1
|
Tian S, Ding T, Li H. Oral microbiome in human health and diseases. MLIFE 2024; 3:367-383. [PMID: 39359681 PMCID: PMC11442140 DOI: 10.1002/mlf2.12136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/13/2024] [Accepted: 05/05/2024] [Indexed: 10/04/2024]
Abstract
The oral cavity contains the second-largest microbiota in the human body. The cavity's anatomically and physiologically diverse niches facilitate a wide range of symbiotic bacteria living at distinct oral sites. Consequently, the oral microbiota exhibits site specificity, with diverse species, compositions, and structures influenced by specific aspects of their placement. Variations in oral microbiota structure caused by changes in these influencing factors can impact overall health and lead to the development of diseases-not only in the oral cavity but also in organs distal to the mouth-such as cancer, cardiovascular disease, and respiratory disease. Conversely, diseases can exacerbate the imbalance of the oral microbiota, creating a vicious cycle. Understanding the heterogeneity of both the oral microbiome and individual humans is important for investigating the causal links between the oral microbiome and diseases. Additionally, understanding the intricacies of the oral microbiome's composition and regulatory factors will help identify the potential causes of related diseases and develop interventions to prevent and treat illnesses in this domain. Therefore, turning to the extant research in this field, we systematically review the relationship between oral microbiome dynamics and human diseases.
Collapse
Affiliation(s)
- Siqi Tian
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University) Ministry of Education, China Guangzhou China
| | - Hui Li
- Department of Immunology and Microbiology, Zhongshan School of Medicine Sun Yat-Sen University Guangzhou China
- Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University) Ministry of Education Guangzhou China
| |
Collapse
|
2
|
Zhang P, Xu J, Zhou Y. The relationship between gastric microbiome features and responses to neoadjuvant chemotherapy in gastric cancer. Front Microbiol 2024; 15:1357261. [PMID: 38694796 PMCID: PMC11061454 DOI: 10.3389/fmicb.2024.1357261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/28/2024] [Indexed: 05/04/2024] Open
Abstract
Background Emerging evidence demonstrates that the gastrointestinal microbiome has the potential to be a biomarker in neoadjuvant chemoradiotherapy for colorectal cancer (CRC). Yet studies on the impact of the gastric microbiome (GM) on the response to neoadjuvant chemotherapy (NACT) are still scarce. Methods Forty-eight patients with gastric cancer participated in this retrospective study, and 16S rRNA sequencing was performed to evaluate formalin-fixed and paraffin-embedded (FFPE) tissue biospecimens and fresh-frozen tissues. Results In this study, 16 bacterial taxa at different levels, including Bacillus, Anaerococcus, and Chloroflexi, were identified to be enriched before NACT in response (R) patients in group FFPE. In contrast, 6 bacterial taxa, such as Haemophilus, Veillonellaceae (Veillonella), etc. were enriched after NACT, in which we reported for the first time that the phylum Chloroflexi was enriched before NACT in R patients. Thirty-one bacterial taxa of Coriobacteriaceae, Ruminococcaceae, Veillonellaceae, and Lachnospiraceae were identified in group mucosa as being enriched in R patients. In comparison, 4 bacterial taxa dominated by the phylum Proteobacteria were enriched in NR patients. Notably, the family Veillonellaceae was found in both tissue samples, and the metabolic pathways, including the citrate cycle (TCA cycle) and various amino acids, including alanine, were found to be potentially predictive in both sample species. Conclusion There are differences in the features of the GM for different NACT response results. The causal relationship deserves to be confirmed by further investigations.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianfei Xu
- Department of Emergency Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Liu H, Huang Y, Huang M, Wang M, Ming Y, Chen W, Chen Y, Tang Z, Jia B. From nitrate to NO: potential effects of nitrate-reducing bacteria on systemic health and disease. Eur J Med Res 2023; 28:425. [PMID: 37821966 PMCID: PMC10566198 DOI: 10.1186/s40001-023-01413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
