1
|
Meyers JL, Brislin SJ, Kamarajan C, Plawecki MH, Chorlian D, Anohkin A, Kuperman S, Merikangas A, Pandey G, Kinreich S, Pandey A, Edenberg HJ, Bucholz KK, Almasy L, Porjesz B. The collaborative study on the genetics of alcoholism: Brain function. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12862. [PMID: 37587903 PMCID: PMC10550791 DOI: 10.1111/gbb.12862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023]
Abstract
Alcohol use disorder (AUD) and related health conditions result from a complex interaction of genetic, neural and environmental factors, with differential impacts across the lifespan. From its inception, the Collaborative Study on the Genetics of Alcoholism (COGA) has focused on the importance of brain function as it relates to the risk and consequences of alcohol use and AUD, through the examination of noninvasively recorded brain electrical activity and neuropsychological tests. COGA's sophisticated neurophysiological and neuropsychological measures, together with rich longitudinal, multi-modal family data, have allowed us to disentangle brain-related risk and resilience factors from the consequences of prolonged and heavy alcohol use in the context of genomic and social-environmental influences over the lifespan. COGA has led the field in identifying genetic variation associated with brain functioning, which has advanced the understanding of how genomic risk affects AUD and related disorders. To date, the COGA study has amassed brain function data on over 9871 participants, 7837 with data at more than one time point, and with notable diversity in terms of age (from 7 to 97), gender (52% female), and self-reported race and ethnicity (28% Black, 9% Hispanic). These data are available to the research community through several mechanisms, including directly through the NIAAA, through dbGAP, and in collaboration with COGA investigators. In this review, we provide an overview of COGA's data collection methods and specific brain function measures assessed, and showcase the utility, significance, and contributions these data have made to our understanding of AUD and related disorders, highlighting COGA research findings.
Collapse
Affiliation(s)
- Jacquelyn L. Meyers
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Sarah J. Brislin
- Department of Psychiatry, Robert Wood Johnson Medical SchoolRutgers UniversityNew BrunswickNew JerseyUSA
| | - Chella Kamarajan
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | | | - David Chorlian
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Andrey Anohkin
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Samuel Kuperman
- Department of PsychiatryUniversity of IowaIowa CityIndianaUSA
| | - Alison Merikangas
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Gayathri Pandey
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Sivan Kinreich
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Ashwini Pandey
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular BiologyIndiana UniversityBloomingtonIndianaUSA
| | - Kathleen K. Bucholz
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Laura Almasy
- Department of Biomedical and Health InformaticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Genetics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Bernice Porjesz
- Department of Psychiatry and Behavioral SciencesState University of New York Downstate Medical CenterBrooklynNew YorkUSA
| |
Collapse
|
2
|
Zhang H, Yao J, Xu C, Wang C. Targeting electroencephalography for alcohol dependence: A narrative review. CNS Neurosci Ther 2023; 29:1205-1212. [PMID: 36890659 PMCID: PMC10068473 DOI: 10.1111/cns.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Electroencephalography (EEG)-based electrophysiological techniques have made progress in diagnosing and treating alcohol dependence in recent years. AIMS The article reviews the latest literature in this field. MATERIALS AND METHODS Alcohol dependence, which is common and prone to relapsing, poses a serious threat to individuals, families, and society. At present, the objective detection methods for alcohol dependence in clinic are not enough. As electrophysiological techniques developed in psychiatry, some researches on EEG-based monitoring methods are of great significance in the diagnosis and treatment of alcohol dependence. DISCUSSION As electrophysiological techniques developed in psychiatry, some researches on EEG-based monitoring methods such as resting electroencephalography (REEG), event-related potentials (ERP), event-related oscillations (ERO), and polysomnography (PSG), was reported. CONCLUSION In this paper, the status of electrophysiological researches on EEG in alcoholics are reviewed in detail.
