1
|
Yang J, Dong M, Fang F, Li Y, Li C. Effects of varied preparation processes on polyphenol-rice starch complexes, in vitro starch digestion, and polyphenols release. Food Chem 2024; 450:139330. [PMID: 38653054 DOI: 10.1016/j.foodchem.2024.139330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
This study synthesized composite samples incorporating four representative polyphenolic structures, gallic acid (GA), quercetin (QC), resveratrol (RES), and magnolol (MN), with rice starch using various preparation processes, including the addition of polyphenols and alteration of temperature and pH, via co-gelatinization. Subsequently, the complexation rates, starch digestion properties, and polyphenol release during in vitro digestion were examined. The results indicated that both the preparation process and structural variations of polyphenols affected starch digestion and polyphenol release by modulating the complexation. All polyphenols displayed inhibitory effects on rice starch digestion, with GA being the most efficient polyphenol. Additionally, rice starch exhibited a protective effect against RES during in vitro digestion, as rice starch-coated RES reduced the damage from stomach acids. Overall, these findings may help optimize the processing conditions for the synthesis of polyphenol-rice starch-based food products.
Collapse
Affiliation(s)
- Jia Yang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410114, Hunan, PR China
| | - Mengji Dong
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410114, Hunan, PR China
| | - Fang Fang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410114, Hunan, PR China
| | - Yan Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410114, Hunan, PR China
| | - Chiling Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, 960, 2nd Section, Wanjiali South Road, Changsha 410114, Hunan, PR China.
| |
Collapse
|
2
|
Elattar MM, Darwish RS, Hammoda HM, Dawood HM. An ethnopharmacological, phytochemical, and pharmacological overview of onion (Allium cepa L.). JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117779. [PMID: 38262524 DOI: 10.1016/j.jep.2024.117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Onion (Allium cepa L.) is one of the most widely distributed species within the Allium genus of family Amaryllidaceae. Onion has been esteemed for its medicinal properties since antiquity. It has been consumed for centuries in various indigenous cultures for the management of several ailments including microbial infections, respiratory, gastrointestinal, skin and cardio-vascular disorders, diabetes, renal colic, rheumatism, sexual impotence, menstrual pain, and headache. However, so far, there is a scarcity of recent data that compiles the plant chemistry, traditional practices, biological features, and toxicity. AIM OF THE WORK The aim of this review is to provide a comprehensive and analytical overview of ethnopharmacological uses, phytochemistry, pharmacology, industrial applications, quality control, and toxicology of onion, to offer new perspectives and broad scopes for future studies. MATERIALS AND METHODS The information gathered in this review was obtained from various sources including books, scientific databases such as Science Direct, Wiley, PubMed, Google Scholar, and other domestic and foreign literature. RESULTS Onion has a long history of use as a traditional medicine for management of various conditions including infectious, inflammatory, respiratory, cardiovascular diseases, diabetes, and erectile dysfunction. More than 400 compounds have been identified in onion including flavonoids, phenolic acids, amino acids, peptides, saponins and fatty acids. The plant extracts and compounds showed various pharmacological activities such as antimicrobial, antidiabetic, anti-inflammatory, anti-hyperlipidemic, anticancer, aphrodisiac, cardioprotective, and neuroprotective activities. In addition to its predominant medicinal uses, onion has found various applications in the functional food industry. CONCLUSION Extensive literature analysis reveals that onion extracts and bioactive constituents possess diverse pharmacological activities that can be beneficial for treating various diseases. However, the current research primarily revolves around the documentation of ethnic pharmacology and predominantly consists of in vitro studies, with relatively limited in vivo and clinical studies. Consequently, it is imperative for future investigations to prioritize and expand the scope of in vivo and clinical research. Additionally, it is strongly recommended to direct further research efforts towards toxicity studies and quality control of the plant. These studies will help bridge the current knowledge gaps and establish a solid basis for exploring the plant's potential uses in a clinical setting.
Collapse
Affiliation(s)
- Mariam M Elattar
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hala M Hammoda
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
3
|
Mirzaei A, Deyhimfar R, Azodian Ghajar H, Mashhadi R, Noori M, Dialameh H, Aghsaeifard Z, Aghamir SMK. Quercetin can be a more reliable treatment for metastatic prostate cancer than the localized disease: An in vitro study. J Cell Mol Med 2023; 27:1725-1734. [PMID: 37232542 PMCID: PMC10273064 DOI: 10.1111/jcmm.17783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Quercetin is a plant flavonoid that has been recognized to have anti-inflammatory, antioxidant and anti-proliferative activities. This study aims to evaluate the inhibitory effects of quercetin against prostate malignancy in vitro and the underlying resistance mechanism. IC50 values of quercetin were determined by MTT assay. Annexin-V/PI staining was used to measure the rate of apoptosis. DNA cell cycle was analysed by PI staining method. Real-time PCR was performed to assess mRNA levels of OPN isoforms, VEGF isoforms, P53 and KLK2. Migration potential, proliferative capability and nucleus morphology of cells were evaluated by the scratch-wound assay, colony-forming assay and Hoechst staining, respectively. Quercetin significantly increased the apoptosis rate of PC-3 and LNCaP cell lines, arrested the cell cycle at the sub-G1/G1 phase, and reduced the migration potential and colony-forming capability. Moreover, upregulation of apoptosis-related genes and downregulation of genes involved in proliferation and angiogenesis was also observed. Although our results elucidated that quercetin has antitumor effects on PC-3 and LNCaP, for the first time, we showed that quercetin treatment causes alterations in the expression of OPN and VEGF isoforms, which are cancer-promoting modulators through various processes such as angiogenesis and drug-resistance. Prostate malignant cells can dodge the anti-carcinogenic properties of quercetin via modulation of OPN and VEGF isoforms in vitro. Therefore, quercetin acts as a double-edged sword in prostate cancer treatment.
