1
|
Wang X, Sun B. Metabolic proteins with crucial roles in Edwardsiella tarda antioxidative adaptation and intracellular proliferation. mSystems 2023; 8:e0039123. [PMID: 37729581 PMCID: PMC10654080 DOI: 10.1128/msystems.00391-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/22/2023] Open
Abstract
IMPORTANCE Edwardsiella tarda is a significant fish pathogen that can live in challenging environments of reactive oxygen species (ROS), such as inside the phagocytes. Metabolic reconfiguration has been increasingly associated with bacterial oxidative tolerance and virulence. However, the metabolic proteins of E. tarda involved in such processes remain elusive. By proteomic analysis and functional characterization of protein null mutants, the present study identified eight crucial proteins for bacterial oxidative resistance and intracellular infection. Seven of them are metabolic proteins dictating the metabolic flux toward the generation of pyruvate, a key metabolite capable of scavenging ROS molecules. Furthermore, L-aspartate uptake, which can fuel the pyruvate generation, was found essential for the full antioxidative capacity of E. tarda. These findings identified seven metabolic proteins involved in bacterial oxidative adaptation and indicate that metabolic reprogramming toward pyruvate was likely a pivotal strategy of bacteria for antioxidative adaptation and intracellular survival.
Collapse
Affiliation(s)
- Xinhui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Boguang Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
2
|
Avendaño-Herrera R, Saldarriaga-Córdoba M, Echeverría-Bugueño M, Irgang R. In vitro phenotypic evidence for the utilization of iron from different sources and siderophores production in the fish pathogen Tenacibaculum dicentrarchi. JOURNAL OF FISH DISEASES 2023; 46:1001-1012. [PMID: 37309564 DOI: 10.1111/jfd.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/17/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Iron uptake during infection is an essential pathogenicity factor of several bacteria, including Tenacibaculum dicentrarchi, an emerging pathogen for salmonid and red conger eel (Genypterus chilensis) farms in Chile. Iron-related protein families were recently found in eight T. dicentrarchi genomes, but biological studies have not yet confirmed functions. The investigation reported herein clearly demonstrated for the first time that T. dicentrarchi possesses different systems for iron acquisition-one involving the synthesis of siderophores and another allowing for the utilization of heme groups. Using 38 isolates of T. dicentrarchi and the type strain CECT 7612T , all strains grew in the presence of the chelating agent 2.2'-dipyridyl (from 50 to 150 μM) and produced siderophores on chrome azurol S plates. Furthermore, 37 of the 38 T. dicentrarchi isolates used at least four of the five iron sources (i.e. ammonium iron citrate, ferrous sulfate, iron chloride hexahydrate, haemoglobin and/or hemin) when added to iron-deficient media, although the cell yield was less when using hemin. Twelve isolates grew in the presence of hemin, and 10 of them used only 100 μM. Under iron-supplemented or iron-restricted conditions, whole cells of three isolates and the type strain showed at least one membrane protein induced in iron-limiting conditions (c.a. 37.9 kDa), regardless of the isolation host. All phenotypic results were confirmed by in-silico genomic T. dicentrarchi analysis. Future studies will aim to establish a relationship between iron uptake ability and virulence in T. dicentrarchi through in vivo assays.
Collapse
Affiliation(s)
- Ruben Avendaño-Herrera
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Mónica Saldarriaga-Córdoba
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Macarena Echeverría-Bugueño
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| | - Rute Irgang
- Laboratorio de Patología de Organismos Acuáticos y Biotecnología Acuícola, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Viña del Mar, Chile
- Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR), Universidad Andrés Bello, Viña del Mar, Chile
| |
Collapse
|
3
|
Goh KW, Abdul Kari Z, Wee W, Zakaria NNA, Rahman MM, Kabir MA, Abdul Hamid NK, Tahiluddin AB, Kamarudin AS, Téllez–Isaías G, Wei LS. Exploring the roles of phytobiotics in relieving the impacts of Edwardsiella tarda infection on fish: a mini-review. Front Vet Sci 2023; 10:1149514. [PMID: 37476823 PMCID: PMC10355809 DOI: 10.3389/fvets.2023.1149514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
Edwardsiellosis caused by Edwardsiella tarda resulted in significant economic losses in aquaculture operations worldwide. This disease could infect a wide range of hosts, including freshwater, brackish water, and marine aquatic animals. Currently, antibiotics and vaccines are being used as prophylactic agents to overcome Edwardsiellosis in aquaculture. However, application of antibiotics has led to antibiotic resistance among pathogenic bacteria, and the antibiotic residues pose a threat to public health. Meanwhile, the use of vaccines to combat Edwardsiellosis requires intensive labor work and high costs. Thus, phytobiotics were attempted to be used as antimicrobial agents to minimize the impact of Edwardsiellosis in aquaculture. These phytobiotics may also provide farmers with new options to manage aquaculture species' health. The impact of Edwardsiellosis in aquaculture worldwide was elaborated on and highlighted in this review study, as well as the recent application of phytobiotics in aquaculture and the status of vaccines to combat Edwardsiellosis. This review also focuses on the potential of phytobiotics in improving aquatic animal growth performance, enhancing immune system function, and stimulating disease resistance.
