULTS: The harvesting time effect on HPLC analysis of olive fruits was significant. Interestingly, the phenolic composition of the olive fruits differed greatly between samples. Two compounds usually not described in olive fruit were identified, namely morine dihydrate and coumarin. The amounts of total phenolics varied widely in the investigated extracts and ranged from 495 to 2325 mg GAE/100 g for black olives and from 865 to 2387 mg GAE/100 g for green olives, whereas the flavonoids content expressed as rutin equivalent per 100 gram of defatted dry matter was ranged between 155 and 354 mg/100 g for green olives and between 214 and 260 mg/100 g for black olives. The antioxidant activity of black and green olives ranged from 5.86 and 4.88 to 59.44 and 50.50 mM Trolox equivalents respectively, while ferric reducing antioxidant power (FRAP) was within the range of 0.36 and 0.31 to 4.41 and 3.04 mM Fe(II) respectively. Majority of extracts exhibited a beneficial antihemolytic effect. CONCLUSIONS: Results showed that the level of maturation influences the chemical composition, antioxidant and bioactive properties. Consequently, this allows us to estimate the best and optimal harvest time.
Collapse
Affiliation(s)
- Faiza Benlarbi
- Laboratoire des Sciences Fondamentales-Université Amar Telidji, BP 37 G Laghouat, Algérie
- Laboratoire de Valorisation et Promotion des Ressources Sahariennes (LVPRS), université Khasdi Merbah, BP 511, Ouargla, Algérie
| | - Pierre Stoker
- Aix Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, Laboratoire Sondes Moléculaires en Biologie et Stress Oxydant, Service 522, Centre Scientifique de Saint-Jérôme, F-13397, Marseille Cedex 20, France
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales-Université Amar Telidji, BP 37 G Laghouat, Algérie
| |
Collapse
|
13
|
Manganaris GA, Drogoudi P, Goulas V, Tanou G, Georgiadou EC, Pantelidis GE, Paschalidis KA, Fotopoulos V, Manganaris A. Deciphering the interplay among genotype, maturity stage and low-temperature storage on phytochemical composition and transcript levels of enzymatic antioxidants in Prunus persica fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:189-199. [PMID: 28881278 DOI: 10.1016/j.plaphy.2017.08.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to understand the antioxidant metabolic changes of peach (cvs. 'Royal Glory', 'Red Haven' and 'Sun Cloud') and nectarine fruits (cv. 'Big Top') exposed to different combinations of low-temperature storage (0, 2, 4 weeks storage at 0 °C, 90% R.H.) and additional ripening at room temperature (1, 3 and 5 d, shelf life, 20 °C) with an array of analytical, biochemical and molecular approaches. Initially, harvested fruit of the examined cultivars were segregated non-destructively at advanced and less pronounced maturity stages and qualitative traits, physiological parameters, phytochemical composition and antioxidant capacity were determined. 'Big Top' and 'Royal Glory' fruits were characterized by slower softening rate and less pronounced ripening-related alterations. The coupling of HPLC fingerprints, consisted of 7 phenolic compounds (chlorogenic, neochlorogenic acid, catechin, epicatechin, rutin, quecetin-3-O-glucoside, procyanidin B1) and spectrophotometric methods disclosed a great impact of genotype on peach bioactive composition, with 'Sun Cloud' generally displaying the highest contents. Maturity stage at harvest did not seem to affect fruit phenolic composition and no general guidelines for the impact of cold storage and shelf-life on individual phenolic compounds can be extrapolated. Subsequently, fruit of less pronounced maturity at harvest were used for further molecular analysis. 'Sun Cloud' was proven efficient in protecting plasmid pBR322 DNA against ROO attack throughout the experimental period and against HO attack after 2 and 4 weeks of cold storage. Interestingly, a general down-regulation of key genes implicated in the antioxidant apparatus with the prolongation of storage period was recorded; this was more evident for CAT, cAPX, Cu/ZnSOD2, perAPX3 and GPX8 genes. Higher antioxidant capacity of 'Sun Cloud' fruit could potentially be linked with compounds other than enzymatic antioxidants that further regulate peach fruit ripening.