Collapse
Affiliation(s)
- Huiwen Zhang
- Department of Anaesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China.,Department of Anaesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiahui Yao
- Department of Anaesthesiology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Cheng Xu
- Department of Anaesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chengyu Wang
- Department of Anaesthesiology, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
3
|
Creupelandt C, D'Hondt F, Maurage P. Neural correlates of visuoperceptive changes in severe alcohol use disorder: A critical review of neuroimaging and electrophysiological findings. J Neurosci Res 2021; 99:1253-1275. [PMID: 33550638 DOI: 10.1002/jnr.24799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
Visuoperceptive deficits are frequently reported in severe alcohol use disorder (SAUD) and are considered as pervasive and persistent in time. While this topic of investigation has previously driven researchers' interest, far fewer studies have focused on visuoperception in SAUD since the '90s, leaving open central questions regarding the origin and implications of these deficits. To renew research in the field and provide a solid background to work upon, this paper reviews the neural correlates of visuoperception in SAUD, based on data from neuroimaging and electrophysiological studies. Results reveal structural and functional changes within the visual system but also in the connections between occipital and frontal areas. We highlight the lack of integration of these findings in the dominant models of vision which stress the dynamic nature of the visual system and consider the presence of both bottom-up and top-down cerebral mechanisms. Visuoperceptive changes are also discussed in the framework of long-lasting debates regarding the influence of demographic and alcohol-related factors, together stressing the presence of inter-individual differences. Capitalizing on this review, we provide guidelines to inform future research, and ultimately improve clinical care.
Collapse
Affiliation(s)
- Coralie Creupelandt
- Louvain Experimental Psychopathology Research Group (UCLEP), Faculté de Psychologie, Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| | - Fabien D'Hondt
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France.,CHU Lille, Clinique de Psychiatrie, CURE, Lille, France.,Centre National de Ressources et de Résilience Lille-Paris (CN2R), Lille, France
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (UCLEP), Faculté de Psychologie, Psychological Sciences Research Institute (IPSY), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Dousset C, Kajosch H, Ingels A, Schröder E, Kornreich C, Campanella S. Preventing relapse in alcohol disorder with EEG-neurofeedback as a neuromodulation technique: A review and new insights regarding its application. Addict Behav 2020; 106:106391. [PMID: 32197211 DOI: 10.1016/j.addbeh.2020.106391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Alcohol Use Disorder (AUD) has a disconcertingly high relapse rate (70-80% within a year following withdrawal). Preventing relapse or minimizing its extent is hence a challenging goal for long-term successful management of AUD. New perspectives that rely on diverse neuromodulation tools have been developed in this regard as care supports. This paper focuses on electroencephalogram-neurofeedback (EEG-NF), which is a tool that has experienced renewed interest in both clinical and research areas. We review the literature on EEG-based neurofeedback studies investigating the efficacy in AUD and including at least 10 neurofeedback training sessions. As neurofeedback is a form of biofeedback in which a measure of brain activity is provided as feedback in real-time to a subject, the high degree of temporal resolution of the EEG interface supports optimal learning. By offering a wide range of brain oscillation targets (alpha, beta, theta, delta, gamma, and SMR) the EEG-NF procedure increases the scope of possible investigations through a multitude of experimental protocols that can be considered to reinforce or inhibit specific forms of EEG activity associated with AUD-related cognitive impairments. The present review provides an overview of the EEG-NF protocols that have been used in AUD and it highlights the current paucity of robust evidence. Within this framework, this review presents the arguments in favor of the application of EEG-NF as an add-on tool in the management of alcohol disorders to enhance the cognitive abilities required to maintain abstinence more specifically, with a focus on inhibition and attentional skills.
Collapse
|
5
|
An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif Intell Med 2018; 84:79-89. [DOI: 10.1016/j.artmed.2017.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/15/2017] [Accepted: 11/10/2017] [Indexed: 01/29/2023]
|
6
|
Mumtaz W, Vuong PL, Malik AS, Rashid RBA. A review on EEG-based methods for screening and diagnosing alcohol use disorder. Cogn Neurodyn 2017; 12:141-156. [PMID: 29564024 DOI: 10.1007/s11571-017-9465-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/28/2023] Open
Abstract
The screening test for alcohol use disorder (AUD) patients has been of subjective nature and could be misleading in particular cases such as a misreporting the actual quantity of alcohol intake. Although the neuroimaging modality such as electroencephalography (EEG) has shown promising research results in achieving objectivity during the screening and diagnosis of AUD patients. However, the translation of these findings for clinical applications has been largely understudied and hence less clear. This study advocates the use of EEG as a diagnostic and screening tool for AUD patients that may help the clinicians during clinical decision making. In this context, a comprehensive review on EEG-based methods is provided including related electrophysiological techniques reported in the literature. More specifically, the EEG abnormalities associated with the conditions of AUD patients are summarized. The aim is to explore the potentials of objective techniques involving quantities/features derived from resting EEG, event-related potentials or event-related oscillations data.
