1
|
Soleimanzadeh A, Karvani N, Davoodi F, Molaie R, Raisi A. Efficacy of silver-doped Carbon dots in Chemical Castration: a rat model study. Sci Rep 2024; 14:24132. [PMID: 39406851 PMCID: PMC11480424 DOI: 10.1038/s41598-024-75177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
This study evaluates silver-doped carbon dots (AgCDs) as a novel agent for chemical castration using a rat model. Six groups of rats (five males and ten females each, except for the surgical group which had only males) were utilized to compare the effects of different concentrations of AgCDs. The groups included control, sham, and three experimental groups injected with 1.25, 50, and 200 µg/mL AgCDs, respectively, along with a surgical castration group. Testosterone levels, sperm parameters, fertility index, oxidative damage, histopathological parameters, and gene expression of P53, Bax, Bcl-2, caspase-3, AKT, and PI3K were analyzed. Results demonstrated that the high-dose AgCDs group significantly reduced testosterone levels, sperm concentration, and motility, resulting in a decreased fertility index. MDA and NO significantly increased, while CAT, SOD, GPx, and TAC significantly reduced in the chemically castrated groups. Histological and genes expression analysis also revealed apoptosis and testicular damage in the AgCDs groups, indicated by significant increases in P53, Bax, and Caspase-3 levels, and significant reductions in AKT, PI3K, and Bcl-2. Based on these findings, AgCDs could be considered a potent and efficient agent for chemical castration, offering a less invasive, cost-effective solution with potential applications for population control.
Collapse
Affiliation(s)
- Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Niki Karvani
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Farshid Davoodi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.
| | | | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
2
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Enhancement of cardiac angiogenesis in a myocardial infarction rat model using selenium alone and in combination with PTXF: the role of Akt/HIF-1α signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4677-4692. [PMID: 38112730 PMCID: PMC11166829 DOI: 10.1007/s00210-023-02904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Ischemic heart diseases such as myocardial infarction (MI) are a global health problem and a leading cause of mortality worldwide. Angiogenesis is an important approach for myocardial healing following ischemia. Thus, this study aimed to explore the potential cardiac angiogenic effects of selenium (Se), alone and in combination with the tumor necrosis factor-alpha inhibitor, pentoxifylline (PTXF), via Akt/HIF-1α signaling. MI was induced in rats using two subcutaneous doses of isoprenaline (ISP) at a 24-h interval (150 mg/kg). One week later, rats were orally given Se (150 µg/kg/day), PTXF (50 mg/kg/day), or Se/PTXF combination. ISP-induced myocardial damage was evident by increased HW/TL ratios, ST segment elevation, and increased serum levels of CK-MB, LDH, and troponin-I. ISP increased the cardiac levels of the lipid peroxidation marker MDA; the pro-inflammatory cytokines IL-6, IL-1β, and TNF-α; and the pro-apoptotic protein Bax and caspase-3. In contrast, the cardiac levels of the antioxidant markers GSH and SOD and the anti-apoptotic marker Bcl-2 were reduced. Furthermore, ISP markedly increased the cardiac levels of p-Akt and HIF-1α proteins and the cardiac gene expression of ANGPT-1, VEGF, and FGF-2. Treatment with Se both alone and in combination with PTXF ameliorated the ISP-induced myocardial damage and further increased cardiac angiogenesis via Akt/HIF-1α signaling. Se/PTXF combined therapy was more beneficial than individual treatments. Our study revealed for the first time the cardiac angiogenic effects of Se both alone and in combination with PTXF in myocardial infarction, suggesting that both may be promising candidates for clinical studies.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed A Shaheen
- Histology and Cell Biology Department, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Sally K Hammad