Collapse
Affiliation(s)
- Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Zulhisyam Abdul Kari
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Wendy Wee
- Center of Fundamental and Continuing Education, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Nik Nur Azwanida Zakaria
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Department of Agro-Based Industry, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | - Mohammad Mijanur Rahman
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| | | | | | - Albaris B. Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Bongao, Tawi-Tawi, Philippines
| | - Ahmad Syazni Kamarudin
- School of Animal Science, Aquatic Science and Environment, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, Besut, Terengganu, Malaysia
| | | | - Lee Seong Wei
- Department of Agricultural Science, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli, Kelantan, Malaysia
| |
Collapse
|
4
|
Li MF, Jia BB, Sun YY, Sun L. The Translocation and Assembly Module (TAM) of Edwardsiella tarda Is Essential for Stress Resistance and Host Infection. Front Microbiol 2020; 11:1743. [PMID: 32793174 PMCID: PMC7393178 DOI: 10.3389/fmicb.2020.01743] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2020] [Accepted: 07/03/2020] [Indexed: 11/28/2022] Open
Abstract
Translocation and assembly module (TAM) is a protein channel known to mediate the secretion of virulence factors during pathogen infection. Edwardsiella tarda is a Gram-negative bacterium that is pathogenic to a wide range of farmed fish and other hosts including humans. In this study, we examined the function of the two components of the TAM, TamA and TamB, of E. tarda (named tamAEt and tamBEt, respectively). TamAEt was found to localize on the surface of E. tarda and be recognizable by TamAEt antibody. Compared to the wild type, the tamA and tamB knockouts, TX01ΔtamA and TX01ΔtamB, respectively, were significantly reduced in motility, flagella formation, invasion into host cells, intracellular replication, dissemination in host tissues, and inducing host mortality. The lost virulence capacities of TX01ΔtamA and TX01ΔtamB were restored by complementation with the tamAEt and tamBEt genes, respectively. Furthermore, TX01ΔtamA and TX01ΔtamB were significantly impaired in the ability to survive under low pH and oxidizing conditions, and were unable to maintain their internal pH balance and cellular structures in acidic environments, which led to increased susceptibility to lysozyme destruction. Taken together, these results indicate that TamAEt and TamBEt are essential for the virulence of E. tarda and required for E. tarda to survive under stress conditions.
Collapse
Affiliation(s)
- Mo-Fei Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei-Bei Jia
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Sun Y, Zhang J, Qin L, Yan C, Zhang X, Liu D. Identification and validation of sRNAs in Edwardsiella tarda S08. PLoS One 2017; 12:e0172783. [PMID: 28267754 PMCID: PMC5340389 DOI: 10.1371/journal.pone.0172783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2016] [Accepted: 02/09/2017] [Indexed: 11/29/2022] Open
Abstract
Bacterial small non-coding RNAs (sRNAs) are known as novel regulators involved in virulence, stress responsibility, and so on. Recently, a lot of new researches have highlighted the critical roles of sRNAs in fine-tune gene regulation in both prokaryotes and eukaryotes. Edwardsiella tarda (E. tarda) is a gram-negative, intracellular pathogen that causes edwardsiellosis in fish. Thus far, no sRNA has been reported in E. tarda. The present study represents the first attempt to identify sRNAs in E. tarda S08. Ten sRNAs were validated by RNA sequencing and quantitative PCR (qPCR). ET_sRNA_1 and ET_sRNA_2 were homolous to tmRNA and GcvB, respectively. However, the other candidate sRNAs have not been reported till now. The cellular abundance of 10 validated sRNA was detected by qPCR at different growth phases to monitor their biosynthesis. Nine candidate sRNAs were expressed in the late-stage of exponential growth and stationary stages of growth (36~60 h). And the expression of the nine sRNAs was growth phase-dependent. But ET_sRNA_10 was almost expressed all the time and reached the highest peak at 48 h. Their targets were predicted by TargetRNA2 and each sRNA target contains some genes that directly or indirectly relate to virulence. These results preliminary showed that sRNAs probably play a regulatory role of virulence in E. tarda.