Collapse
Affiliation(s)
- Wajid Mumtaz
- 1Department of Electrical and Electronic Engineering, Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Malaysia
| | - Pham Lam Vuong
- 1Department of Electrical and Electronic Engineering, Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Malaysia
| | - Aamir Saeed Malik
- 1Department of Electrical and Electronic Engineering, Center for Intelligent Signal and Imaging Research (CISIR), Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Malaysia
| | - Rusdi Bin Abd Rashid
- 2Universiti Malaya, Aras 21, Wisma R&D Universiti Malaya, Jalan Pantai Bharu, 59200 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Mumtaz W, Vuong PL, Xia L, Malik AS, Rashid RBA. An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn 2017; 11:161-171. [PMID: 28348647 PMCID: PMC5350086 DOI: 10.1007/s11571-016-9416-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 09/30/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023] Open
Abstract
Screening alcohol use disorder (AUD) patients has been challenging due to the subjectivity involved in the process. Hence, robust and objective methods are needed to automate the screening of AUD patients. In this paper, a machine learning method is proposed that utilized resting-state electroencephalography (EEG)-derived features as input data to classify the AUD patients and healthy controls and to perform automatic screening of AUD patients. In this context, the EEG data were recorded during 5 min of eyes closed and 5 min of eyes open conditions. For this purpose, 30 AUD patients and 15 aged-matched healthy controls were recruited. After preprocessing the EEG data, EEG features such as inter-hemispheric coherences and spectral power for EEG delta, theta, alpha, beta and gamma bands were computed involving 19 scalp locations. The selection of most discriminant features was performed with a rank-based feature selection method assigning a weight value to each feature according to a criterion, i.e., receiver operating characteristics curve. For example, a feature with large weight was considered more relevant to the target labels than a feature with less weight. Therefore, a reduced set of most discriminant features was identified and further be utilized during classification of AUD patients and healthy controls. As results, the inter-hemispheric coherences between the brain regions were found significantly different between the study groups and provided high classification efficiency (Accuracy = 80.8, sensitivity = 82.5, and specificity = 80, F-Measure = 0.78). In addition, the power computed in different EEG bands were found significant and provided an overall classification efficiency as (Accuracy = 86.6, sensitivity = 95, specificity = 82.5, and F-Measure = 0.88). Further, the integration of these EEG feature resulted into even higher results (Accuracy = 89.3 %, sensitivity = 88.5 %, specificity = 91 %, and F-Measure = 0.90). Based on the results, it is concluded that the EEG data (integration of the theta, beta, and gamma power and inter-hemispheric coherence) could be utilized as objective markers to screen the AUD patients and healthy controls.
Collapse
Affiliation(s)
- Wajid Mumtaz
- Center for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Malaysia
| | - Pham Lam Vuong
- Center for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Malaysia
| | - Likun Xia
- Beijing Institute of Technology, Beijing, 100081 China
| | - Aamir Saeed Malik
- Center for Intelligent Signal and Imaging Research (CISIR), Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Malaysia
| | - Rusdi Bin Abd Rashid
- University Malaya Centre of Addiction Sciences (UMCAS), Faculty of Medicine, Department of Psychological Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Iacono WG, Malone SM, Vrieze SI. Endophenotype best practices. Int J Psychophysiol 2017; 111:115-144. [PMID: 27473600 PMCID: PMC5219856 DOI: 10.1016/j.ijpsycho.2016.07.516] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 01/19/2023]
Abstract
This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder.