Current research has described improving multisystem disease and organ function through dietary nitrate (DN) supplementation. They have provided some evidence that these floras with nitrate (NO3-) reductase are mediators of the underlying mechanism. Symbiotic bacteria with nitrate reductase activity (NRA) are found in the human digestive tract, including the mouth, esophagus and gastrointestinal tract (GT). Nitrate in food can be converted to nitrite under the tongue or in the stomach by these symbiotic bacteria. Then, nitrite is transformed to nitric oxide (NO) by non-enzymatic synthesis. NO is currently recognized as a potent bioactive agent with biological activities, such as vasodilation, regulation of cardiomyocyte function, neurotransmission, suppression of platelet agglutination, and prevention of vascular smooth muscle cell proliferation. NO also can be produced through the conventional L-arginine-NO synthase (L-NOS) pathway, whereas endogenous NO production by L-arginine is inhibited under hypoxia-ischemia or disease conditions. In contrast, exogenous NO3-/NO2-/NO activity is enhanced and becomes a practical supplemental pathway for NO in the body, playing an essential role in various physiological activities. Moreover, many diseases (such as metabolic or geriatric diseases) are primarily associated with disorders of endogenous NO synthesis, and NO generation from the exogenous NO3-/NO2-/NO route can partially alleviate the disease progression. The imbalance of NO in the body may be one of the potential mechanisms of disease development. Therefore, the impact of these floras with nitrate reductase on host systemic health through exogenous NO3-/NO2-/NO pathway production of NO or direct regulation of floras ecological balance is essential (e.g., regulation of body homeostasis, amelioration of diseases, etc.). This review summarizes the bacteria with nitrate reductase in humans, emphasizing the relationship between the metabolic processes of this microflora and host systemic health and disease. The potential effects of nitrate reduction bacteria on human health and disease were also highlighted in disease models from different human systems, including digestive, cardiovascular, endocrine, nervous, respiratory, and urinary systems, providing innovative ideas for future disease diagnosis and treatment based on nitrate reduction bacteria.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Department of Oral Surgery, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Zhang H, Qin L. Positive feedback loop between dietary nitrate intake and oral health. Nutr Res 2023; 115:1-12. [PMID: 37207592 DOI: 10.1016/j.nutres.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Nitrate was once thought to be an inert end-product of endothelial-derived nitric oxide (NO) heme oxidation; however, this view has been radically revised over the past few decades. Following the clarification of the nitrate-nitrite-NO pathway, accumulated evidence has shown that nitrate derived from the diet is a supplementary source of endogenous NO generation, playing important roles in a variety of pathological and physiological conditions. However, the beneficial effects of nitrate are closely related with oral health, and oral dysfunction has an adverse effect on nitrate metabolism and further impacts overall systemic health. Moreover, an interesting positive feedback loop has been identified between dietary nitrate intake and oral health. Dietary nitrate's beneficial effect on oral health may further improve its bioavailability and promote overall systemic well-being. This review aims to provide a detailed description of the functions of dietary nitrate, with an emphasis on the key role oral health plays in nitrate bioavailability. This review also provides recommendations for a new paradigm that includes nitrate therapy in the treatment of oral diseases.
Collapse
Affiliation(s)
- Haoyang Zhang
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Lizheng Qin
- Department of Oral and Maxillofacial & Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Liubertas T, Poderys JL, Zigmantaite V, Viskelis P, Kucinskas A, Grigaleviciute R, Jurevicius J, Urbonaviciene D. The Effect of Potassium Nitrate Supplementation on the Force and Properties of Extensor digitorum longus (EDL) Muscles in Mice. Nutrients 2023; 15:nu15061489. [PMID: 36986219 PMCID: PMC10057731 DOI: 10.3390/nu15061489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Adding potassium nitrate (KNO3) to the diet improves the physiological properties of mammalian muscles (rebuilds weakened muscle, improves structure and functionality). The aim of this study was to investigate the effect of KNO3 supplementation in a mouse model. BALB/c mice were fed a KNO3 diet for three weeks, followed by a normal diet without nitrates. After the feeding period, the Extensor digitorum longus (EDL) muscle was evaluated ex vivo for contraction force and fatigue. To evaluate the possible pathological changes, the histology of EDL tissues was performed in control and KNO3-fed groups after 21 days. The histological analysis showed an absence of negative effects in EDL muscles. We also analyzed 15 biochemical blood parameters. After 21 days of KNO3 supplementation, the EDL mass was, on average, 13% larger in the experimental group compared to the controls (p < 0.05). The muscle-specific force increased by 38% in comparison with the control group (p < 0.05). The results indicate that KNO3 has effects in an experimental mouse model, showing nitrate-diet-induced muscle strength. This study contributes to a better understanding of the molecular changes in muscles following nutritional intervention and may help develop strategies and products designated to treat muscle-related issues.