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Minas A, Mahmoudabadi S, Gamchi NS, Antoniassi MP, Alizadeh A, Bertolla RP. Testicular torsion in vivo models: Mechanisms and treatments. Andrology 2023; 11:1267-1285. [PMID: 36825607 DOI: 10.1111/andr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Testicular torsion is a condition in which a testis rotates around its longitudinal axis and twists the spermatic cord. This in turn results in a significant decrease in blood flow and perfusion of testicular tissue. During Testicular torsion, the testicular tissue is affected by ischemia, heat stress, hypoxia, and oxidative and nitrosative stress. The testicular torsion should be considered an emergency condition and surgical intervention (testicular detorsion ) as the sole treatment option in viable cases involves counter-rotation on twisted testes associated, when possible, to orchipexy, in order to avoid recurrence. Possible testicular detorsion side-effects occur due to reperfusion and endothelial cells injury, microcirculation disturbances, and intense germ cells loss. OBJECTIVES To discuss testicular torsion surgery-based methods, different time frames for testicular torsion induction, and the associated pathophysiology by emphasizing cellular and molecular events as well as different therapeutic agent applications for testicular torsion. MATERIALS AND METHODS We reviewed all original research and epidemiological papers related to testicular torsion condition. RESULTS Testicular torsion causes germ cell necrosis, arrested spermatogenesis, and diminished testosterone levels, with consequent infertility. Among different involved pathophysiological impacts, testicular torsion/detorsion-induced ischemia seems to play the key role by leading the tissue toward other series of events in testis. Numerous studies have used adjuvant antioxidants, calcium channel blockers, anti-inflammatory agents, or vasodilating agents in order to decrease these effects. DISCUSSION AND CONCLUSION To the best of our knowledge, no previously conducted study examined therapeutical agents' beneficial effects post clinical I/R condition in humans. Different agents targeting different pathophysiological conditions were used to ameliorate the ischemia/reperfusion-induced condition in animal models, however, none of the administrated agents were tested in human cases. Although considering testicular detorsion surgery is still the golden method to reverse the testicular torsion condition and the surgical approach is undeniable, the evaluated agents with beneficial effects, need to be investigated furthermore in clinical conditions. Thus, furthermore clinical studies and case reports are required to approve the animal models proposed agents' beneficial impacts.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Sina Mahmoudabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Shamsi Gamchi
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mariana Pereira Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| |
Collapse
|
4
|
Othman EM, Habib HA, Zahran ME, Amin A, Heeba GH. Mechanistic Protective Effect of Cilostazol in Cisplatin-Induced Testicular Damage via Regulation of Oxidative Stress and TNF-α/NF-κB/Caspase-3 Pathways. Int J Mol Sci 2023; 24:12651. [PMID: 37628836 PMCID: PMC10454637 DOI: 10.3390/ijms241612651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Despite being a potent anticancer drug, cisplatin has limited applicability due to its adverse effects, such as testicular damage. Consequently, reducing its toxicity becomes necessary. In this study, a selective phosphodiesterase-3 inhibitor, cilostazol, which is used to treat intermittent claudication, was examined for its ability to abrogate cisplatin-induced testicular toxicity. Its ameliorative effect was compared to that of two phosphodiesterase inhibitors, tadalafil and pentoxifylline. The study also focused on the possible mechanisms involved in the proposed protective effect. Cisplatin-treated rats showed a significant decrease in sperm number and motility, serum testosterone, and testicular glutathione levels, as well as a significant elevation in malondialdehyde, total nitrite levels, and the protein expression of tumor necrosis factor-alpha, nuclear factor-kappa β, and caspase-3. These outcomes were confirmed by marked testicular architecture deterioration. Contrary to this, cilostazol, in a dose-dependent manner, showed potential protection against testicular toxicity, reversed the disrupted testicular function, and improved histological alterations through rebalancing of oxidative stress, inflammation, and apoptosis. In addition, cilostazol exerted a more pronounced protective effect in comparison to tadalafil and pentoxifylline. In conclusion, cilostazol ameliorates cisplatin-induced testicular impairment through alteration of oxidative stress, inflammation, and apoptotic pathways, offering a promising treatment for cisplatin-induced testicular damage.
