1
|
Abellanas P, de Andrades D, Alcántara AR, de Lourdes Teixeira de Moraes Polizeli M, Rocha-Martin J, Fernandez-Lafuente R. Optimizing the activation of agarose beads with divinyl sulfone for enzyme immobilization and stabilization. Int J Biol Macromol 2024; 282:136812. [PMID: 39490861 DOI: 10.1016/j.ijbiomac.2024.136812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/20/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The focus of the present work is to find the optimal conditions for the activation of agarose beads with divinyl sulfone (DVS). The reactivity of the vinyl sulfone groups in the support was checked by the support capacity to react with ethylamine; via elemental analysis. In addition, trypsin was used as a model enzyme to test the immobilization and stabilization capabilities of the different supports. The higher the pH, the more vinyl sulfone groups are incorporated into the support, but lower reactivity versus ethylamine is observed. Too long activation times led to similar results. A N/S ratio of 1 means that all vinyl sulfone groups were reactive, and it was always lower than tis figure. The N in the support was 50 % of the amount observed for glyoxyl supports activated with ethylenediamine, suggesting the VS polymerization may be a likely explanation for this result. The higher N/S ratio in the support (modified with ethylamine), the higher the obtained stabilization, very likely by the lower polymerization of the vinyl sulfone on the support. We propose 360 mM divinyl sulfone, at pH 11.5 and 2 h as optimal conditions to reach the highest enzyme stabilization by immobilization in this support.
Collapse
Affiliation(s)
- Pedro Abellanas
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid, 28040, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid, 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
2
|
Li C, Zhu W, Ma Y, Zheng H, Zhang X, Li D, Pu Z. A flexible glucose biosensor modified by reduced-swelling and conductive zwitterionic hydrogel enzyme membrane. Anal Bioanal Chem 2024; 416:4849-4860. [PMID: 39008068 DOI: 10.1007/s00216-024-05429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
This paper reports a flexible glucose biosensor which is modified by a reduced-swelling and conductive zwitterionic hydrogel enzyme membrane that contains two forms of chemical cross-links. One chemical cross-linking is induced by thermal initiators and forms the basal network of the hydrogel. Another cross-linking is achieved by the coordination interactions between the multivalent metal ion Al3+ and anionic group -COO- of zwitterionic poly-carboxy betaine (pCBMA), which significantly increase the cross-linking density of the zwitterionic hydrogel, improving the reduced-swelling property and reducing the pore size. The better reduced-swelling property and reduced diameters of pores within the zwitterionic hydrogel make less glucose oxidase (GOx) leakage, thus significantly improving the enzyme membrane's service life. By introducing the Al3+ and Cl-, the conductivity of the zwitterionic hydrogel is enhanced approximately 10.4-fold. According to the enhanced conductivity, the reduced-swelling property, and the high GOx loading capacity of the zwitterionic hydrogel, the sensitivity of the biosensor with GOx/pCBMA-Al3+ is significantly improved by 5 times and has a long service life. Finally, the proposed GOx/pCBMA-Al3+ biosensor was applied in non-invasive blood glucose detection on the human body, verifying the capability in practice.
Collapse
Affiliation(s)
- Chengcheng Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Wangwang Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxiao Ma
- School of Future Technologies, Tianjin University, Tianjin, 300072, China
| | - Hao Zheng
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Dachao Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China.
| |
Collapse
|
3
|
Gonçalves MS, Tavares IMDC, Sampaio ICF, dos Santos MMO, Ambrósio HLBS, Araújo SC, Veloso CM, Neta JLV, Mendes AA, dos Anjos PNM, Ruiz HA, Franco M. New biocatalyst produced from fermented biomass: improvement of adsorptive characteristics and application in aroma synthesis. 3 Biotech 2024; 14:189. [PMID: 39091407 PMCID: PMC11289188 DOI: 10.1007/s13205-024-04029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
This study presents a novel approach to producing activated carbon from agro-industrial residues, specifically cocoa fruit peel, using solid-state fermentation (SSF) with Aspergillus niger. The process effectively degrades lignin, a major impediment in traditional activated carbon production, resulting in a high-quality carbon material. This carbon was successfully utilized for enzyme immobilization and aroma synthesis, showcasing its potential as a versatile biocatalyst. The study meticulously evaluated the physical and chemical attributes of activated carbon derived from fermented cocoa peel, alongside the immobilized enzymes. Employing a suite of analytical techniques-electrophoresis, FTIR, XRD, and TG/DTG the research revealed that fermentation yields a porous material with an expansive surface area of 1107.87 m2/g. This material proves to be an excellent medium for lipase immobilization. The biocatalyst fashioned from the fermented biomass exhibited a notable increase in protein content (13% w/w), hydrolytic activity (15% w/w), and specific activity (29% w/w), underscoring the efficacy of the fermentation process. The significant outcome of this research is the development of a sustainable method for activated carbon production that not only overcomes the limitations posed by lignin but also enhances enzyme immobilization for industrial applications. The study's findings have important implications for the agro-industrial sector, promoting a circular economy and advancing sustainable biotechnological processes.