Collapse
Affiliation(s)
- George A Manganaris
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus.
| | - Pavlina Drogoudi
- Institute of Plant Breeding and Genetic Resources, Department of Deciduous Fruit Trees, Hellenic Agricultural Organization 'Demeter', 38 R.R. Station, 59035, Naoussa, Greece
| | - Vlasios Goulas
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - Georgia Tanou
- Aristotle University of Thessaloniki, School of Agriculture, 54124, Thessaloniki, Greece
| | - Egli C Georgiadou
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - George E Pantelidis
- Institute of Plant Breeding and Genetic Resources, Department of Deciduous Fruit Trees, Hellenic Agricultural Organization 'Demeter', 38 R.R. Station, 59035, Naoussa, Greece; Alexander Technological Educational Institute, Department of Agricultural Technology, 57400, Sindos-Thessaloniki, Greece
| | - Konstantinos A Paschalidis
- Alexander Technological Educational Institute, Department of Agricultural Technology, 57400, Sindos-Thessaloniki, Greece; Technological Educational Institute of Crete, Department of Agricultural Technology, 71004, Estavromenos, Heraklion, Crete, Greece
| | - Vasileios Fotopoulos
- Cyprus University of Technology, Department of Agricultural Sciences, Biotechnology & Food Science, 3603, Lemesos, Cyprus
| | - Athanasios Manganaris
- Alexander Technological Educational Institute, Department of Agricultural Technology, 57400, Sindos-Thessaloniki, Greece
| |
Collapse
|
14
|
Xiang C, Xu Z, Liu J, Li T, Yang Z, Ding C. Quality, composition, and antioxidant activity of virgin olive oil from introduced varieties at Liangshan. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox Mechanism of Reactive Oxygen Species in Exercise. Front Physiol 2016; 7:486. [PMID: 27872595 PMCID: PMC5097959 DOI: 10.3389/fphys.2016.00486] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/10/2016] [Indexed: 01/04/2023] Open
Abstract
It is well known that regular exercise can benefit health by enhancing antioxidant defenses in the body. However, unaccustomed and/or exhaustive exercise can generate excessive reactive oxygen species (ROS), leading to oxidative stress-related tissue damages and impaired muscle contractility. ROS are produced in both aerobic and anaerobic exercise. Mitochondria, NADPH oxidases and xanthine oxidases have all been identified as potential contributors to ROS production, yet the exact redox mechanisms underlying exercise-induced oxidative stress remain elusive. Interestingly, moderate exposure to ROS is necessary to induce body's adaptive responses such as the activation of antioxidant defense mechanisms. Dietary antioxidant manipulation can also reduce ROS levels and muscle fatigue, as well as enhance exercise recovery. To elucidate the complex role of ROS in exercise, this review updates on new findings of ROS origins within skeletal muscles associated with various types of exercises such as endurance, sprint and mountain climbing. In addition, we will examine the corresponding antioxidant defense systems as well as dietary manipulation against damages caused by ROS.
Collapse
Affiliation(s)
- Feng He
- Department of Kinesiology, California State University-Chico Chico, CA, USA
| | - Juan Li
- Department of Physical Education, Anhui University Anhui, China
| | - Zewen Liu
- Affiliated Ezhou Central Hospital at Medical School of Wuhan UniversityHubei, China; Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA
| | - Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| | - Wenge Yang
- Department of Physical Education, China University of Geosciences Beijing, China
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of MedicineColumbus, OH, USA; Interdisciplinary Biophysics Graduate Program, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
16
|
Siddique MI, Katas H, Amin MCIM, Ng SF, Zulfakar MH, Jamil A. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis. Int J Pharm 2016; 507:72-82. [DOI: 10.1016/j.ijpharm.2016.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 02/08/2023]
|
17
|
Soufi O, Romero C, Motilva MJ, Borrás Gaya X, Louaileche H. Effect of dry salting on flavonoid profile and antioxidant capacity of Algerian olive cultivars. GRASAS Y ACEITES 2016. [DOI: 10.3989/gya.0641152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Karagiannis E, Tanou G, Samiotaki M, Michailidis M, Diamantidis G, Minas IS, Molassiotis A. Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude. FRONTIERS IN PLANT SCIENCE 2016; 7:1689. [PMID: 27891143 PMCID: PMC5102882 DOI: 10.3389/fpls.2016.01689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.5 m mean), or high (495 m mean) altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor, and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach's response to altitude.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Georgia Tanou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Grigorios Diamantidis