Collapse
Affiliation(s)
- Akram Mirzaei
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Roham Deyhimfar
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | | - Rahil Mashhadi
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran
| | - Hossein Dialameh
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Ziba Aghsaeifard
- Urology Research CenterTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
4
|
Allal H, Nemdili H, Zerizer MA, Zouchoune B. Molecular structures, chemical descriptors, and pancreatic lipase (1LPB) inhibition by natural products: a DFT investigation and molecular docking prediction. Struct Chem 2023; 35:1-17. [PMID: 37363042 PMCID: PMC10148582 DOI: 10.1007/s11224-023-02176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
Density functional theory (DFT) calculations and molecular docking have been carried out on natural products containing eugenol, gingerol, ascorbic acid, oleurpoein, piperine, hesperidin, quercetin, Luteolin, and curcumin in order to predict their biological activities and to analyze their pancreatic lipase inhibition. The biological activity predictions are based on the global and local chemical descriptors, namely, HOMO-LUMO gaps, chemical hardness, chemical potential, electrophilicity, dipole moment, and Fukui functions. Our findings show that the studied compounds can be divided into two groups based on the chemical descriptors; the first group is composed of eugenol, gingerol, ascorbic acid, and oleuropein and the second one is composed of piperine, hesperidin, quercetin, Luteolin, and curcumin depending on the HOMO-LUMO gaps and electrophilicity values predicting best reactivity for the second group than the first one. The frontier orbitals offer a deeper insight concerning the electron donor and electron acceptor capabilities, whereas the local descriptors resulting from Fukui functions put emphasis on the active sites of different candidate ligands. The molecular docking was performed in order to compare and identify the inhibition activity of the natural candidate ligands against pancreatic lipase which were compared to that of synthesized ones. The molecular docking results revealed that the Luteolin compound has the best binding affinity of -8.56 kcal/mol due to their unique molecular structure and the position of -OH aromatic substituents. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-023-02176-2.
Collapse
Affiliation(s)
- Hamza Allal
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Département de Génie Des Procédés, Faculté de Génie Des Procédés, Université Salah Boubnider Constantine 3, Constantine, Algeria
| | - Hacene Nemdili
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
| | - Mohamed Amine Zerizer
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Laboratoire de Chimie Appliquée Et Technologie Des Matériaux, Université Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
| | - Bachir Zouchoune
- Unité de Recherche de Chimie de L’Environnement Et Moléculaire Structurale, Université de Constantine-1 (Mentouri), 25000 Constantine, Algeria
- Laboratoire de Chimie Appliquée Et Technologie Des Matériaux, Université Larbi Ben M’hidi Oum El Bouaghi, 04000 Oum El Bouaghi, Algeria
| |
Collapse
|
5
|
Improved in vitro bioaccessibility of quercetin by nanocomplexation with high-intensity ultrasound treated soy protein isolate. Food Chem 2023; 406:135004. [PMID: 36481514 DOI: 10.1016/j.foodchem.2022.135004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/29/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
The health benefits of quercetin are limited by its low bioaccessibility. This could be improved by developing plant-based protein delivery systems. Encapsulating quercetin using untreated and high-intensity ultrasound treated (20 kHz at 139 W for 10, 15 and 20 min) soy protein isolate (SPI) produced composite nanoparticles at around 127-136 nm. Ultrasound treatments on SPI caused structural changes of proteins (e.g. around 6-fold increase of surface hydrophobicity and protein solubility) favorable to encapsulation. The encapsulation efficiency for quercetin complexed with 15 min ultrasound treated SPI (76.5 %) was around 10-fold of that with the native SPI (7.2 %). Quercetin was significantly more in vitro bioaccessible when complexed with the treated SPI (61.1 %-64.5 %), as compared to the free quercetin (10.5 %-13.0 %). Ultrasound treated SPI seems to be a promising nanocarrier to encapsulate hydrophobic bioactive ingredients with higher solubility, stability, and bioaccessibility.
Collapse
|
6
|
Song R, Li W, Deng S, Zhao Y, Tao N. Assessment of lipid composition and eicosapentaenoic acid/docosahexaenoic acid bioavailability in fish oil obtained through different enrichment methods. Front Nutr 2023; 10:1136490. [PMID: 36998903 PMCID: PMC10043196 DOI: 10.3389/fnut.2023.1136490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, we analyzed the eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA) lipid composition of fish oil obtained through enzymatic treatment, fractional distillation and silica gel column purification, and further assessed EPA/DHA bioavailability. Lipid subclass composition information was obtained through ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), and bioavailability tests were performed using the Caco-2 cell monolayer model. Results showed that enzymatic treatment improved the incorporation of EPA/DHA as diacylglycerol (DG) while silica gel column chromatography enriched the content of EPA/DHA as phosphatidylglycerol (PG) (12.58%) and phosphatidylethanolamine (PE) (4.99%). Furthermore, increasing the purity of EPA/DHA could improve its bioavailability and after 24 incubation, binding forms of triglyceride (TG) was superior to ethyl ester (EE) (p < 0.05) at the same purity level. Those findings are helpful to provide research basis for exploring the bioactivity of fish oil.