Collapse
|
9
|
What can time-frequency and phase coherence measures tell us about the genetic basis of P3 amplitude? Int J Psychophysiol 2016; 115:40-56. [PMID: 27871913 DOI: 10.1016/j.ijpsycho.2016.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022]
Abstract
In a recent comprehensive investigation, we largely failed to identify significant genetic markers associated with P3 amplitude or to corroborate previous associations between P3 and specific single nucleotide polymorphisms (SNPs) or genes. In the present study we extended this line of investigation to examine time-frequency (TF) activity and intertrial phase coherence (ITPC) in the P3 time window, both of which are associated with P3 amplitude. Previous genome-wide research has reported associations between P3-related theta and delta activity and individual genetic variants. A large, population-based sample of 4211 subjects, comprising male and female adolescent twins and their parents, was genotyped for 527,828 single nucleotide polymorphisms (SNPs), from which over six million SNPs were accurately imputed. Heritability estimates were greater for TF energy than ITPC, whether based on biometric models or the combined influence of all measured SNPs (derived from genome-wide complex trait analysis). The magnitude of overlap in the specific SNPs associated with delta energy and ITPC and P3 amplitude was significant. A genome-wide analysis of all SNPs, accompanied by an analysis of approximately 17,600 genes, indicated a region of chromosome 2 around TEKT4 that was significantly associated with theta ITPC. Analysis of candidate SNPs and genes previously reported to be associated with P3 or related phenotypes yielded one association surviving correction for multiple tests: between theta energy and CRHR1. However, we did not obtain significant associations for SNPs implicated in previous genome-wide studies of TF measures. Identifying specific genetic variants associated with P3 amplitude remains a challenge.
Collapse
|
10
|
Pandey AK, Kamarajan C, Manz N, Chorlian DB, Stimus A, Porjesz B. Delta, theta, and alpha event-related oscillations in alcoholics during Go/NoGo task: Neurocognitive deficits in execution, inhibition, and attention processing. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:158-71. [PMID: 26456730 PMCID: PMC4679474 DOI: 10.1016/j.pnpbp.2015.10.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 09/25/2015] [Accepted: 10/08/2015] [Indexed: 10/22/2022]
Abstract
Higher impulsivity observed in alcoholics is thought to be due to neurocognitive functional deficits involving impaired inhibition in several brain regions and/or neuronal circuits. Event-related oscillations (EROs) offer time-frequency measure of brain rhythms during perceptual and cognitive processing, which provide a detailed view of neuroelectric oscillatory responses to external/internal events. The present study examines evoked power (temporally locked to events) of oscillatory brain signals in alcoholics during an equal probability Go/NoGo task, assessing their functional relevance in execution and inhibition of a motor response. The current study hypothesized that increases in the power of slow frequency bands and their topographical distribution is associated with tasks that have increased cognitive demands, such as the execution and inhibition of a motor response. Therefore, it is hypothesized that alcoholics would show lower spectral power in their topographical densities compared to controls. The sample consisted of 20 right-handed abstinent alcoholic males and 20 age and gender-matched healthy controls. Evoked delta (1.0-3.5Hz; 200-600ms), theta (4.0-7.5Hz; 200-400ms), slow alpha (8.0-9.5Hz; 200-300ms), and fast alpha (10.0-12.5Hz; 100-200ms) ERO power were compared across group and task conditions. Compared to controls, alcoholics had higher impulsiveness scores on the Barrett Impulsiveness Scale (BIS-11) and made more errors on Go trials. Alcoholics showed significantly lower evoked delta, theta, and slow alpha power compared to controls for both Go and NoGo task conditions, and lower evoked fast alpha power compared to controls for only the NoGo condition. The results confirm previous findings and are suggestive of neurocognitive deficits while executing and suppressing a motor response. Based on findings in the alpha frequency ranges, it is further suggested that the inhibitory processing impairments in alcoholics may arise from inadequate early attentional processing with respect to the stimulus related aspects/semantic memory processes, which may be reflected in lower posterio-temporal evoked fast alpha power. It can thus be concluded that alcoholics show neurocognitive deficits in both execution and suppression of a motor response and inadequate early attentional processing with respect to the semantic memory/stimulus related aspects while suppressing a motor response.