Collapse
Affiliation(s)
- Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Heba A. Habib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | | | - Amr Amin
- Biology Department, College of Science, UAE University, Al-Ain 15551, United Arab Emirates
| | - Gehan H. Heeba
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| |
Collapse
|
5
|
Moreira VM, Leite JMDS, Medeiros KDA, Assis KMAD, Borges JC, Santana LMB, Moreira LMCDC, Alves LP, Oliveira TKBD, Silveira JWDSD, Silva DTCD, Damasceno BPGDL. Pentoxifylline/Chitosan Films on Wound Healing: In Vitro/In Vivo Evaluation. Pharmaceutics 2023; 15:pharmaceutics15041122. [PMID: 37111607 PMCID: PMC10143649 DOI: 10.3390/pharmaceutics15041122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/05/2023] Open
Abstract
This study aimed to develop films of chitosan (CSF) associated with pentoxifylline (PTX) for healing cutaneous wounds. These films were prepared at two concentrations, F1 (2.0 mg/mL) and F2 (4.0 mg/mL), and the interactions between the materials, structural characteristics, in vitro release, and morphometric aspects of skin wounds in vivo were evaluated. The formation of the CSF film with acetic acid modifies the polymeric structure, and the PTX demonstrates interaction with the CSF, in a semi-crystalline structure, for all concentrations. The release for all films was proportional to the concentration, with two phases: a fast one of ≤2 h and a slow one of >2 h, releasing 82.72 and 88.46% of the drug after 72 h, being governed by the Fickian diffusion mechanism. The wounds of the mice demonstrate a reduction of up to 60% in the area on day 2 for F2 when compared to CSF, F1, and positive control, and this characteristic of faster healing speed for F2 continues until the ninth day with wound reduction of 85%, 82%, and 90% for CSF, F1, and F2, respectively. Therefore, the combination of CSF and PTX is effective in their formation and incorporation, demonstrating that a higher concentration of PTX accelerates skin-wound reduction.
Collapse
Affiliation(s)
- Vandiara Martins Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joandra Maísa da Silva Leite
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Kaline de Araújo Medeiros
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Karoll Moangella Andrade de Assis
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Joyce Cordeiro Borges
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lucas Matheus Barreto Santana
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Lívia Maria Coelho de Carvalho Moreira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Larissa Pereira Alves
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | | | - João Walter de Souza da Silveira
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Dayanne Tomaz Casimiro da Silva
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Graduate Program fo Pharmaceutical Science (PPGCF), State University of Paraíba (UEPB), Campina Grande 58429-500, PB, Brazil
- Laboratory of Development and Characterization of Pharmaceutical Products (LDCPF), Department of Pharmacy, UEPB, Campina Grande 58429-500, PB, Brazil
| |
Collapse
|
6
|
Elseweidy MM, Ali SI, Shaheen MA, Abdelghafour AM, Hammad SK. Vanillin and pentoxifylline ameliorate isoproterenol-induced myocardial injury in rats via the Akt/HIF-1α/VEGF signaling pathway. Food Funct 2023; 14:3067-3082. [PMID: 36917190 DOI: 10.1039/d2fo03570g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Myocardial infarction (MI) is a major health problem associated with high morbidity and mortality. Recently, angiogenesis has emerged as a novel therapeutic approach against ischemic diseases including MI. Therefore, we aimed to investigate the potential angiogenic effects of vanillin (Van) both alone and in combination with pentoxifylline (PTX), and to examine the molecular mechanisms through which Van and PTX may ameliorate cardiac injury induced in rats including their effects on oxidative stress, inflammation and apoptosis which play a key role in MI pathogenesis. MI was induced in rats using isoproterenol (ISO) (150 mg kg-1, SC, twice at a 24 h interval). Then, rats were