Collapse
Affiliation(s)
- Rongzhen Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wen Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ningping Tao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- *Correspondence: Ningping Tao,
| |
Collapse
|
7
|
The Influence of Flavonoid Dihydroquercetin on the Enzymatic Processes of Dough Ripening and the Antioxidant Properties of Bread. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Bread is an integral part of the diet of the world population. Development of bread enriched with biologically active substances, including antioxidants, could be good nutritional support for human health. Among well-studied antioxidants, we can highlight dihydroquercetin, a flavonoid with outstanding antioxidant properties, such as anti-inflammatory activity, immunostimulatory properties, anti-cancer properties, and others. At the same time, the technology of bread enrichment must consider the possible negative effects of the additive on the technological processes and properties of the final product. The present work was carried out to evaluate the effect of dihydroquercetin on the enzymatic processes occurring during dough maturation and the antioxidant properties of the finished bread. Dihydroquercetin was added in amounts of 0.05 g, 0.07 g, and 0.1 g per 100 g of wheat flour and fermented with commercial baker’s yeast (Saccharomyces cerevisiae). The kinetics of pH and total titratable acidity (TTA) during dough fermentation showed that dihydroquercetin caused slight slowing of enzymatic processes. However, the dosage of dihydroquercetin did not cause statistically significant changes in the yeast concentration, which reached a level of 108 KOU/g after 2 h in all dough samples. Loss of dihydroquercetin during fermentation was established at a level of 20–25%. At the same time, an increase in the total amount of flavonoids in the dough after 2 h of fermentation and an increase in values of antioxidant activity were noted. The antioxidant properties of the bread also increased when it was enriched with dihydroquercetin (about 3.5–4 times) despite the fact that the total quantitative loss of antioxidant in the technological process was considerable (about 40%). A protective effect of the bread matrix on flavonoids during digestion was shown. Dihydroquercetin loss was about 25% regardless of the amount applied. This work clearly showed that addition of dihydroquercetin to a bread formulation represents a promising strategy for increasing the antioxidant properties of bread.
Collapse
|
8
|
Maibam BD, Chakraborty S, Nickhil C, Deka SC. Effect of Euryale ferox seed shell extract addition on the in vitro starch digestibility and predicted glycemic index of wheat-based bread. Int J Biol Macromol 2023; 226:1066-1078. [PMID: 36436606 DOI: 10.1016/j.ijbiomac.2022.11.223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The inhibitory effects of Euryale ferox seed shell extract (EFSSE) on the activity of α-amylase and α-glucosidase were studied. EFSSE (0.25 % to 2 %) was used to fortify bread and analyzed the in vitro starch digestibility (IVSD) digestion kinetics, and the predicted glycemic index (pGI) was estimated. The swarm intelligence supervised neural network (SISNN) technique was applied for the predictive simulation of digestion kinetics and pGI. Principal component analysis (PCA) with proportional odds modeling (POM) was used to find the most sensitive component based on the sensory attributes of bread. The inhibitory effect of EFSSE on α-amylase and α-glucosidase in terms of IC50 was 62.95 and 52.06 μg/mL, respectively. Fortification of bread with EFSSE could affect loaf volume, hardness, and color. Euryale ferox seed shell extract could decreased the rate of hydrolysis of bread. EFSSE (2 %) had a strong inhibitory impact, as evidenced by the drop in glycemic index from 94.61 to 61.66. SISNN-based kinetics was much better as compared to mathematical modeling-based digestion kinetics. Findings of the present study have shown that EFSSE could be employed as an additive to produce lower glycemic index functional bread.
Collapse
Affiliation(s)
- Baby Devi Maibam
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam PIN-784028, India
| | - Sourav Chakraborty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering & Technology, Malda, West Bengal 732141, India
| | - C Nickhil
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam PIN-784028, India
| | - Sankar Chandra Deka
- Department of Food Engineering and Technology, Tezpur University, Napaam, Tezpur, Assam PIN-784028, India.
| |
Collapse
|
9
|
Günal-Köroğlu D, Turan S, Capanoglu E. Protein–phenolic interactions in lentil and wheat crackers with onion skin phenolics: effects of processing and in vitro gastrointestinal digestion. Food Funct 2023; 14:3538-3551. [PMID: 37009695 DOI: 10.1039/d2fo02885a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
This study aimed to evaluate the protein–phenolic interaction in functional crackers made of wheat/lentil flour with onion skin phenolics (onion skin powder: OSP, onion skin phenolic extract: OSE, or quercetin: Q) after in vitro gastrointestinal digestion.
Collapse
Affiliation(s)
- Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| | - Semra Turan
- Department of Food Engineering, Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
10
|
Li L, Gao J, Koh HSA, Zhou W. Bioaccessibility and Bioavailability of (-)-Epigallocatechin Gallate in the Bread Matrix with Glycemic Reduction. Foods 2022; 12:foods12010030. [PMID: 36613246 PMCID: PMC9818522 DOI: 10.3390/foods12010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Bread has a high glycemic index (GI) and rich contents of quickly digestible carbohydrates, which is associated with insulin resistance and the risk of chronic diseases. (-)-Epigallocatechin Gallate (EGCG) is the primary catechin component that inhibits starch hydrolases, while the low release and absorption rates limit its utilization. In this study, EGCG was added to the bread matrix for fortification to reduce its glycemic index compared to white bread. EGCG fortification at 4% decreased the starch digestion rate of baked bread by 24.43% compared to unfortified bread and by 14.31% compared to white bread, with an identical amount of EGCG outside the matrix. Moreover, the predicted GI (pGI) was reduced by 13.17% compared to white bread. Further, 4% EGCG-matched bread enhanced the bioaccessibility and bioavailability of EGCG by 40.38% and 47.11%, respectively, compared to the control. The results of molecular docking demonstrated that EGCG had a higher binding affinity with α-amylase than with α-glucosidase, indicating that EGCG may effectively inhibit the accumulation of carbs during starch digestion. Thus, EGCG can be used as a functional ingredient in bread to reduce its glycemic potential, and the bread matrix can be used as a carrier for EGCG delivery to enhance its bioaccessibility and bioavailability.