Collapse
Affiliation(s)
- Tomas Liubertas
- Department of Coaching Science, Lithuanian Sports University, 44221 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-6126-6664
| | - Jonas Liudas Poderys
- Department of Coaching Science, Lithuanian Sports University, 44221 Kaunas, Lithuania
| | - Vilma Zigmantaite
- Biological Research Centre, Lithuanian University of Health Science, 47181 Kaunas, Lithuania
| | - Pranas Viskelis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| | - Audrius Kucinskas
- Biological Research Centre, Lithuanian University of Health Science, 47181 Kaunas, Lithuania
| | - Ramune Grigaleviciute
- Biological Research Centre, Lithuanian University of Health Science, 47181 Kaunas, Lithuania
| | - Jonas Jurevicius
- Institute of Cardiology, Membrane Biophysics Laboratory, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania
| | - Dalia Urbonaviciene
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, 54333 Babtai, Lithuania
| |
Collapse
|
6
|
Stamm P, Kalinovic S, Oelze M, Steven S, Czarnowski A, Kvandova M, Bayer F, Reinhardt C, Münzel T, Daiber A. Mechanistic Insights into Inorganic Nitrite-Mediated Vasodilation of Isolated Aortic Rings under Oxidative/Hypertensive Conditions and S-Nitros(yl)ation of Proteins in Germ-Free Mice. Biomedicines 2022; 10:biomedicines10030730. [PMID: 35327532 PMCID: PMC8945819 DOI: 10.3390/biomedicines10030730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
The prevalence and clinical importance of arterial hypertension are still growing. Inorganic nitrite (NO2-) represents an attractive dietary antihypertensive agent, but its metabolism and mode of action, which we aimed to investigate with the present study, are not completely understood. Isolated aortic rings from rats were treated ex vivo with oxidants, and rats were infused in vivo with angiotensin-II. Vascular responses to acetylcholine (ACh) and nitrite were assessed by isometric tension recording. The loss of vasodilatory potency in response to oxidants was much more pronounced for ACh as compared to nitrite ex vivo (but not in vivo with angiotensin-II). This effect may be caused by the redox regulation of conversion to xanthine oxidase (XO). Conventionally raised and germ-free mice were treated with nitrite by gavage, which did not improve ACh-mediated vasodilation, but did increase the plasma levels of S-nitros(yl)ated proteins in the conventionally-raised, but not in the germ-free mice. In conclusion, inorganic nitrite represents a dietary drug option to treat arterial hypertension in addition to already established pharmacological treatment. Short-term oxidative stress did not impair the vasodilatory properties of nitrite, which may be beneficial in cardiovascular disease patients. The gastrointestinal microbiome appears to play a key role in nitrite metabolism and bioactivation.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Alexander Czarnowski
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
| | - Franziska Bayer
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Christoph Reinhardt
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, 55131 Mainz, Germany; (P.S.); (S.K.); (M.O.); (S.S.); (A.C.); (M.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany;
- Correspondence: (T.M.); (A.D.); Tel.: +49-6131-17-6280 (A.D.)