treated orally with Van (150 mg kg-1 day-1), PTX (50 mg kg-1 day-1) or Van + PTX combination. ISO-induced cardiac injury was characterized by cardiac hypertrophy, ST-segment elevation and elevated serum levels of troponin-I, creatine kinase-MB and lactate dehydrogenase. Cardiac levels of the antioxidant markers GSH and SOD and the antiapoptotic protein Bcl-2 were decreased. On the other hand, cardiac levels of the oxidative stress marker malonaldehyde, the inflammatory cytokines TNF-α, IL-6 and IL-1β, the proapoptotic protein Bax, and caspase-3 were increased. Moreover, the cardiac levels of p-Akt and HIF-1α and the mRNA expression levels of the angiogenic genes VEGF, FGF-2 and ANGPT-1 were increased. Treatment with either Van or PTX ameliorated ISO-induced changes and further upregulated Akt/HIF-1α/VEGF signaling. Furthermore, Van + PTX combination was more effective than monotherapy. These findings suggest a novel therapeutic potential of Van and PTX in ameliorating MI through enhancing cardiac angiogenesis and modulating oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Mohamed M Elseweidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sousou I Ali
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mohamed A Shaheen
- Department of Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Asmaa M Abdelghafour
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Sally K Hammad
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
7
|
Role of PI3K/Akt-Mediated Nrf2/HO-1 Signaling Pathway in Resveratrol Alleviation of Zearalenone-Induced Oxidative Stress and Apoptosis in TM4 Cells. Toxins (Basel) 2022; 14:toxins14110733. [PMID: 36355983 PMCID: PMC9694162 DOI: 10.3390/toxins14110733] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 01/26/2023] Open
Abstract
Zearalenone (ZEA) is a common mycotoxin that induces oxidative stress (OS) and affects the male reproductive system in animals. Resveratrol (RSV) has good antioxidant activity and can activate nuclear factor erythroid 2-related factor (Nrf2) to protect cells through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. The objective of this study was to investigate the protective effect and the mechanism of RSV on OS and apoptosis in TM4 cells induced by ZEA. Prior to being exposed to ZEA, TM4 cells were pretreated with RSV or the PI3K/Akt inhibitor LY294002. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assays. Flow cytometry was used to determine the level of apoptosis and intracellular reactive oxygen species (ROS). The expression of poly ADP-ribose polymerase (PARP), caspase-3, BCL2-associated X (Bax)/B-cell lymphoma-2 (Bcl-2), and PI3K/Akt-mediated Nrf2/heme oxygenase 1 (HO-1) signaling pathway-related proteins was evaluated by Western blotting. Nrf2 siRNA transfection and LY294002 treatment were used to investigate the role of the Nrf2/HO-1 and PI3K/Akt signaling pathways in RSV alleviation of ZEA-induced OS. The results showed that pretreatment with RSV significantly reduced the expression of apoptosis-related proteins and increased cell viability. Catalase (CAT) activity and glutathione (GSH) levels were also increased, whereas malondialdehyde (MDA) and ROS levels decreased (p < 0.05). RSV also upregulated Akt phosphorylation, Nrf2 nuclear translocation, and HO-1 expression under conditions of OS (p < 0.05). Transfection with Nrf2 siRNA abolished the protective effects of RSV against ZEA-induced cytotoxicity (p < 0.05), ROS accumulation (p < 0.05), and apoptosis (p < 0.05). LY294002 completely blocked the RSV-mediated increase in Nrf2 nuclear translocation (p < 0.05), HO-1 expression (p < 0.05), and cytoprotective activity (p < 0.05). Collectively, the above findings indicate that RSV can protect against ZEA-induced OS and apoptosis in TM4 cells by PI3K/Akt-mediated activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
8
|