Collapse
|
11
|
Joseph A, Shanmughan P, Balakrishnan A, Maliakel B, M KI. Enhanced Bioavailability and Pharmacokinetics of a Natural Self-Emulsifying Reversible Hybrid-Hydrogel System of Quercetin: A Randomized Double-Blinded Comparative Crossover Study. ACS OMEGA 2022; 7:46825-46832. [PMID: 36570285 PMCID: PMC9774360 DOI: 10.1021/acsomega.2c05929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Despite the vast array of health beneficial pharmacological effects, the bioavailability of the dietary flavonoid quercetin was found to be poor due to insolubility, incompatibility, and rapid biotransformation. Herein, we investigated the solubility, morphology, particle size, stability, in vitro release, and human pharmacokinetics of a hybrid-hydrogel formulation of quercetin (FQ-35) using fenugreek galactomannans as the hydrogel scaffold. Physicochemical characterization revealed that the crystalline quercetin was well encapsulated in the hydrogel matrix to form translucent microgel particles of FQ-35 with enhanced solubility (96-fold). The mean particle size was found to be 183.6 ± 42.7 nm with a zeta potential of 35.1 ± 3.8 mV. Pharmacokinetic investigation on healthy volunteers (N = 16) employing tandem mass spectrometric (ultra-performance liquid chromatography-electrospray tandem mass spectrometry) measurements of the concentration of free (unconjugated) and conjugated quercetin metabolites revealed an 18.6-fold improvement in free (unconjugated) quercetin bioavailability and 62-fold improvement in total quercetin (sum of free and conjugated) bioavailability, compared to the unformulated quercetin extracted from Sophora japonica. In summary, the natural self-emulsifying reversible hybrid-hydrogel delivery system was found to offer significant solubility, stability, and bioavailability of quercetin upon single-dose oral administration.
Collapse
|
12
|
Silva AF, Monteiro M, Nunes R, Baião A, Braga SS, Sarmento B, Coimbra MA, Silva AM, Cardoso SM. Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Vrânceanu M, Galimberti D, Banc R, Dragoş O, Cozma-Petruţ A, Hegheş SC, Voştinaru O, Cuciureanu M, Stroia CM, Miere D, Filip L. The Anticancer Potential of Plant-Derived Nutraceuticals via the Modulation of Gene Expression. PLANTS 2022; 11:plants11192524. [PMID: 36235389 PMCID: PMC9571524 DOI: 10.3390/plants11192524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022]
Abstract
Current studies show that approximately one-third of all cancer-related deaths are linked to diet and several cancer forms are preventable with balanced nutrition, due to dietary compounds being able to reverse epigenetic abnormalities. An appropriate diet in cancer patients can lead to changes in gene expression and enhance the efficacy of therapy. It has been demonstrated that nutraceuticals can act as powerful antioxidants at the cellular level as well as anticarcinogenic agents. This review is focused on the best studies on worldwide-available plant-derived nutraceuticals: curcumin, resveratrol, sulforaphane, indole-3-carbinol, quercetin, astaxanthin, epigallocatechin-3-gallate, and lycopene. These compounds have an enhanced effect on epigenetic changes such as histone modification via HDAC (histone deacetylase), HAT (histone acetyltransferase) inhibition, DNMT (DNA methyltransferase) inhibition, and non-coding RNA expression. All of these nutraceuticals are reported to positively modulate the epigenome, reducing cancer incidence. Furthermore, the current review addresses the issue of the low bioavailability of nutraceuticals and how to overcome the drawbacks related to their oral administration. Understanding the mechanisms by which nutraceuticals influence gene expression will allow their incorporation into an “epigenetic diet” that could be further capitalized on in the therapy of cancer.
Collapse
Affiliation(s)
- Maria Vrânceanu
- Department of Toxicology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Damiano Galimberti
- Italian Association of Anti-Ageing Physicians, Via Monte Cristallo, 1, 20159 Milan, Italy
| | - Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Ovidiu Dragoş
- Department of Kinetotheraphy and Special Motricity, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Correspondence: (R.B.); (O.D.); Tel.: +40-744-367-958 (R.B.); +40-733-040-917 (O.D.)