Collapse
|
11
|
Kamarajan C, Pandey AK, Chorlian DB, Manz N, Stimus AT, Anokhin AP, Bauer LO, Kuperman S, Kramer J, Bucholz KK, Schuckit MA, Hesselbrock VM, Porjesz B. Deficient Event-Related Theta Oscillations in Individuals at Risk for Alcoholism: A Study of Reward Processing and Impulsivity Features. PLoS One 2015; 10:e0142659. [PMID: 26580209 PMCID: PMC4651365 DOI: 10.1371/journal.pone.0142659] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/26/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. Event-related oscillations (EROs) have been used to effectively measure brain (dys)function during cognitive tasks in individuals with alcoholism and related disorders and in those at risk to develop these disorders. The current study examines ERO theta power during reward processing as well as impulsivity in adolescent and young adult subjects at high risk for alcoholism. METHODS EROs were recorded during a monetary gambling task (MGT) in 12-25 years old participants (N = 1821; males = 48%) from high risk alcoholic families (HR, N = 1534) and comparison low risk community families (LR, N = 287) from the Collaborative Study on the Genetics of Alcoholism (COGA). Impulsivity scores and prevalence of externalizing diagnoses were also compared between LR and HR groups. RESULTS HR offspring showed lower theta power and decreased current source density (CSD) activity than LR offspring during loss and gain conditions. Younger males had higher theta power than younger females in both groups, while the older HR females showed more theta power than older HR males. Younger subjects showed higher theta power than older subjects in each comparison. Differences in topography (i.e., frontalization) between groups were also observed. Further, HR subjects across gender had higher impulsivity scores and increased prevalence of externalizing disorders compared to LR subjects. CONCLUSIONS As theta power during reward processing is found to be lower not only in alcoholics, but also in HR subjects, it is proposed that reduced reward-related theta power, in addition to impulsivity and externalizing features, may be related in a predisposition to develop alcoholism and related disorders.
Collapse
Affiliation(s)
- Chella Kamarajan
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Ashwini K. Pandey
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - David B. Chorlian
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Niklas Manz
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Arthur T. Stimus
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| | - Andrey P. Anokhin
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Lance O. Bauer
- University of Connecticut Health Center, Farmington, CT, United States of America
| | | | - John Kramer
- University of Iowa, Iowa City, IA, United States of America
| | - Kathleen K. Bucholz
- Washington University School of Medicine, St. Louis, MO, United States of America
| | - Marc A. Schuckit
- University of California San Diego, San Diego, CA, United States of America
| | | | - Bernice Porjesz
- SUNY Downstate Medical Center, Brooklyn, NY, United States of America
| |
Collapse
|
12
|
Akimoto Y, Nozawa T, Kanno A, Ihara M, Goto T, Ogawa T, Kambara T, Sugiura M, Okumura E, Kawashima R. High-gamma activity in an attention network predicts individual differences in elderly adults' behavioral performance. Neuroimage 2014; 100:290-300. [DOI: 10.1016/j.neuroimage.2014.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/04/2014] [Accepted: 06/15/2014] [Indexed: 11/25/2022] Open
|
13
|
Rangaswamy M, Porjesz B. Understanding alcohol use disorders with neuroelectrophysiology. HANDBOOK OF CLINICAL NEUROLOGY 2014; 125:383-414. [PMID: 25307587 DOI: 10.1016/b978-0-444-62619-6.00023-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neurocognitive deficits associated with impairments in various brain regions and neural circuitries, particularly involving frontal lobes, have been associated with chronic alcoholism, as well as with a predisposition to develop alcohol use and related disorders (AUDs). AUD is a multifactorial disorder caused by complex interactions between behavioral, genetic, and environmental liabilities. Neuroelectrophysiologic techniques are instrumental in understanding brain and behavior relationships and have also proved very useful in evaluating the genetic diathesis of alcoholism. This chapter describes findings from neuroelectrophysiologic measures (electroencephalogram, event-related potentials, and event-related oscillations) related to acute and chronic effects of alcohol on the brain and those that reflect underlying deficits related to a predisposition to develop AUDs and related disorders. The utility of these measures as effective endophenotypes to identify and understand genes associated with brain electrophysiology, cognitive networks, and AUDs has also been discussed.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY, USA.