Sadeghiani G, Khanehzad M, Sadighi Gilani MA, Amidi F, Malekzadeh M, Rastegar T. Evaluation of Nrf2/ARE Signaling Pathway in the Presence of Pentoxifylline as a Cryoprotectant in Mouse Spermatogonial Stem Cells. Biopreserv Biobank 2022. [PMID: 36006661 DOI: 10.1089/bio.2021.0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The process of spermatogonial stem cell cryopreservation (SSCs) in young male cancer survivors is associated with increased reactive oxygen species (ROS), DNA fragmentation, apoptosis, decreased cell activity, and finally reduced fertility of SSCs. Therefore, it is necessary to add cryoprotectants to the freezing medium to minimize the injuries associated with cryopreservation. In addition, the Nrf2/ARE pathway is a main cellular pathway that regulates the antioxidant defense system. The purpose of this study was to evaluate the cryoprotective effect of pentoxifylline (PTX) on SSCs after freezing-thawing through the Nrf2/ARE pathway. SSCs extracted from neonatal mice testes were isolated and their purity was measured by flow cytometry with GDNF family receptor alpha-1 (GFRα1) and inhibitor of differentiation 4 (ID4). After culturing, the cells were frozen in different groups for 1 month. After freezing-thawing, cell viability, colonization rate, and intracellular ROS, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were evaluated. Quantitative real-time polymerase chain reaction and western blotting were done to assess the expression levels of Nrf2, Keap-1, PI3K, and AKT genes and proteins. The survival and colonization rates of SSCs, SOD, and CAT levels, and Nrf2, PI3K, and AKT expression levels were significantly higher in the PTX group compared with the other cryopreservation groups. The Keap-1 expression level and the ROS and MDA production levels also decreased significantly in the PTX group (p-value <0.05). According to our findings, PTX can activate the antioxidant defense through the Nrf2/ARE signaling pathway; therefore, it could be a suitable cryoprotectant candidate for freezing and long-term storage of SSCs in the clinical setting.
Collapse
Affiliation(s)
- Ghazaleh Sadeghiani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Khanehzad
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Ali Sadighi Gilani
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for reproductive Biomedicine, ACECR, Tehran, Iran
| | - Fardin Amidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Gao Y, Wang C, Wang K, He C, Hu K, Liang M. The effects and molecular mechanism of heat stress on spermatogenesis and the mitigation measures. Syst Biol Reprod Med 2022; 68:331-347. [PMID: 35722894 DOI: 10.1080/19396368.2022.2074325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Under normal conditions, to achieve optimal spermatogenesis, the temperature of the testes should be 2-6 °C lower than body temperature. Cryptorchidism is one of the common pathogenic factors of male infertility. The increase of testicular temperature in male cryptorchidism patients leads to the disorder of body regulation and balance, induces the oxidative stress response of germ cells, destroys the integrity of sperm DNA, yields morphologically abnormal sperm, and leads to excessive apoptosis of germ cells. These physiological changes in the body can reduce sperm fertility and lead to male infertility. This paper describes the factors causing testicular heat stress, including lifestyle and behavioral factors, occupational and environmental factors (external factors), and clinical factors caused by pathological conditions (internal factors). Studies have shown that wearing tight pants or an inappropriate posture when sitting for a long time in daily life, and an increase in ambient temperature caused by different seasons or in different areas, can cause an increase in testicular temperature, induces testicular oxidative stress response, and reduce male fertility. The occurrence of cryptorchidism causes pathological changes within the testis and sperm, such as increased germ cell apoptosis, DNA damage in sperm cells, changes in gene expression, increase in chromosome aneuploidy, and changes in Na+/K+-ATPase activity, etc. At the end of the article, we list some substances that can relieve oxidative stress in tissues, such as trigonelline, melatonin, R. apetalus, and angelica powder. These substances can protect testicular tissue and relieve the damage caused by excessive oxidative stress.