| | - Anamaria Cozma-Petruţ
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Simona-Codruţa Hegheş
- Department of Drug Analysis, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Magdalena Cuciureanu
- Department of Pharmacology, University of Medicine and Pharmacy “Grigore T. Popa” Iasi, 16 Universităţii Street, 700115 Iași, Romania
| | - Carmina Mariana Stroia
- Department of Pharmacy, Oradea University, 1 Universităţii Street, 410087 Oradea, Romania
| | - Doina Miere
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, “Iuliu Haţieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
14
|
Lin S, Jin X, Gao J, Qiu Z, Ying J, Wang Y, Dong Z, Zhou W. Impact of wheat bran micronization on dough properties and bread quality: Part II - Quality, antioxidant and nutritional properties of bread. Food Chem 2022; 396:133631. [PMID: 35839722 DOI: 10.1016/j.foodchem.2022.133631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 05/07/2022] [Accepted: 07/02/2022] [Indexed: 12/23/2022]
Abstract
To investigate the impact of superfine grinding of wheat bran on bread quality, antioxidant and nutritional properties, bran with different particle sizes (coarse, D50 of 362.3 μm; medium, 60.4 μm; superfine, 11.3 μm) were produced and fortified to white bread at three levels (10, 20 and 30%). At 20% fortification, compared to coarse bran, superfine bran increased the hardness and reduced the brightness of bread crumb by 56.3 and 3.30%, respectively, while it decreased bread's cell size by 10.7% and insignificantly impacted on bread's specific volume and porosity. Superfine bran retarded bread staling by 8.3% than coarse bran. It resulted in significantly better sensory attributes of bread in taste, texture and general palatability, and the fortified bread was overall acceptable (score > 6). Moreover, faster release of antioxidants (285-353% higher k), slower release of glucose (10.8% lower k), 3.76% less rapidly digestible starch, 5.65% more slowly digestible starch and 13.2% more resistant starch were found in the superfine group than the coarse one. Results demonstrated the potential of 20% fortification of superfine bran in developing fibre-enriched bread with satisfactory quality, increased antioxidant property and improved glycaemic modulation.
Collapse
Affiliation(s)
- Suyun Lin
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Xiaoxuan Jin
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Jing Gao
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Ziyou Qiu
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China
| | - Jian Ying
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Yong Wang
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Zhizhong Dong
- Beijing Engineering Laboratory of Geriatric Nutrition & Foods, COFCO Nutrition & Health Research Institute, Beijing 102209, China
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, Jiangsu 215123, China.
| |
Collapse
|
15
|
Michala AS, Pritsa A. Quercetin: A Molecule of Great Biochemical and Clinical Value and Its Beneficial Effect on Diabetes and Cancer. Diseases 2022; 10:37. [PMID: 35892731 PMCID: PMC9326669 DOI: 10.3390/diseases10030037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin belongs to the broader category of polyphenols. It is found, in particular, among the flavonols, and along with kaempferol, myricetin and isorhamnetin, it is recognized as a foreign substance after ingestion in contrast to vitamins. Quercetin occurs mainly linked to sugars with the most common compounds being quercetin-3-O-glucoside or as an aglycone, especially in the plant population. The aim of this review is to present a recent bibliography on the mechanisms of quercetin absorption and metabolism, bioavailability, and antioxidant and the clinical effects in diabetes and cancer. The literature reports a positive effect of quercetin on oxidative stress, cancer, and the regulation of blood sugar levels. Moreover, research-administered drug dosages of up to 2000 mg per day showed mild to no symptoms of overdose. It should be noted that quercetin is no longer considered a carcinogenic substance. The daily intake of quercetin in the diet ranges 10 mg-500 mg, depending on the type of products consumed. This review highlights that quercetin is a valuable dietary antioxidant, although a specific daily recommended intake for this substance has not yet been determined and further studies are required to decide a beneficial concentration threshold.
Collapse
Affiliation(s)
| | - Agathi Pritsa
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University (IHU), P.O. 141 Sindos, 57400 Thessaloniki, Greece;
| |
Collapse
|
16
|
|
17
|
Fucoidan Regulates Starch Digestion: In Vitro and Mechanistic Study. Foods 2022; 11:foods11030427. [PMID: 35159577 PMCID: PMC8834454 DOI: 10.3390/foods11030427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Bread is a high glycemic index (GI) food with high amounts of readily digestible carbohydrates. Fucoidan refers to a group of sulfated polysaccharides isolated from brown seaweed that has been gaining traction for its many functional properties, including its ability to inhibit starch hydrolases. In this study, fucoidan was added into bread to lower the glycemic index of bread. Fucoidan fortification at 3.0% reduced the starch digestion rate of baked bread by 21.5% as compared to control baked bread. This translated to a 17.7% reduction in the predicted GI (pGI) with 3.0% of fucoidan. Fucoidan was retained in the bread after baking. Although the in vitro bioavailability of fucoidan was negligible, the in vitro bioaccessibility of fucoidan was high, at 77.1–79.8%. This suggested that although fucoidan may not be absorbed via passive diffusion, there is potential for the fucoidan to be absorbed via other modes of absorption. Thus, there is a potential for the use of fucoidan as a functional ingredient in bread to reduce the glycemic potential of bread.
Collapse
|
18
|
Sagar NA, Pareek S, Benkeblia N, Xiao J. Onion (
Allium cepa
L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Narashans Alok Sagar
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Sunil Pareek
- Department of Agriculture and Environmental Sciences National Institute of Food Technology Entrepreneurship and Management Kundli Sonepat Haryana India
| | - Noureddine Benkeblia
- Department of Life Sciences/The Biotechnology Centre The University of the West Indies Kingston Jamaica
| | - Jianbo Xiao
- Nutrition and Bromatology Group Department of Analytical and Food Chemistry Faculty of Sciences Universidade de Vigo Ourense Spain
| |
Collapse
|
19
|
Sęczyk Ł, Król B, Kołodziej B. Wheat rolls fortified with Greek oregano ( Origanum vulgare ssp. hirtum (Link) Ietswaart) leaves – phytochemical changes during processing and simulated digestion, nutrient digestibility, and functional properties. Food Funct 2022; 13:7781-7793. [DOI: 10.1039/d2fo01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fortification with Greek oregano affects in vitro bioaccessibility of phytochemicals, protein and starch digestibility, and functional properties of wheat rolls.