| |
Collapse
|
7
|
Stamm P, Oelze M, Steven S, Kröller-Schön S, Kvandova M, Kalinovic S, Jasztal A, Kij A, Kuntic M, Bayo Jimenez MT, Proniewski B, Li H, Schulz E, Chlopicki S, Daiber A, Münzel T. Direct comparison of inorganic nitrite and nitrate on vascular dysfunction and oxidative damage in experimental arterial hypertension. Nitric Oxide 2021; 113-114:57-69. [PMID: 34091009 DOI: 10.1016/j.niox.2021.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/17/2023]
Abstract
Arterial hypertension is one of the major health risk factors leading to coronary artery disease, stroke or peripheral artery disease. Dietary uptake of inorganic nitrite (NO2-) and nitrate (NO3-) via vegetables leads to enhanced vascular NO bioavailability and provides antihypertensive effects. The present study aims to understand the underlying vasoprotective effects of nutritional NO2- and NO3- co-therapy in mice with angiotensin-II (AT-II)-induced arterial hypertension. High-dose AT-II (1 mg/kg/d, 1w, s. c.) was used to induce arterial hypertension in male C57BL/6 mice. Additional inorganic nitrite (7.5 mg/kg/d, p. o.) or nitrate (150 mg/kg/d, p. o.) were administered via the drinking water. Blood pressure (tail-cuff method) and endothelial function (isometric tension) were determined. Oxidative stress and inflammation markers were quantified in aorta, heart, kidney and blood. Co-treatment with inorganic nitrite, but not with nitrate, normalized vascular function, oxidative stress markers and inflammatory pathways in AT-II treated mice. Of note, the highly beneficial effects of nitrite on all parameters and the less pronounced protection by nitrate, as seen by improvement of some parameters, were observed despite no significant increase in plasma nitrite levels by both therapies. Methemoglobin levels tended to be higher upon nitrite/nitrate treatment. Nutritional nitric oxide precursors represent a non-pharmacological treatment option for hypertension that could be applied to the general population (e.g. by eating certain vegetables). The more beneficial effects of inorganic nitrite may rely on superior NO bioactivation and stronger blood pressure lowering effects. Future large-scale clinical studies should investigate whether hypertension and cardiovascular outcome in general can be influenced by dietary inorganic nitrite therapy.
Collapse
Affiliation(s)
- Paul Stamm
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Miroslava Kvandova
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Maria Teresa Bayo Jimenez
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Huige Li
- Department of Pharmacology, University Medical Center Mainz, Mainz, Germany
| | - Eberhard Schulz
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; Department of Cardiology, Celle General Hospital, Celle, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; Department of Pharmacology, Medical College of the Jagiellonian University, Krakow, Poland
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, Laboratory of Molecular Cardiology, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| |
Collapse
|
8
|
How Periodontal Disease and Presence of Nitric Oxide Reducing Oral Bacteria Can Affect Blood Pressure. Int J Mol Sci 2020; 21:ijms21207538. [PMID: 33066082 PMCID: PMC7589924 DOI: 10.3390/ijms21207538] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO), a small gaseous and multifunctional signaling molecule, is involved in the maintenance of metabolic and cardiovascular homeostasis. It is endogenously produced in the vascular endothelium by specific enzymes known as NO synthases (NOSs). Subsequently, NO is readily oxidized to nitrite and nitrate. Nitrite is also derived from exogenous inorganic nitrate (NO3) contained in meat, vegetables, and drinking water, resulting in greater plasma NO2 concentration and major reduction in systemic blood pressure (BP). The recycling process of nitrate and nitrite to NO (nitrate-nitrite-NO pathway), known as the enterosalivary cycle of nitrate, is dependent upon oral commensal nitrate-reducing bacteria of the dorsal tongue. Veillonella, Actinomyces, Haemophilus, and Neisseria are the most copious among the nitrate-reducing bacteria. The use of chlorhexidine mouthwashes and tongue cleaning can mitigate the bacterial nitrate-related BP lowering effects. Imbalances in the oral reducing microbiota have been associated with a decrease of NO, promoting endothelial dysfunction, and increased cardiovascular risk. Although there is a relationship between periodontitis and hypertension (HT), the correlation between nitrate-reducing bacteria and HT has been poorly studied. Restoring the oral flora and NO activity by probiotics may be considered a potential therapeutic strategy to treat HT.