Collapse
Affiliation(s)
- Yuanyuan Gao
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chen Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Kaixian Wang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, People's Republic of China
| |
Collapse
|
11
|
Salidroside Exerts Beneficial Effect on Testicular Ischemia-Reperfusion Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8069152. [PMID: 35602096 PMCID: PMC9117026 DOI: 10.1155/2022/8069152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Testicular torsion-detorsion results in testicular ischemia-reperfusion injury, which is associated with overgeneration of reactive oxygen species. Salidroside, a major bioactive ingredient extracted from Rhodiola rosea, has strong antioxidant activity. The purpose of this study was to examine the effect of salidroside on testicular ischemia-reperfusion injury. Sixty rats were randomly separated into 3 experimental groups: group A = sham-operated control; group B = testicular ischemia-reperfusion; and group C = testicular ischemia-reperfusion treated with salidroside. The rats in the sham-operated control group received all surgical procedures except testicular torsion-detorsion. The testicular ischemia-reperfusion group underwent 2 hours of left testicular torsion followed by detorsion. The rats in the salidroside-treated group received the same surgical procedure as in testicular ischemia-reperfusion group, but salidroside was injected intraperitoneally at reperfusion. Testicular malondialdehyde content (a reliable index of reactive oxygen species) and protein expression of superoxide dismutase and catalase which are primary antioxidant enzymes in testes were measured at 4 hours after reperfusion. Testicular spermatogenesis was evaluated at 3 months after reperfusion. The malondialdehyde content increased significantly, while superoxide dismutase and catalase protein expression and testicular spermatogenesis reduced significantly in ipsilateral testes of testicular ischemia-reperfusion group, as compared with sham-operated control group. Therapy with salidroside significantly reduced malondialdehyde content and significantly enhanced superoxide dismutase and catalase protein expression and spermatogenesis in ipsilateral testes, as compared with testicular ischemia-reperfusion group. The present findings indicate that treatment with salidroside ameliorates testicular ischemia-reperfusion injury by reducing reactive oxygen species level by upregulating superoxide dismutase and catalase protein expression.
Collapse
|
12
|
Seo MH, Kim DW, Kim YS, Lee SK. Pentoxifylline-induced protein expression change in RAW 264.7 cells as determined by immunoprecipitation-based high performance liquid chromatography. PLoS One 2022; 17:e0261797. [PMID: 35333871 PMCID: PMC8956197 DOI: 10.1371/journal.pone.0261797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Although pentoxifylline (PTX) was identified as a competitive non-selective phosphodiesterase inhibitor, its pharmacological effect has not been clearly elucidated. The present study explored the effect of low dose 10 μg/mL PTX (therapeutic dose) compared to high dose 300 μg/mL PTX (experimental dose) in RAW 264.7 cells through immunoprecipitation-based high performance liquid chromatography (IP-HPLC), immunohistochemistry, and western blot. 10 μg/mL PTX increased the expression of proliferation (Ki-67, PCNA, cyclin D2, cdc25A), epigenetic modification (KDM4D, PCAF, HMGB1), protein translation (DOHH, DHPS, eIF5A1), RAS signaling (KRAS, pAKT1/2/3, PI3K), NFkB signaling (NFkB, GADD45, p38), protection (HSP70, SOD1, GSTO1/2), survival (pAKT1/2/3, SP1, sirtuin 6), neuromuscular differentiation (NSEγ, myosin-1a, desmin), osteoblastic differentiation (BMP2, RUNX2, osterix), acute inflammation (TNFα, IL-1, CXCR4), innate immunity (β-defensin 1, lactoferrin, TLR-3, -4), cell-mediated immunity (CD4, CD8, CD80), while decreased the expression of ER stress (eIF2α, eIF2AK3, ATF6α), fibrosis (FGF2, CTGF, collagen 3A1), and chronic inflammation (CD68, MMP-2, -3, COX2) versus the untreated controls. The activation of proliferation by 10 μg/mL PTX was also supported by the increase of cMyc-MAX heterodimer and β-catenin-TCF1 complex in double IP-HPLC. 10 μg/mL PTX enhanced FAS-mediated apoptosis but diminished p53-mediated apoptosis, and downregulated many angiogenesis proteins (angiogenin, VEGF-A, and FLT4), but upregulated HIF1α, VEGFR2, and CMG2 reactively. Whereas, 300 μg/mL PTX consistently decreased proliferation, epigenetic modification, RAS and NFkB signaling, neuromuscular and osteoblastic differentiation, but increased apoptosis, ER stress, and fibrosis compared to 10 μg/mL PTX. These data suggest PTX has different biological effect on RWA 264.7 cells depending on the concentration of 10 μg/mL and 300 μg/mL PTX. The low dose 10 μg/mL PTX enhanced RAS/NFkB signaling, proliferation, differentiation, and inflammation, particularly, it stimulated neuromuscular and osteoblastic differentiation, innate immunity, and cell-mediated immunity, but attenuated ER stress, fibrosis, angiogenesis, and chronic inflammation, while the high dose 300 μg/mL PTX was found to alleviate the 10 μg/mL PTX-induced biological effects, resulted in the suppression of RAS/NFkB signaling, proliferation, neuromuscular and osteoblastic differentiation, and inflammation.