Collapse
Affiliation(s)
- Łukasz Sęczyk
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Beata Król
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Barbara Kołodziej
- Department of Industrial and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| |
Collapse
|
20
|
|
21
|
Ou J. Incorporation of polyphenols in baked products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:207-252. [PMID: 34507643 DOI: 10.1016/bs.afnr.2021.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bakery foods, including breads, cakes, cookies, muffins, rolls, buns, crumpets, pancakes, doughnuts, waffles, and bagels, etc., have been an important diet of humans for thousands of years. As the nutraceuticals with various biological activities, polyphenols, especially polyphenol-enriched products are widely used in bakery foods. The polyphenol-enriched products are mainly from fruits and vegetables, including fruits in whole, juice, puree, jam, and the powder of dried fruits, pomace, and peels. Incorporation of these products not only provide polyphenols, but also supply other nutrients, especially dietary fibers for bakery products. This chapter discussed the thermal stability of different types of polyphenols during baking, and the effect of polyphenols on the sensory attributes of baked foods. Moreover, their role in mitigation of reactive carbonyl species and the subsequent formation of advanced glycation end products, antioxidant and antimicrobial activities have been also discussed. Since polyphenols are subjected to high temperature for dozens of minutes during baking, future works need to focus on the chemical interactions of polyphenols and their oxidized products (quinones) with other food components, and the safety consequence of these interactions.
Collapse
Affiliation(s)
- Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
The addition of yerba mate leaves on bread dough has influences on fermentation time and the availability of phenolic compounds? Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Naeem A, Ming Y, Pengyi H, Jie KY, Yali L, Haiyan Z, Shuai X, Wenjing L, Ling W, Xia ZM, Shan LS, Qin Z. The fate of flavonoids after oral administration: a comprehensive overview of its bioavailability. Crit Rev Food Sci Nutr 2021; 62:6169-6186. [PMID: 33847202 DOI: 10.1080/10408398.2021.1898333] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advancements in synthetic chemistry, nature remains the primary source of drug discovery, and this never-ending task of finding novel and active drug molecules will continue. Flavonoids have been shown to possess highly significant therapeutic activities such as anti-inflammatory, anti-oxidant, anti-viral, anti-diabetic, anti-cancer, anti-aging, neuroprotective, and cardioprotective, etc., However, it has been found that orally administered flavonoids have a critical absorption disorder and, therefore, have low bioavailability and show fluctuating pharmacokinetic and pharmacodynamic responses. A detailed investigation is required to assess and analyze the variation in the bioavailability of flavonoids due to interactions with the intestinal barrier. This review will emphasize on the bioavailability and the pharmacological applications of flavonoids, key factors affecting their bioavailability, and strategies for enhancing bioavailability, which may lead to deeper understanding of the extent of flavonoids as a treatment and/or prevention for different diseases in clinics.
Collapse
Affiliation(s)
- Abid Naeem
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Yang Ming
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Hu Pengyi
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Kang Yong Jie
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Liu Yali
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Zhang Haiyan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Xiao Shuai
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Li Wenjing
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Wu Ling
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhang Ming Xia
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Liu Shan Shan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Zheng Qin
- Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China.,Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
24
|
Cytotoxicity of adducts formed between quercetin and methylglyoxal in PC-12 cells. Food Chem 2021; 352:129424. [PMID: 33706136 DOI: 10.1016/j.foodchem.2021.129424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Quercetin (Que) or quercetin-containing food stuffs are widely incorporated in bakery foods for improving food texture and health effects, and scavenging reactive aldehydes, such as methylglyoxal (MGO) that exhibits various deleterious effects including contribution to neurodegeneration. This study aimed to investigate the cytotoxicity of the adducts formed between quercetin and MGO resulted from the incorporation of quercetin in foods. Two highly-purified adducts (Que-mono-MGO and Que-di-MGO) were found to display higher cytotoxicity than their precursor MGO and quercetin. They elevated apoptosis via upregulation of expression of apoptotic markers, including p-P38, cleaved caspase-9 and -3, and pro-apoptotic Bax. They induced mitochondrial dysfunction via decreasing mitochondrial membrane potential and increasing lactate dehydrogenase release. Moreover, they attenuated levels of p-Akt, Nrf2, NQO-1, and HO-1, proving that they induced neurodegeneration apoptosis through mitochondria-mediated signaling pathways (PI3K-Akt and Nrf2-HO-1/NQO-1). These findings indicated that the safety consequence of MGO after scavenged by polyphenols needs to be concerned.