- Laboratory of Agricultural Chemistry, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Ioannis S. Minas
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State UniversityGrand Junction, CO, USA
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
- *Correspondence: Athanassios Molassiotis
| |
Collapse
|
19
|
Georgiadou EC, Ntourou T, Goulas V, Manganaris GA, Kalaitzis P, Fotopoulos V. Temporal analysis reveals a key role for VTE5 in vitamin E biosynthesis in olive fruit during on-tree development. FRONTIERS IN PLANT SCIENCE 2015; 6:871. [PMID: 26557125 PMCID: PMC4617049 DOI: 10.3389/fpls.2015.00871] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 10/01/2015] [Indexed: 05/09/2023]
Abstract
The aim of this work was to generate a high resolution temporal mapping of the biosynthetic pathway of vitamin E in olive fruit (Olea europaea cv. "Koroneiki") during 17 successive on-tree developmental stages. Fruit material was collected from the middle of June until the end of January, corresponding to 6-38 weeks after flowering (WAF). Results revealed a variable gene regulation pattern among 6-38 WAF studied and more pronounced levels of differential regulation of gene expression for the first and intermediate genes in the biosynthetic pathway (VTE5, geranylgeranyl reductase, HPPD, VTE2, HGGT and VTE3) compared with the downstream components of the pathway (VTE1 and VTE4). Notably, expression of HGGT and VTE2 genes were significantly suppressed throughout the developmental stages examined. Metabolite analysis indicated that the first and intermediate stages of development (6-22 WAF) have higher concentrations of tocochromanols compared with the last on-tree stages (starting from 24 WAF onwards). The concentration of α-tocopherol (16.15 ± 0.60-32.45 ± 0.54 mg/100 g F.W.) were substantially greater (up to 100-fold) than those of β-, γ-, and δ-tocopherols (0.13 ± 0.01-0.25 ± 0.03 mg/100 g F.W., 0.13 ± 0.01-0.33 ± 0.04 mg/100 g F.W., 0.14 ± 0.01-0.28 ± 0.01 mg/100 g F.W., respectively). In regard with tocotrienol content, only γ-tocotrienol was detected. Overall, olive fruits (cv. "Koroneiki") exhibited higher concentrations of vitamin E until 22 WAF as compared with later WAF, concomitant with the expression profile of phytol kinase (VTE5), which could be used as a marker gene due to its importance in the biosynthesis of vitamin E. To the best of our knowledge, this is the first study that explores the complete biosynthetic pathway of vitamin E in a fruit tree crop of great horticultural importance such as olive, linking molecular gene expression analysis with tocochromanol content.
Collapse
Affiliation(s)
- Egli C. Georgiadou
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| | - Thessaloniki Ntourou
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of ChaniaChania, Greece
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| | - George A. Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of ChaniaChania, Greece
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of TechnologyLemesos, Cyprus
| |
Collapse
|
20
|
Khalil MM, Ismail EH, El-Baghdady KZ, Mohamed D. Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. ARAB J CHEM 2014. [DOI: 10.1016/j.arabjc.2013.04.007] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
21
|
Uylaşer V, Yildiz G. The historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet. Crit Rev Food Sci Nutr 2014; 54:1092-101. [PMID: 24499124 DOI: 10.1080/10408398.2011.626874] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The olive tree (Olea europaea) is widely cultivated for the production of both oil and table olives and very significant because of its economic value. Olive and olive oil, a traditional food product with thousands of years of history, are the essential components of the Mediterranean diet and are largely consumed in the world. Beside of their economical contribution to national economy, these are an important food in terms of their nutritional value. Olive and olive oil may have a role in the prevention of coronary heart disease and certain cancers because of their high levels of monosaturated fatty acids and phenolic compounds. In addition, olives (Olea europaea L.) and olive oils provide a rich source of natural antioxidants. These make them both fairly stable against auto-oxidation and suitable for human health. The aim of this paper is to define the historical development and nutritional importance of olive and olive oil constituted an important part of the Mediterranean diet.