Collapse
Affiliation(s)
- Márcia Soares Gonçalves
- Department of Exact and Natural Sciences, State University of Southwest, Itapetinga, 45700-000 Brazil
| | | | - Igor Carvalho Fontes Sampaio
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences (DCEX), State University of Santa Cruz (UESC), Ilhéus, Bahia 45662-900 Brazil
| | - Marta Maria Oliveira dos Santos
- Post-Graduation Institute of Chemistry and Biotechnology, Federal University of Alagoas, A. C. Simões Campus, Maceió, Alagoas 57072-900 Brazil
| | - Helen Luiza Brandão Silva Ambrósio
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences (DCEX), State University of Santa Cruz (UESC), Ilhéus, Bahia 45662-900 Brazil
| | - Sabryna Couto Araújo
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences (DCEX), State University of Santa Cruz (UESC), Ilhéus, Bahia 45662-900 Brazil
| | | | - Jaci Lima Vilanova Neta
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences (DCEX), State University of Santa Cruz (UESC), Ilhéus, Bahia 45662-900 Brazil
| | | | - Paulo Neilson Marques dos Anjos
- Laboratory of Research and Innovation of Advanced Materials, Department of Exact Sciences, Santa Cruz State University, Ilhéus, 45654-370 Brazil
| | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Marcelo Franco
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences (DCEX), State University of Santa Cruz (UESC), Ilhéus, Bahia 45662-900 Brazil
| |
Collapse
|
4
|
Wang Q, Xiong J, Xu H, Sun W, Pan X, Cui S, Lv S, Zhang Y. Enhanced Enzymatic Performance of Immobilized Pseudomonas fluorescens Lipase on ZIF-8@ZIF-67 and Its Application to the Synthesis of Neryl Acetate with Transesterification Reaction. Molecules 2024; 29:2922. [PMID: 38930986 PMCID: PMC11207022 DOI: 10.3390/molecules29122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, hybrid skeleton material ZIF-8@ZIF-67 was synthesized by the epitaxial growth method and then was utilized as a carrier for encapsulating Pseudomonas fluorescens lipase (PFL) through the co-precipitation method, resulting in the preparation of immobilized lipase (PFL@ZIF-8@ZIF-67). Subsequently, it was further treated with glutaraldehyde to improve protein immobilization yield. Under optimal immobilization conditions, the specific hydrolytic activity of PFL@ZIF-8@ZIF-67 was 20.4 times higher than that of the free PFL. The prepared biocatalyst was characterized and analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). Additionally, the thermal stability of PFL@ZIF-8@ZIF-67 at 50 °C was significantly improved compared to the free PFL. After 7 weeks at room temperature, PFL@ZIF-8@ZIF-67 retained 78% of the transesterification activity, while the free enzyme was only 29%. Finally, PFL@ZIF-8@ZIF-67 was applied to the neryl acetate preparation in a solvent-free system, and the yield of neryl acetate reached 99% after 3 h of reaction. After 10 repetitions, the yields of neryl acetate catalyzed by PFL@ZIF-8@ZIF-67 and the free PFL were 80% and 43%, respectively.