Collapse
|
25
|
Acevedo-Fani A, Ochoa-Grimaldo A, Loveday SM, Singh H. Digestive dynamics of yoghurt structure impacting the release and bioaccessibility of the flavonoid rutin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106215] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Energy of the CH⋯O H-bonds and others specific contacts in the quercetin molecule: QM/QTAIM approximation formulas. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Fratianni F, d’Acierno A, Cozzolino A, Spigno P, Riccardi R, Raimo F, Pane C, Zaccardelli M, Tranchida Lombardo V, Tucci M, Grillo S, Coppola R, Nazzaro F. Biochemical Characterization of Traditional Varieties of Sweet Pepper ( Capsicum annuum L.) of the Campania Region, Southern Italy. Antioxidants (Basel) 2020; 9:E556. [PMID: 32604812 PMCID: PMC7346132 DOI: 10.3390/antiox9060556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Bioactive compounds of different Campania native sweet pepper varieties were evaluated. Polyphenols ranged between 1.37 mmol g-1 and 3.42 mmol g-1, β-carotene was abundant in the red variety "Cazzone" (7.05 μg g-1). Yellow and red varieties showed a content of ascorbic acid not inferior to 0.82 mg g-1, while in some green varieties the presence of ascorbic acid was almost inconsistent. Interrelationships between the parameters analyzed and the varieties showed that ascorbic acid could represent the factor mostly influencing the antioxidant activity. Polyphenol profile was different among the varieties, with a general prevalence of acidic phenols in yellow varieties and of flavonoids in red varieties. Principal Component Analysis, applied to ascorbic acid, total polyphenols and β-carotene, revealed that two of the green varieties ("Friariello napoletano" and "Friariello Sigaretta") were well clustered and that the yellow variety "Corno di capra" showed similarity with the green varieties, in particular with "Friariello Nocerese". This was confirmed by the interrelationships applied to polyphenol composition, which let us to light on a clustering of several red and yellow varieties, and that mainly the yellow "Corno di capra" was closer to the green varieties of "Friariello".
Collapse
Affiliation(s)
| | - Antonio d’Acierno
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy;
| | - Autilia Cozzolino
- Department of Agricultural, Environmental and Food Sciences (DiAAA)-University of Molise, Via de Sanctis snc, 86100 Campobasso, Italy; (A.C.); (R.C.)
| | - Patrizia Spigno
- Cooperativa “ARCA 2010”, Via Varignano 7, 8100 Acerra (NA), Italy; (P.S.); (R.R.)
| | - Riccardo Riccardi
- Cooperativa “ARCA 2010”, Via Varignano 7, 8100 Acerra (NA), Italy; (P.S.); (R.R.)
| | - Francesco Raimo
- Horticulture Research Center (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy; (F.R.); (C.P.); (M.Z.)
| | - Catello Pane
- Horticulture Research Center (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy; (F.R.); (C.P.); (M.Z.)
| | - Massimo Zaccardelli
- Horticulture Research Center (CRA-ORT), Via Cavalleggeri 25, 84098 Pontecagnano Faiano (SA), Italy; (F.R.); (C.P.); (M.Z.)
| | - Valentina Tranchida Lombardo
- Institute of Biosciences and Bioresources, CNR-IBBR, O.U. of Portici (NA), Via Università 100, 80055 Portici (NA), Italy; (V.T.L.); (M.T.); (S.G.)
| | - Marina Tucci
- Institute of Biosciences and Bioresources, CNR-IBBR, O.U. of Portici (NA), Via Università 100, 80055 Portici (NA), Italy; (V.T.L.); (M.T.); (S.G.)
| | - Stefania Grillo
- Institute of Biosciences and Bioresources, CNR-IBBR, O.U. of Portici (NA), Via Università 100, 80055 Portici (NA), Italy; (V.T.L.); (M.T.); (S.G.)
| | - Raffaele Coppola
- Department of Agricultural, Environmental and Food Sciences (DiAAA)-University of Molise, Via de Sanctis snc, 86100 Campobasso, Italy; (A.C.); (R.C.)
| | - Filomena Nazzaro
- Institute of Food Science, CNR-ISA, Via Roma 64, 83100 Avellino, Italy;
| |
Collapse
|
28
|
Izzo L, Castaldo L, Narváez A, Graziani G, Gaspari A, Rodríguez-Carrasco Y, Ritieni A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020; 25:molecules25030631. [PMID: 32024009 PMCID: PMC7037164 DOI: 10.3390/molecules25030631] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 01/05/2023] Open
Abstract
Industrial hemp (Cannabis sativa L. Family Cannabaceae) contains a vast number of bioactive relevant compounds, namely polyphenols including flavonoids, phenolic acids, phenol amides, and lignanamides, well known for their therapeutic properties. Nowadays, many polyphenols-containing products made of herbal extracts are marketed, claiming to exert health-promoting effects. In this context, industrial hemp inflorescence may represent an innovative source of bioactive compounds to be used in nutraceutical formulations. The aim of this work was to provide a comprehensive analysis of the polyphenolic fraction contained in polar extracts of four different commercial cultivars (Kompoti, Tiborszallasi, Antal, and Carmagnola Cs) of hemp inflorescences through spectrophotometric (TPC, DPPH tests) and spectrometry measurement (UHPLC-Q-Orbitrap HRMS). Results highlighted a high content of cannflavin A and B in inflorescence analyzed samples, which appear to be cannabis-specific, with a mean value of 61.8 and 84.5 mg/kg, meaning a ten-to-hundred times increase compared to other parts of the plant. Among flavonols, quercetin-3-glucoside reached up to 285.9 mg/kg in the Carmagnola CS cultivar. Catechin and epicatechin were the most representative flavanols, with a mean concentration of 53.3 and 66.2 mg/kg, respectively, for all cultivars. Total polyphenolic content in inflorescence samples was quantified in the range of 10.51 to 52.58 mg GAE/g and free radical-scavenging included in the range from 27.5 to 77.6 mmol trolox/kg. Therefore, C. sativa inflorescence could be considered as a potential novel source of polyphenols intended for nutraceutical formulations.