Collapse
Affiliation(s)
- Vildan Uylaşer
- a Department of Food Engineering, Faculty of Agriculture , Uludag University , Gorukle-Campus , 16059 , Bursa , Turkey
| | | |
Collapse
|
22
|
|
23
|
Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 68:118-26. [PMID: 23685754 DOI: 10.1016/j.plaphy.2013.04.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/04/2013] [Indexed: 05/01/2023]
Abstract
Nitrosative status has emerged as a key component in plant response to abiotic stress; however, knowledge on its regulation by different environmental conditions remains unclear. The current study focused on nitrosative responses in citrus plants exposed to various abiotic stresses, including continuous light, continuous dark, heat, cold, drought and salinity. Morphological observations and physiological analysis showed that abiotic stress treatments were sensed by citrus plants. Furthermore, it was revealed that nitrosative networks are activated by environmental stress factors in citrus leaves as evidenced by increased nitrite (NO) content along with the release of NO and superoxide anion (O₂⁻) in the vascular tissues. The expression of genes potentially involved in NO production, such as NR, AOX, NADHox, NADHde, PAO and DAO, was affected by the abiotic stress treatments demonstrating that NO-derived nitrosative responses could be regulated by various pathways. In addition, S-nitrosoglutathione reductase (GSNOR) and nitrate reductase (NR) gene expression and enzymatic activity displayed significant changes in response to adverse environmental conditions, particularly cold stress. Peroxynitrite (ONOO⁻) scavenging ability of citrus plants was elicited by continuous light, dark or drought but was suppressed by salinity. In contrast, nitration levels were elevated by salinity and suppressed by continuous light or dark. Finally, S-nitrosylation patterns were enhanced by heat, cold or drought but were suppressed by dark or salinity. These results suggest that the nitrosative response of citrus plants is differentially regulated depending on the stress type and underscore the importance of nitrosative status in plant stress physiology.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | | | | | | | | | | | | |
Collapse
|
24
|
Sahan Y, Cansev A, Gulen H. Effect of processing techniques on antioxidative enzyme activities, antioxidant capacity, phenolic compounds, and fatty acids of table olives. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0122-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
García-García MI, Hernández-García S, Sánchez-Ferrer Á, García-Carmona F. Kinetic study of hydroxytyrosol oxidation and its related compounds by Red Globe grape polyphenol oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6050-6055. [PMID: 23725049 DOI: 10.1021/jf4009422] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Red Globe grape polyphenol oxidase, partially purified using phase partitioning with Triton-X114, was used to study the oxidation of hydroxytytosol (HT) and its related compounds tyrosol (TS), tyrosol acetate (TSA), and hydroxytyrosol acetate (HTA). The enzyme showed activity toward both monophenols (monophenolase activity) and o-diphenols (diphenolase activity) with a pH optimum (pH 6.5) that was independent of the phenol used. However, the optimal temperature for diphenolase activity was substrate-dependent, with a broad optimum of 25-65 °C for HT, compared with the maximum obtained for HTA (40 °C). Monophenolase activity showed the typical lag period, which was modulated by pH, substrate and enzyme concentrations, and the presence of catalytic amounts of o-diphenols. When the catalytic power (Vmax/K(M)) was determined for both activities, higher values were observed for o-diphenols than for monophenols: 9-fold higher for the HT/TS pair and 4-fold higher for HTA/TSA pair. Surprisingly, this ratio was equally higher for TSA (2.2-fold) compared with that of TS, whereas no such effect was observed for o-diphenols. This higher efficiency of TSA could be related to its greater hydrophobicity. Acetyl modification of these phenols not only changes the kinetic parameters of the enzyme but also affects their antioxidant activity (ORAC-FL assays), which is lower in HTA than in HT.
Collapse
Affiliation(s)
- María Inmaculada García-García
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Campus Espinardo, E-30100 Murcia, Spain
| | | | | | | |
Collapse
|
26
|
Włoch A, Kapusta I, Bielecki K, Oszmiański J, Kleszczyńska H. Activity of hawthorn leaf and bark extracts in relation to biological membrane. J Membr Biol 2013; 246:545-56. [PMID: 23774969 PMCID: PMC3695679 DOI: 10.1007/s00232-013-9566-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/31/2013] [Indexed: 11/28/2022]
Abstract
The aim of the study was to identify and determine the percent content of polyphenols in extracts from leaves and hawthorn bark, to examine the effect of the extracts on the properties of the biological membrane as well as to determine their antioxidant activity toward membrane lipids. In particular, a biophysical investigation was conducted on the effect of hawthorn extracts on the osmotic resistance and morphology of erythrocyte cells and on the packing of the heads of membrane lipids. Analysis of the polyphenol content of extracts used the HPLC method. Analysis of the polyphenol composition has shown a dominant share of procyanidins and epicatechin in both extracts. The research showed that the polyphenolic compounds contained in hawthorn extracts are incorporated mainly into the hydrophilic part of the erythrocyte membrane, inducing echinocyte shapes. They also diminish the packing order of the lipid polar heads of the membrane, as evidenced by the lowered generalized polarization values of Laurdan. The substances used induced increased osmotic pressure of erythrocytes, making them less sensitive to changes in osmotic pressure. The presence of the extract compounds in the outer hydrophilic part of the erythrocyte membrane, evidenced by examination of the shapes and packing in the hydrophilic part of membrane, indicates that the substances constitute a kind of barrier that protects the erythrocyte membrane against free radicals, while the membrane-bound extracts do not disturb the membrane structure and, thus, do not cause any side effects.