Collapse
Affiliation(s)
| | - Jian Xiong
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | | | | | | | | | | | | |
Collapse
|
5
|
de Andrades D, Abellanas P, Carballares D, Alcantara AR, Polizeli MDLTDM, Rocha-Martin J, Fernandez-Lafuente R. Adsorption features of reduced aminated supports modified with glutaraldehyde: Understanding the heterofunctional features of these supports. Int J Biol Macromol 2024; 263:130403. [PMID: 38417754 DOI: 10.1016/j.ijbiomac.2024.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Immobilization of enzymes on aminated supports using the glutaraldehyde chemistry may involve three different interactions, cationic, hydrophobic, and covalent interactions. To try to understand the impact this heterofunctionality, we study the physical adsorption of the beta-galactosidase from Aspergillus niger, on aminated supports (MANAE) and aminated supports with one (MANAE-GLU) or two molecules of glutaraldehyde (MANAE-GLU-GLU). To eliminate the chemical reactivity of the glutaraldehyde, the supports were reduced using sodium borohydride. After enzyme adsorption, the release of the enzyme from the supports using different NaCl concentrations, Triton X100, ionic detergents (SDS and CTAB), or different temperatures (4 °C to 55 °C) was studied. Using MANAE support, at 0.3 M NaCl almost all the immobilized enzyme was released. Using MANAE-GLU, 0.3 M, and 0.6 M NaCl similar results were obtained. However, incubation at 1 M or 2 M NaCl, many enzyme molecules were not released from the support. For the MANAE-GLU-GLU support, none of the tested concentrations of NaCl was sufficient to release all enzyme bound to the support. Only using high temperatures, 0.6 M NaCl, and 1 % CTAB or SDS, could the totality of the proteins be released from the support. The results shown in this paper confirm the heterofunctional character of aminated supports modified with glutaraldehyde.
Collapse
Affiliation(s)
- Diandra de Andrades
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Pedro Abellanas
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain
| | - Diego Carballares
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Andres R Alcantara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid 28040, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
6
|
Li J, Shi X, Qin X, Liu M, Wang Q, Zhong J. Improved lipase performance by covalent immobilization of Candida antarctica lipase B on amino acid modified microcrystalline cellulose as green renewable support. Colloids Surf B Biointerfaces 2024; 235:113764. [PMID: 38301428 DOI: 10.1016/j.colsurfb.2024.113764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Development of immobilized lipase with excellent catalytic performance and low cost is the major challenge for large-scale industrial applications. In this study, green renewable microcrystalline cellulose (MCC) that was hydrophobically modified with D-alanine (Ala) or L-lysine (Lys) was used for immobilizing Candida antarctica lipase B (CALB). The improved catalytic properties were investigated by experimental and computational methods. CALB immobilized on MCC-Ala with higher hydrophobicity showed better catalytic activity than CALB@MCC-Lys because the increased flexibility of the lid region of CALB@MCC-Ala favored the formation of open conformation. Additionally, the low root mean square deviation and the high β-sheet and α-helix contents of CALB@MCC-Ala indicated that the structure became more stable, leading to a significantly enhanced stability (54.80% and 90.90% relative activity at 70 °C and pH 9.0, respectively) and good reusability (48.92% activity after 5 cycles). This study provides a promising avenue to develop immobilized lipase with high catalytic properties for industry applications.
Collapse
Affiliation(s)
- Jingwen Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xue Shi
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Min Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Qiang Wang
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jinfeng Zhong
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
7
|
Zhu F, Hu S, Zhao W, Mei L. A Novel Method for γ-Aminobutyric Acid Biosynthesis Using Glutamate Decarboxylase Entrapped in Polyvinyl Alcohol-Sodium Alginate Capsules. Molecules 2023; 28:6844. [PMID: 37836687 PMCID: PMC10574615 DOI: 10.3390/molecules28196844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
γ-aminobutyric acid (GABA) has essential physiological functions in the human body. A novel method using glutamate decarboxylase (GAD) entrapped in polyvinyl alcohol (PVA)-sodium alginate (SA) capsules provides a green biological strategy for GABA synthesis. In this investigation, the stability range of immobilized GAD was effectively broadened, and immobilized GAD could be repeatedly used as a batch and fixed-bed column catalyst. The immobilized enzymes were stable and retained 89% of their activity in a pH range of 4.0-5.6, while there was an approximately 50% decrease in free GAD activity in the pH range of 4.8 ± 0.4. The immobilized GAD affinity to the substrate improved, and this was evidenced by the apparent decrease in Km to 13.3 mmol/L from the 30.9 mmol/L for free GAD. The immobilized GAD retained >90.6% activity after eight cycles and a near-100% enzyme activity retention after 120 h of a continuous fixed-bed column catalyst operation. This study has thus presented an effective PVA-SA-GAD immobilization method that could be used to continuously scale-up GABA biosynthesis.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China