Collapse
Affiliation(s)
- Luana Izzo
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II,” Via Domenico Montesano 49, 80131 Naples, Italy; (A.N.); (G.G.); (A.G.); (A.R.)
- Correspondence: ; Tel.: +39-081-678116
| | - Luigi Castaldo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Alfonso Narváez
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II,” Via Domenico Montesano 49, 80131 Naples, Italy; (A.N.); (G.G.); (A.G.); (A.R.)
| | - Giulia Graziani
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II,” Via Domenico Montesano 49, 80131 Naples, Italy; (A.N.); (G.G.); (A.G.); (A.R.)
| | - Anna Gaspari
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II,” Via Domenico Montesano 49, 80131 Naples, Italy; (A.N.); (G.G.); (A.G.); (A.R.)
| | - Yelko Rodríguez-Carrasco
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain;
| | - Alberto Ritieni
- Department of Pharmacy, Faculty of Pharmacy, University of Naples “Federico II,” Via Domenico Montesano 49, 80131 Naples, Italy; (A.N.); (G.G.); (A.G.); (A.R.)
| |
Collapse
|
29
|
Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm 2019; 570:118652. [PMID: 31472219 DOI: 10.1016/j.ijpharm.2019.118652] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/30/2023]
Abstract
The aim of this work was to optimize the preparative process of quercetin loaded casein nanoparticles as well as to evaluate the pharmacokinetics of this flavonoid when administered orally in Wistar rats. Nanoparticles were obtained by coacervation after the incubation of casein, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and quercetin in an aqueous environment. Then, nanoparticles were purified and dried. The resulting nanoparticles displayed a size of 200 nm with a negative zeta potential and a payload of about 32 μg/mg. Release studies showed a zero-order kinetic, suggesting a mechanism based on erosion of the nanoparticle matrix. For the pharmacokinetic study, quercetin was orally administered to rats as a single dose of 25 mg/kg. Animals treated with quercetin-loaded casein nanoparticles displayed higher plasma levels than those observed in animals receiving the solution of the flavonoid (control). Thus, the relative oral bioavailability of quercetin when administered as casein nanoparticles (close to 37%) was found to be about 9-times higher than the oral solution of the flavonoid in a mixture of PEG 400 and water. In summary, the combination of casein and 2-hydroxypropyl-β-cyclodextrin produces nanoparticles that may be a good option to load quercetin for both nutraceutical and pharmaceutical purposes.
Collapse
Affiliation(s)
- Rebeca Peñalva
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Irene Esparza
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Jorge Morales-Gracia
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Carlos J González-Navarro
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Eneko Larrañeta
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain.
| |
Collapse
|
30
|
Samadarsi R, Mishra D, Dutta D. Mangiferin nanoparticles fortified dairy beverage as a low glycemic food product: its quality attributes and antioxidant properties. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rohini Samadarsi
- Department of Biotechnology National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713209 West Bengal India
| | - Divyani Mishra
- Department of Biotechnology National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713209 West Bengal India
| | - Debjani Dutta
- Department of Biotechnology National Institute of Technology Durgapur Mahatma Gandhi Avenue Durgapur 713209 West Bengal India
| |
Collapse
|
31
|
Piccolella S, Crescente G, Candela L, Pacifico S. Nutraceutical polyphenols: New analytical challenges and opportunities. J Pharm Biomed Anal 2019; 175:112774. [PMID: 31336288 DOI: 10.1016/j.jpba.2019.07.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023]
Abstract
Nowadays, the research for secondary metabolites with health promoting effects in countering or slowing-down chronic and degenerative diseases (e.g. cancer, cardiovascular, and neurodegenerative diseases) identify phenols and polyphenols, widespread and mostly copious in dietary plant sources, as beneficial for human health. These compounds, as intrinsically antioxidant, are claimed as nutraceuticals with preventive efficacy in offsetting oxidant species over-genesis in normal cells, and with the potential ability to halt or reverse oxidative stress-related diseases. In this context, pure (poly)phenols and/or their herbal/food complexes were found to exert both anti- and pro-oxidant activities, suggesting also a promising chemopreventive efficacy. In fact, different evidence further highlights their ability to induce apoptosis, growth arrest, DNA synthesis inhibition and/or modulation of signal transduction pathways. Indeed, a full understanding of the phenolic and polyphenolic composition of plant species, which still now represent their inestimable and worth exploring source, is an important challenge, which today can and must be favourably pursued in the consciousness that the bioactivity of a plant extract is always in its chemistry. To reach this purpose a number of new and advanced techniques are available for extraction, purification and structural identification purposes, but, taking into account how, when and where (poly)phenols are biosynthesized, their use must be highly rationalized. This is particularly true for mass spectrometry techniques which, although representing one of the most powerful tools and in continuous evolution in this era, often suffer from an automatism that does not give justice to the chemical goodness of a plant species and particularly those of nutraceutical interest. This review will deepen into polyphenol research, focusing on biosynthesis, analytical approaches for a conscious exploitability of nutraceutical plant extracts rich in antioxidant and anti-inflammatory polyphenols and/or pure isolated polyphenols.
Collapse
Affiliation(s)
- Simona Piccolella
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Giuseppina Crescente
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Lorenzo Candela
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy
| | - Severina Pacifico
- Department Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100 Caserta, Italy.
| |
Collapse
|