Collapse
|
9
|
Wang Z, Gao X, Zeng R, Wu Q, Sun H, Wu W, Zhang X, Sun G, Yan B, Wu L, Ren R, Guo M, Peng L, Yang Y. Changes of the Gastric Mucosal Microbiome Associated With Histological Stages of Gastric Carcinogenesis. Front Microbiol 2020; 11:997. [PMID: 32547510 PMCID: PMC7272699 DOI: 10.3389/fmicb.2020.00997] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 04/23/2020] [Indexed: 12/22/2022] Open
Abstract
The changes of gastric microbiome across stages of neoplastic progression remain poorly understood, especially for intraepithelial neoplasia (IN) which has been recognized as a phenotypic bridge between atrophic/intestinal metaplastic lesions and invasive cancer. The gastric microbiota was investigated in 30 healthy controls (HC), 21 non-atrophic chronic gastritis (CG), 27 gastric intestinal metaplasia (IM), 25 IN, and 29 gastric cancer (GC) patients by 16S rRNA gene profiling. The bacterial diversity, and abundances of phyla Armatimonadetes, Chloroflexi, Elusimicrobia, Nitrospirae, Planctomycetes, Verrucomicrobia, and WS3 reduced progressively from CG, through IM, IN to GC. Actinobacteria, Bacteriodes, Firmicutes, Fusobacteria, SR1, and TM7 were enriched in the IN and GC. At the community level, the proportions of Gram-positive and anaerobic bacteria increased in the IN and GC compared to other histological types, whereas the aerobic and facultatively anaerobic bacteria taxa were significantly reduced in GC. Remarkable changes in the gastric microbiota functions were detected after the formation of IN. The reduced nitrite-oxidizing phylum Nitrospirae together with a decreased nitrate/nitrite reductase functions indicated nitrate accumulation during neoplastic progression. We constructed a random forest model, which had a very high accuracy (AUC > 0.95) in predicating the histological types with as low as five gastric bacterial taxa. In summary, the changing patterns of the gastric microbiota composition and function are highly indicative of stages of neoplastic progression.
Collapse
Affiliation(s)
- Zikai Wang
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Gao
- Department of Hematology-Oncology, International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen, China
| | - Ranran Zeng
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qiong Wu
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huaibo Sun
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Wenming Wu
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaomei Zhang
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Bin Yan
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lili Wu
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rongrong Ren
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Abstract
Nitric oxide (NO), generated from L-arginine and oxygen by NO synthases, is a pleiotropic signaling molecule involved in cardiovascular and metabolic regulation. More recently, an alternative pathway for the formation of this free radical has been explored. The inorganic anions nitrate (NO3-) and nitrite (NO2-), originating from dietary and endogenous sources, generate NO bioactivity in a process involving seemingly symbiotic oral bacteria and host enzymes in blood and tissues. The described cardio-metabolic effects of dietary nitrate from experimental and clinical studies include lowering of blood pressure, improved endothelial function, increased exercise performance, and reversal of metabolic syndrome, as well as antidiabetic effects. The mechanisms underlying the salutary metabolic effects of nitrate are being revealed and include interaction with mitochondrial respiration, activation of key metabolic regulatory pathways, and reduction of oxidative stress. Here we review the recent advances in the nitrate-nitrite-NO pathway, focusing on metabolic effects in health and disease.
Collapse
|
11
|
Münzel T, Daiber A. Inorganic nitrite and nitrate in cardiovascular therapy: A better alternative to organic nitrates as nitric oxide donors? Vascul Pharmacol 2018; 102:1-10. [DOI: 10.1016/j.vph.2017.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/08/2023]
|
12
|
Lock JY, Carlson TL, Carrier RL. Mucus models to evaluate the diffusion of drugs and particles. Adv Drug Deliv Rev 2018; 124:34-49. [PMID: 29117512 DOI: 10.1016/j.addr.2017.11.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/12/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022]
Abstract
Mucus is a complex hydrogel that acts as a natural barrier to drug delivery at different mucosal surfaces including the respiratory, gastrointestinal, and vaginal tracts. To elucidate the role mucus plays in drug delivery, different in vitro, in vivo, and ex vivo mucus models and techniques have been utilized. Drug and drug carrier diffusion can be studied using various techniques in either isolated mucus gels or mucus present on cell cultures and tissues. The species, age, and potential disease state of the animal from which mucus is derived can all impact mucus composition and structure, and therefore impact drug and drug carrier diffusion. This review provides an overview of the techniques used to characterize drug and drug carrier diffusion, and discusses the advantages and disadvantages of the different models available to highlight the information they can afford.