| | - Lehe Mei
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310058, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| |
Collapse
|
8
|
Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM. Immobilization of Hyperthermostable Carboxylesterase EstD9 from Anoxybacillus geothermalis D9 onto Polymer Material and Its Physicochemical Properties. Polymers (Basel) 2023; 15:polym15061361. [PMID: 36987142 PMCID: PMC10056866 DOI: 10.3390/polym15061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
Collapse
Affiliation(s)
- Ummie Umaiera Mohd Johan
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
9
|
Green Synthesis of Spirooxindoles via Lipase-Catalyzed One-Pot Tandem Reaction in Aqueous Media. Catalysts 2023. [DOI: 10.3390/catal13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of non-natural enzymatic catalysis is important for multicomponent tandem organic transformations. However, the delicate acting environments of biological enzymes still present some challenges in the synthesis of spirooxindole skeleton via enzymatic catalysis. To address these issues, a lipase-catalyzed method was developed for the synthesis of spirooxindole frameworks. Using easily available isatins, cycloketones, and malononitriles as substrates, mild reaction conditions, and a reasonable reaction time, moderate to good yields (67–92%) and excellent functional group tolerance were accomplished via this protocol. The related mechanism explanation is also speculated in this paper.
Collapse
|
10
|
Co-Enzymes with Dissimilar Stabilities: A Discussion of the Likely Biocatalyst Performance Problems and Some Potential Solutions. Catalysts 2022. [DOI: 10.3390/catal12121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enzymes have several excellent catalytic features, and the last few years have seen a revolution in biocatalysis, which has grown from using one enzyme to using multiple enzymes in cascade reactions, where the product of one enzyme reaction is the substrate for the subsequent one. However, enzyme stability remains an issue despite the many benefits of using enzymes in a catalytic system. When enzymes are exposed to harsh process conditions, deactivation occurs, which changes the activity of the enzyme, leading to an increase in reaction time to achieve a given conversion. Immobilization is a well-known strategy to improve many enzyme properties, if the immobilization is properly designed and controlled. Enzyme co-immobilization is a further step in the complexity of preparing a biocatalyst, whereby two or more enzymes are immobilized on the same particle or support. One crucial problem when designing and using co-immobilized enzymes is the possibility of using enzymes with very different stabilities. This paper discusses different scenarios using two co-immobilized enzymes of the same or differing stability. The effect on operational performance is shown via simple simulations using Michaelis–Menten equations to describe kinetics integrated with a deactivation term. Finally, some strategies for overcoming some of these problems are discussed.
Collapse
|
11
|
Biosynthesis of alkanes/alkenes from fatty acids or derivatives (triacylglycerols or fatty aldehydes). Biotechnol Adv 2022; 61:108045. [DOI: 10.1016/j.biotechadv.2022.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/27/2022]
|
12
|
Xu Y, Li F, Ma J, Li J, Xie H, Wang C, Chen P, Wang L. Lipase-Catalyzed Phospha-Michael Addition Reactions under Mild Conditions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227798. [PMID: 36431898 PMCID: PMC9698776 DOI: 10.3390/molecules27227798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Organophosphorus compounds are the core structure of many active natural products. The synthesis of these compounds is generally achieved by metal catalysis requiring specifically functionalized substrates or harsh conditions. Herein, we disclose the phospha-Michael addition reaction of biphenyphosphine oxide with various substituted β-nitrostyrenes or benzylidene malononitriles. This biocatalytic strategy provides a direct route for the synthesis of C-P bonds with good functional group compatibility and simple and practical operation. Under the optimal conditions (styrene (0.5 mmol), biphenyphosphine oxide (0.5 mmol), Novozym 435 (300 U), and EtOH (1 mL)), lipase leads to the formation of organophosphorus compounds in yields up to 94% at room temperature. Furthermore, we confirm the role of the catalytic triad of lipase in this phospha-Michael addition reaction. This new biocatalytic system will have broad applications in organic synthesis.
Collapse
Affiliation(s)
- Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jinglin Ma
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Jiapeng Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130023, China
| | - Peng Chen
- The Second Hospital of Jilin University Changchun, Jilin University, Changchun 130041, China
- Correspondence: (P.C.); (L.W.)