Collapse
Affiliation(s)
- Mi Hyun Seo
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Seoul National University, Seoul, South Korea
| | - Dae Won Kim
- Department of Oral Biochemistry, College of Dentistry, Gangneung-Wonju National University, Gangneung, Korea
| | - Yeon Sook Kim
- Department of Dental Hygiene, College of Health & Medical Sciences, Cheongju University, Cheongju, South Korea
| | - Suk Keun Lee
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, South Korea
- Institute of Hydrogen Magnetic Reaction Gene Regulation, Dae Jeon, South Korea
- * E-mail:
| |
Collapse
|
13
|
Lu Y, Su H, Zhang J, Wang Y, Li H. Treatment of Poor Sperm Quality and Erectile Dysfunction With Oral Pentoxifylline: A Systematic Review. Front Pharmacol 2022; 12:789787. [PMID: 35095501 PMCID: PMC8790020 DOI: 10.3389/fphar.2021.789787] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Pentoxifylline (PTX) is a member of methylxanthine chemicals and a type of non-selective phosphodiesterase-5 inhibitors, which has been used in male infertility treatment to improve sperm quality and erectile dysfunction (ED) treatment. Mutually tight associations existed between ED and male infertility. Using PTX might kill two birds with one stone by improving sperm quality and erectile function in infertile men with ED. Methods: PubMed, Cochrane Library, EMBASE, and Web of Science were searched by October 2021. Based on available evidence from observational studies and randomized-controlled trials (RCTs), we conducted a systematic review to summarize the efficacy and safety of PTX in treating ED and male infertility. The protocol of the article was registered and updated in PROSPERO (CRD42021291396). Results: From 202 records, eight studies (7 RCTs) evaluating the role of PTX in ED and three studies (2 RCTs) assessing the efficacy of PTX in male infertility were included in the systematic review. Three studies (100.00%) and two studies (100.00%) reported the beneficial role of PTX in improving sperm progressive motility and normal sperm morphology rate, respectively. In contrast, only one study (33.33%) indicated the favorable role of PTX in enhancing sperm concentration. As for ED, three (60.00%) studies supported the treatment role of PTX alone in ED, and two studies (66.67%) favored the combination use of PTX and selective PDE5Is compared with selective PDE5Is alone. Safety analysis showed that PTX was a well-tolerated drug in ED and male infertility treatment. Conclusion: Given the association between ED and male infertility and satisfying findings from available evidence, PTX administration for the simultaneous treatment of poor sperm quality and mild ED in infertile men will highly enhance the treatment compliance. However, the finding should be treated carefully until validated by further studies.
Collapse
Affiliation(s)
- Yi Lu
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Su
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianzhong Zhang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yutao Wang
- Department of Urology, China Medical University, The First Hospital of China Medical University, Shenyang, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Bašković M, Ježek D. Letter to the Editor re 'Effects of hypothermia and pentoxifylline on the adnexal torsion/detorsion injuries in a rat testis model'. Andrologia 2021; 54:e14314. [PMID: 34855259 DOI: 10.1111/and.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Marko Bašković
- Department of Pediatric Urology, Children's Hospital Zagreb, Zagreb, Croatia
| | - Davor Ježek
- School of Medicine, Department of Histology and Embryology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|