Collapse
Affiliation(s)
- Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Evaluation of the anti-angiogenic potential of hydroxytyrosol and tyrosol, two bio-active phenolic compounds of extra virgin olive oil, in endothelial cell cultures. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.02.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Hamza M, Khoufi S, Sayadi S. Fungal enzymes as a powerful tool to release antioxidants from olive mill wastewater. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.10.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Del Carlo M, Amine A, Haddam M, della Pelle F, Fusella GC, Compagnone D. Selective Voltammetric Analysis of o-Diphenols from Olive Oil Using Na2MoO4 as Electrochemical Mediator. ELECTROANAL 2012. [DOI: 10.1002/elan.201100603] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
González-Hidalgo I, Bañón S, Ros JM. Evaluation of table olive by-product as a source of natural antioxidants. Int J Food Sci Technol 2012. [DOI: 10.1111/j.1365-2621.2011.02892.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Hamza M, Khoufi S, Sayadi S. Changes in the content of bioactive polyphenolic compounds of olive mill wastewater by the action of exogenous enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:66-73. [PMID: 22082447 DOI: 10.1021/jf203274q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim behind the present research is to develop an enzymatic treatment for olive mill wastewater (OMW) to release high amounts of simple phenolics having high antioxidant value. OMW was hydrolyzed by a mixed enzyme preparation rich in β-glucosidase produced by Aspergillus niger . This research shows that A. niger β-glucosidase played a major role in the release of simple phenolic compounds from OMW. These compounds were recovered by ethyl acetate extraction and identified by HPLC and LC-MS. The main identified phenolic compound is hydroxytyrosol. The results of enzymatic hydrolysis of OMW under optimum conditions indicated a maximum hydroxytyrosol concentration of 2.9 g L(-1) compared to 0.015 g L(-1) contained in the control (test without added enzyme). The above results prove that OMW is a potential substrate for producing hydroxytyrosol through enzymatic hydrolysis of its glycosides.
Collapse
Affiliation(s)
- Manel Hamza
- Laboratoire des Bioprocédés Environnementaux, Pôle d'Excellence Régional, AUF, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax, Tunisia
| | | | | |
Collapse
|
33
|
Khoufi S, Hamza M, Sayadi S. Enzymatic hydrolysis of olive wastewater for hydroxytyrosol enrichment. BIORESOURCE TECHNOLOGY 2011; 102:9050-9058. [PMID: 21839634 DOI: 10.1016/j.biortech.2011.07.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 07/11/2011] [Accepted: 07/15/2011] [Indexed: 05/31/2023]
Abstract
Aspergillus niger broth culture on wheat bran was assessed for olive wastewater (OW) hydrolysis in order to release hydroxytyrosol (HT). The enzyme profiles of this culture broth gave essentially (IU/L): 3000 β-glucosidase and 100 esterase. Hydrolysis activity of A. niger enzyme preparation was evaluated by using three substrates: raw OW, phenolic fraction extracted from OW by ethyl acetate and its corresponding exhausted fraction. Large amounts of free simple phenolics were released from exhausted fraction and raw OW after enzymatic treatment. HPLC analyses show that HT was the main phenolic compound. One step of ethyl acetate extraction of hydrolysed OW allowed the recovery of 0.8 g of HT per litre of OW. The antioxidant activity of extracts from OW and exhausted fraction, measured by DPPH method, was drastically enhanced after hydrolysis treatment. This study demonstrates that hydrolysed OW is a potential source of bioactive phenolic compounds with promising applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Sonia Khoufi
- Laboratoire des Bioprocédés Environnementaux, Pôle d'Excellence Régional (PER, AUF), Centre de Biotechnologie de Sfax, Université de Sfax, B.P. 1117, 3018 Sfax, Tunisia.
| | | | | |
Collapse
|