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, China
- Correspondence: (P.C.); (L.W.)
| |
Collapse
|
13
|
Carballares D, Fernandez-Lafuente R, Rocha-Martin J. Immobilization-stabilization of the dimeric D-amino acid oxidase from porcine kidney. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Godoy CA, Pardo-Tamayo JS, Barbosa O. Microbial Lipases and Their Potential in the Production of Pharmaceutical Building Blocks. Int J Mol Sci 2022; 23:9933. [PMID: 36077332 PMCID: PMC9456414 DOI: 10.3390/ijms23179933] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Processes involving lipases in obtaining active pharmaceutical ingredients (APIs) are crucial to increase the sustainability of the industry. Despite their lower production cost, microbial lipases are striking for their versatile catalyzing reactions beyond their physiological role. In the context of taking advantage of microbial lipases in reactions for the synthesis of API building blocks, this review focuses on: (i) the structural origins of the catalytic properties of microbial lipases, including the results of techniques such as single particle monitoring (SPT) and the description of its selectivity beyond the Kazlauskas rule as the "Mirror-Image Packing" or the "Key Region(s) rule influencing enantioselectivity" (KRIE); (ii) immobilization methods given the conferred operative advantages in industrial applications and their modulating capacity of lipase properties; and (iii) a comprehensive description of microbial lipases use as a conventional or promiscuous catalyst in key reactions in the organic synthesis (Knoevenagel condensation, Morita-Baylis-Hillman (MBH) reactions, Markovnikov additions, Baeyer-Villiger oxidation, racemization, among others). Finally, this review will also focus on a research perspective necessary to increase microbial lipases application development towards a greener industry.
Collapse
Affiliation(s)
- César A. Godoy
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Juan S. Pardo-Tamayo
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química, Universidad del Valle, Cali 76001, Colombia
| | - Oveimar Barbosa
- Grupo de Investigación de Materiales Porosos (GIMPOAT), Departamento de Química, Universidad del Tolima, Ibague 730001, Colombia
| |
Collapse
|
15
|
Morellon-Sterling R, Bolivar JM, Fernandez-Lafuente R. Switch off/switch on of a cysteinyl protease as a way to preserve the active catalytic group by modification with a reversible covalent thiol modifier: Immobilization of ficin on vinyl-sulfone activated supports. Int J Biol Macromol 2022; 220:1155-1162. [PMID: 36037909 DOI: 10.1016/j.ijbiomac.2022.08.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
The immobilization of ficin (a cysteinyl proteases) on vinyl sulfone agarose produced its almost full inactivation. It was observed that the incubation of the free and immobilized enzyme in β-mercaptoethanol produced a 20 % of enzyme activity recovery, suggesting that the inactivation due to the immobilization could be a consequence of the modification of the catalytic Cys. To prevent the enzyme inactivation during the immobilization, switching off of ficin via Cys reaction with dipyridyl-disulfide was implemented, giving a reversible disulfide bond that produced a fully inactive enzyme. The switch on of ficin activity was implemented by incubation in 1 M β-mercaptoethanol. Using this strategy to immobilize the enzyme on vinyl sulfone agarose beads, the expressed activity of the immobilized ficin could be boosted up to 80 %. The immobilized enzyme presented a thermal stabilization similar to that obtained using ficin-glyoxyl-agarose beads. This procedure may be extended to many enzymes containing critical Cys, to permit their immobilization or chemical modification.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Juan M Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
16
|
Bolivar JM, Woodley JM, Fernandez-Lafuente R. Is enzyme immobilization a mature discipline? Some critical considerations to capitalize on the benefits of immobilization. Chem Soc Rev 2022; 51:6251-6290. [PMID: 35838107 DOI: 10.1039/d2cs00083k] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzyme immobilization has been developing since the 1960s and although many industrial biocatalytic processes use the technology to improve enzyme performance, still today we are far from full exploitation of the field. One clear reason is that many evaluate immobilization based on only a few experiments that are not always well-designed. In contrast to many other reviews on the subject, here we highlight the pitfalls of using incorrectly designed immobilization protocols and explain why in many cases sub-optimal results are obtained. We also describe solutions to overcome these challenges and come to the conclusion that recent developments in material science, bioprocess engineering and protein science continue to open new opportunities for the future. In this way, enzyme immobilization, far from being a mature discipline, remains as a subject of high interest and where intense research is still necessary to take full advantage of the possibilities.