Collapse
Affiliation(s)
- Yuying Sun
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
- Jiangsu Marine Resources Development Research Institute, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology, Lianyungang, China
| | - Jiquan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Lei Qin
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| | - Cui Yan
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| | - Xiaojun Zhang
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| | - Dandan Liu
- College of Marine Life and Fisheries, Huaihai Institute of Technology, Lianyungang, China
| |
Collapse
|
6
|
Hu YH, Li YX, Sun L. Edwardsiella tarda Hfq: impact on host infection and global protein expression. Vet Res 2014; 45:23. [PMID: 24568370 PMCID: PMC4015145 DOI: 10.1186/1297-9716-45-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/15/2013] [Accepted: 02/13/2014] [Indexed: 12/29/2022] Open
Abstract
Hfq is an RNA-binding protein that plays an important role in many cellular processes. In this study, we examined the biological effect of the Hfq of Edwardsiella tarda, a severe fish pathogen with a broad host range that includes humans. To facilitate the study, a markerless hfq in-frame deletion wild type, TXhfq, was constructed. Compared to the wild type TX01, TXhfq exhibited (i) retarded planktonic and biofilm growth, (ii) decreased resistance against oxidative stress, (iii) attenuated overall virulence and tissue dissemination and colonization capacity, (iv) impaired ability to replicate in host macrophages and to block host immune response. Introduction of a trans-expressed hfq gene into TXhfq restored the lost virulence of TXhfq. To identify potential Hfq targets, comparative global proteomic analysis was conducted, which revealed that 20 proteins belonging to different functional categories were differentially expressed in TXhfq and TX01. Quantitative real time RT-PCR analysis showed that the mRNA levels of two thirds of the genes of the identified proteins were consistent with the proteomic results. Since TXhfq is dramatically attenuated in virulence, we further examined its potential as a naturally delivered vaccine administered via the immersion route in a flounder model. The results showed that TXhfq induced effective protection against lethal E. tarda challenge. Taken together, our study indicated that Hfq is required for the normal operation of E. tarda in multiple aspects, and that Hfq probably exerts a regulatory effect on a wide range of target genes at both transcription and post-transcription levels.
Collapse
Affiliation(s)
| | | | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
7
|
Wang C, Hu YH, Sun BG, Li J, Sun L. Edwardsiella tarda Ivy, a lysozyme inhibitor that blocks the lytic effect of lysozyme and facilitates host infection in a manner that is dependent on the conserved cysteine residue. Infect Immun 2013; 81:3527-33. [PMID: 23817616 PMCID: PMC3811778 DOI: 10.1128/iai.00503-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2013] [Accepted: 06/22/2013] [Indexed: 02/04/2023] Open
Abstract
Edwardsiella tarda is a Gram-negative bacterial pathogen with a broad host range that includes fish and humans. In this study, we examined the activity and function of the lysozyme inhibitor Ivy (named IvyEt) identified in the pathogenic E. tarda strain TX01. IvyEt possesses the Ivy signature motif CKPHDC in the form of (82)CQPHNC(87) and contains several highly conserved residues, including a tryptophan (W55). For the purpose of virulence analysis, an isogenic TX01 mutant, TXivy, was created. TXivy bears an in-frame deletion of the ivyEt gene. A live infection study in a turbot (Scophthalmus maximus) model showed that, compared to TX01, TXivy exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, an impaired ability to replicate in host macrophages, and decreased resistance against the bactericidal effect of host serum. To facilitate functional analysis, recombinant IvyEt (rIvy) and three mutant proteins, i.e., rIvyW55A, rIvyC82S, and rIvyH85D, which bear Ala, Ser, and Asp substitutions at W55, C82, and H85, respectively, were prepared. In vitro studies showed that rIvy, rIvyW55A, and rIvyH85D were able to block the lytic effect of lysozyme on a Gram-positive bacterium, whereas rIvyC82S could not do so. Likewise, rIvy, but not rIvyC82S, inhibited the serum-facilitated killing effect of lysozyme on E. tarda. In vivo analysis showed that rIvy, but not rIvyC82S, restored the lost pathogenicity of TXivy and enhanced the infectivity of TX01. Together these results indicate that IvyEt is a lysozyme inhibitor and a virulence factor that depends on the conserved C82 for biological activity.
Collapse
Affiliation(s)
- Chong Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-hua Hu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Bo-guang Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, Michigan, USA
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
8
|
Abstract
Edwardsiella tarda, a Gram-negative bacterium, is a severe fish pathogen that can also infect humans. In this study, we identified, via in vivo-induced antigen technology, an E. tarda antigen, Eta1, and analyzed its function in a Japanese flounder (Paralichthys olivaceus) model. Eta1 is composed of 226 residues and shares homology with putative bacterial adhesins. Quantitative real-time reverse transcriptase (RT)-PCR analysis indicated that when cultured in vitro, eta1 expression was growth phase dependent and reached maximum at mid-logarithmic phase. During infection of flounder lymphocytes, eta1 expression was drastically increased at the early stage of infection. Compared to the wild type, the eta1-defective mutant, TXeta1, was unaffected in growth but exhibited attenuated overall virulence, reduced tissue dissemination and colonization capacity, and impaired ability to invade flounder lymphocytes and to block the immune response of host cells. The lost virulence of TXeta1 was restored when a functional eta1 gene was reintroduced into the strain. Western blot and immunodetection analyses showed that Eta1 is localized to the outer membrane and exposed on the surface of E. tarda and that recombinant Eta1 (rEta1) was able to interact with flounder lymphocytes. Consistent with these observations, antibody blocking of Eta1 inhibited E. tarda infection at the cellular level. Furthermore, when used as a subunit vaccine, rEta1 induced strong protective immunity in flounder against lethal E. tarda challenge. Taken together, these results indicate that Eta1 is an in vivo-induced antigen that mediates pathogen-host interaction and, as a result, is required for optimal bacterial infection.
Collapse
|