Collapse
|
13
|
Sundqvist ML, Lundberg JO, Weitzberg E. Effects of antiseptic mouthwash on resting metabolic rate: A randomized, double-blind, crossover study. Nitric Oxide 2016; 61:38-44. [DOI: 10.1016/j.niox.2016.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/30/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
|
14
|
Abstract
The salivary glands and oral bacteria play an essential role in the conversion process from nitrate (NO3-) and nitrite (NO2-) to nitric oxide (NO) in the human body. NO is, at present, recognized as a multifarious messenger molecule with important vascular and metabolic functions. Besides the endogenous L-arginine pathway, which is catalyzed by complex NO synthases, nitrate in food contributes to the main extrinsic generation of NO through a series of sequential steps (NO3--NO2--NO pathway). Up to 25% of nitrate in circulation is actively taken up by the salivary glands, and as a result, its concentration in saliva can increase 10- to 20-fold. However, the mechanism has not been clearly illustrated until recently, when sialin was identified as an electrogenic 2NO3-/H+transporter in the plasma membrane of salivary acinar cells. Subsequently, the oral bacterial species located at the posterior part of the tongue reduce nitrate to nitrite, as catalyzed by nitrate reductase enzymes. These bacteria use nitrate and nitrite as final electron acceptors in their respiration and meanwhile help the host to convert nitrate to NO as the first step. This review describes the role of salivary glands and oral bacteria in the metabolism of nitrate and in the maintenance of NO homeostasis. The potential therapeutic applications of oral inorganic nitrate and nitrite are also discussed.
Collapse
Affiliation(s)
- X.M. Qu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Z.F. Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - B.X. Pang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - L.Y. Jin
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - L.Z. Qin
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - S.L. Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Montenegro MF, Sundqvist ML, Nihlén C, Hezel M, Carlström M, Weitzberg E, Lundberg JO. Profound differences between humans and rodents in the ability to concentrate salivary nitrate: Implications for translational research. Redox Biol 2016; 10:206-210. [PMID: 27810735 PMCID: PMC5094378 DOI: 10.1016/j.redox.2016.10.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/19/2016] [Accepted: 10/22/2016] [Indexed: 12/21/2022] Open
Abstract
In humans dietary circulating nitrate accumulates rapidly in saliva through active transport in the salivary glands. By this mechanism resulting salivary nitrate concentrations are 10–20 times higher than in plasma. In the oral cavity nitrate is reduced by commensal bacteria to nitrite, which is subsequently swallowed and further metabolized to nitric oxide (NO) and other bioactive nitrogen oxides in blood and tissues. This entero-salivary circulation of nitrate is central in the various NO-like effects observed after ingestion of inorganic nitrate. The very same system has also been the focus of toxicologists studying potential carcinogenic effects of nitrite-dependent nitrosamine formation. Whether active transport of nitrate and accumulation in saliva occurs also in rodents is not entirely clear. Here we measured salivary and plasma levels of nitrate and nitrite in humans, rats and mice after administration of a standardized dose of nitrate. After oral (humans) or intraperitoneal (rodents) sodium nitrate administration (0.1 mmol/kg), plasma nitrate levels increased markedly reaching ~300 µM in all three species. In humans ingestion of nitrate was followed by a rapid increase in salivary nitrate to >6000 µM, ie 20 times higher than those found in plasma. In contrast, in rats and mice salivary nitrate concentrations never exceeded the levels in plasma. Nitrite levels in saliva and plasma followed a similar pattern, ie marked increases in humans but modest elevations in rodents. In mice there was also no accumulation of nitrate in the salivary glands as measured directly in whole glands obtained after acute administration of nitrate. This study suggests that in contrast to humans, rats and mice do not actively concentrate circulating nitrate in saliva. These apparent species differences should be taken into consideration when studying the nitrate-nitrite-nitric oxide pathway in rodents, when calculating doses, exploring physiological, therapeutic and toxicological effects and comparing with human data. In humans, dietary nitrate is effectively concentrated in saliva through active transport in the salivary glands. In humans salivary nitrate levels are10–20 times higher than in plasma. In contrast to humans, rats and mice do not actively concentrate nitrate in saliva. These species differences have implcations for translational research.
Collapse
Affiliation(s)
| | - Michaela L Sundqvist
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Function Area Clinical Nutrition, Karolinska University Hospital, Stockholm, Sweden
| | - Carina Nihlén
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Hezel
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Carlström
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eddie Weitzberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|