Collapse
Affiliation(s)
- Juan M Bolivar
- FQPIMA group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, 28040, Spain
| | - John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800 Kgs Lyngby, Denmark.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, Madrid 28049, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
17
|
Sampaio CS, Angelotti JAF, Fernandez-Lafuente R, Hirata DB. Lipase immobilization via cross-linked enzyme aggregates: Problems and prospects - A review. Int J Biol Macromol 2022; 215:434-449. [PMID: 35752332 DOI: 10.1016/j.ijbiomac.2022.06.139] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 02/08/2023]
Abstract
In this review we have focused on the preparation of cross-linked enzyme aggregates (CLEAs) from lipases, as these are among the most used enzyme in bioprocesses. This immobilization method is considered very attractive due to preparation simplicity, non-use of supports and the possibility of using crude enzyme extracts. CLEAs provide lipase stabilization under extreme temperature or pH conditions or in the presence of organic solvents, in addition to preventing enzyme leaching in aqueous medium. However, it presents some problems in the preparation and limitations in their use. The problems in preparation refer mainly to the crosslinking step, and may be solved using an aminated feeder. The problems in handling have been tackled designing magnetic-CLEAs or trapping the CLEAs in particles with better mechanical properties, the substrate diffusion problems has been reduced by producing more porous-CLEAs, etc. The enzyme co-immobilization using combi-CLEAs is also a new tendency. Therefore, this review explores the CLEAs methodology aimed at lipase immobilization and its applications.
Collapse
Affiliation(s)
- Camila S Sampaio
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Joelise A F Angelotti
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil
| | - Roberto Fernandez-Lafuente
- Department of Biocatalysis, ICP-CSIC, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain.; Center of Excellence in Bionanoscience Research, Member of The External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Daniela B Hirata
- Postgraduate Program in Biotechnology, Federal University of Alfenas, 37130-001 Alfenas, MG, Brazil.
| |
Collapse
|
18
|
Hunt KE, García-Sosa AT, Shalima T, Maran U, Vilu R, Kanger T. Synthesis of 6'-galactosyllactose, a deviant human milk oligosaccharide, with the aid of Candida antarctica lipase-B. Org Biomol Chem 2022; 20:4724-4735. [PMID: 35612321 DOI: 10.1039/d2ob00550f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Research on human milk oligosaccharides (HMOs) has increased over the past decade showing great interest in their beneficial effects. Here we describe a method for the selective deacetylation using immobilised Candida antarctica lipase-B, Novozyme N435 (N435), of pyranose saccharides in organic media with the aim of simplifying and improving the pathways for the synthesis of HMOs. By first studying in depth the deacetylation reaction of peracetylated D-glucose two reaction conditions were found, which were used on different HMO building blocks, peracetylated saccharides and thioglycosides. D-Glucose based saccharides showed selectivity towards the fourth and the sixth position deacetylation. While α-anomer of peracetylated D-galactose remained unreactive and β-anomer favoured the first position deacetylation. Peracetylated L-fucose, on the other hand, had no selectivity as the main product was fully unprotected L-fucose. Taking the peracetylated D-glucose deacetylation reaction product and selectively protecting the primary hydroxyl group in the sixth position left only the fourth position open for the glycosylation. Meanwhile, the deacetylation product of D-galactose thioglycoside, with the sixth position deacetylated, had both acceptor and donor capabilities. Using the two aforementioned products derived from the N435 deacetylation reactions a deviant HMO, 6'-galactosyllactose (6'-GL) was synthesised.
Collapse
Affiliation(s)
- Kaarel Erik Hunt
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia. .,Centre of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - Alfonso T García-Sosa
- Department of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| | - Tatsiana Shalima
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Uko Maran
- Department of Chemistry, University of Tartu, Ravila Street 14a, 50411 Tartu, Estonia
| | - Raivo Vilu
- Centre of Food and Fermentation Technologies, Akadeemia tee 15A, 12618 Tallinn, Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| |
Collapse
|
19
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Chemical amination of immobilized enzymes for enzyme coimmobilization: Reuse of the most stable immobilized and modified enzyme. Int J Biol Macromol 2022; 208:688-697. [PMID: 35358572 DOI: 10.1016/j.ijbiomac.2022.03.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/25/2022]
Abstract
Although Lecitase and the lipase from Thermomyces lanuginosus (TLL) could be coimmobilized on octyl-agarose, the stability of Lecitase was lower than that of TLL causing the user to discard active immobilized TLL when Lecitase was inactivated. Here, we propose the chemical amination of immobilized TLL to ionically exchange Lecitase on immobilized TLL, which should be released to the medium after its inactivation by incubation at high ionic strength. Using conditions where Lecitase was only adsorbed on immobilized TLL after its amination, the combibiocatalyst was produced. Unfortunately, the release of Lecitase was not possible using just high ionic strength solutions, and if detergent was added, TLL was also released from the support. This occurred when using 0.25 M ammonium sulfate, Lecitase did not immobilize on aminated TLL. That makes the use octyl-vinylsulfone supports necessary to irreversibly immobilize TLL, and after blocking with ethylendiamine, the immobilized TLL was aminated. Lecitase immobilized and released from this biocatalyst using 0.25 M ammonium sulfate and 0.1% Triton X-100. That way, a coimmobilized TLL and Lecitase biocatalyst could be produced, and after Lecitase inactivation, it could be released and the immobilized, aminated, and fully active TLL could be utilized to build a new combibiocatalyst.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
20
|
Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Design of Artificial Enzymes Bearing Several Active Centers: New Trends, Opportunities and Problems. Int J Mol Sci 2022; 23:5304. [PMID: 35628115 PMCID: PMC9141793 DOI: 10.3390/ijms23105304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Harnessing enzymes which possess several catalytic activities is a topic where intense research has been carried out, mainly coupled with the development of cascade reactions. This review tries to cover the different possibilities to reach this goal: enzymes with promiscuous activities, fusion enzymes, enzymes + metal catalysts (including metal nanoparticles or site-directed attached organometallic catalyst), enzymes bearing non-canonical amino acids + metal catalysts, design of enzymes bearing a second biological but artificial active center (plurizymes) by coupling enzyme modelling and directed mutagenesis and plurizymes that have been site directed modified in both or in just one active center with an irreversible inhibitor attached to an organometallic catalyst. Some examples of cascade reactions catalyzed by the enzymes bearing several catalytic activities are also described. Finally, some foreseen problems of the use of these multi-activity enzymes are described (mainly related to the balance of the catalytic activities, necessary in many instances, or the different operational stabilities of the different catalytic activities). The design of new multi-activity enzymes (e.g., plurizymes or modified plurizymes) seems to be a topic with unarguable interest, as this may link biological and non-biological activities to establish new combo-catalysis routes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, C/Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain; (D.C.); (R.M.-S.)
- Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
21
|
Carballares D, Rocha-Martin J, Fernandez-Lafuente R. Coimmobilization of lipases exhibiting three very different stability ranges. Reuse of the active enzymes and selective discarding of the inactivated ones. Int J Biol Macromol 2022; 206:580-590. [PMID: 35218810 DOI: 10.1016/j.ijbiomac.2022.02.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
Abstract
Lipase B from Candida antarctica (CALB) and lipases from Candida rugosa (CRL) and Rhizomucor miehei (RML) have been coimmobilized on octyl and octyl-Asp agarose beads. CALB was much more stable than CRL, that was significantly more stable than RML. This forces the user to discard immobilized CALB and CRL when only RML has been inactivated, or immobilized CALB when CRL have been inactivated. To solve this problem, a new strategy has been proposed using three different immobilization protocols. CALB was covalently immobilized on octyl-vinyl sulfone agarose and blocked with Asp. Then, CRL was immobilized via interfacial activation. After coating both immobilized enzymes with polyethylenimine, RML could be immobilized via ion exchange. That way, by incubating in ammonium sulfate solutions, inactivated RML could be released enabling the reuse of coimmobilized CRL and CALB to build a new combi-lipase. Incubating in triton and ammonium sulfate solutions, it was possible to release inactivated CRL and RML, enabling the reuse of immobilized CALB when CRL was inactivated. These cycles could be repeated for 3 full cycles, maintaining the activity of the active and immobilized enzymes.
Collapse
Affiliation(s)
- Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain.
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academic, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|