| |
Collapse
|
14
|
Vuong PL, Xia L, Malik AS, Abd Rashid RB. Biomarker Development on Alcohol Addiction Using EEG. NEURAL INFORMATION PROCESSING 2013:199-206. [DOI: 10.1007/978-3-642-42054-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
15
|
Pandey AK, Kamarajan C, Rangaswamy M, Porjesz B. Event-Related Oscillations in Alcoholism Research: A Review. ACTA ACUST UNITED AC 2012; Suppl 7. [PMID: 24273686 DOI: 10.4172/2155-6105.s7-001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alcohol dependence is characterized as a multi-factorial disorder caused by a complex interaction between genetic and environmental liabilities across development. A variety of neurocognitive deficits/dysfunctions involving impairments in different brain regions and/or neural circuitries have been associated with chronic alcoholism, as well as with a predisposition to develop alcoholism. Several neurobiological and neurobehavioral approaches and methods of analyses have been used to understand the nature of these neurocognitive impairments/deficits in alcoholism. In the present review, we have examined relatively novel methods of analyses of the brain signals that are collectively referred to as event-related oscillations (EROs) and show promise to further our understanding of human brain dynamics while performing various tasks. These new measures of dynamic brain processes have exquisite temporal resolution and allow the study of neural networks underlying responses to sensory and cognitive events, thus providing a closer link to the physiology underlying them. Here, we have reviewed EROs in the study of alcoholism, their usefulness in understanding dynamical brain functions/dysfunctions associated with alcoholism as well as their utility as effective endophenotypes to identify and understand genes associated with both brain oscillations and alcoholism.
Collapse
Affiliation(s)
- Ashwini K Pandey
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
16
|
Pandey AK, Kamarajan C, Tang Y, Chorlian DB, Roopesh BN, Manz N, Stimus A, Rangaswamy M, Porjesz B. Neurocognitive deficits in male alcoholics: an ERP/sLORETA analysis of the N2 component in an equal probability Go/NoGo task. Biol Psychol 2011; 89:170-82. [PMID: 22024409 DOI: 10.1016/j.biopsycho.2011.10.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
Abstract
In alcoholism research, studies concerning time-locked electrophysiological aspects of response inhibition have concentrated mainly on the P3 component of the event-related potential (ERP). The objective of the present study was to investigate the N2 component of the ERP to elucidate possible brain dysfunction related to the motor response and its inhibition using a Go/NoGo task in alcoholics. The sample consisted of 78 abstinent alcoholic males and 58 healthy male controls. The N2 peak was compared across group and task conditions. Alcoholics showed significantly reduced N2 peak amplitudes compared to normal controls for Go as well as NoGo task conditions. Control subjects showed significantly larger NoGo than Go N2 amplitudes at frontal regions, whereas alcoholics did not show any differences between task conditions at frontal regions. Standardized low resolution electromagnetic tomography analysis (sLORETA) indicated that alcoholics had significantly lower current density at the source than control subjects for the NoGo condition at bilateral anterior prefrontal regions, whereas the differences between groups during the Go trials were not statistically significant. Furthermore, NoGo current density across both groups revealed significantly more activation in bilateral anterior cingulate cortical (ACC) areas, with the maximum activation in the right cingulate regions. However, the magnitude of this difference was much less in alcoholics compared to control subjects. These findings suggest that alcoholics may have deficits in effortful processing during the motor response and its inhibition, suggestive of possible frontal lobe dysfunction.
Collapse
Affiliation(s)
- A K Pandey
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Box 1203, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Euser AS, Arends LR, Evans BE, Greaves-Lord K, Huizink AC, Franken IHA. The P300 event-related brain potential as a neurobiological endophenotype for substance use disorders: a meta-analytic investigation. Neurosci Biobehav Rev 2011; 36:572-603. [PMID: 21964481 DOI: 10.1016/j.neubiorev.2011.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 09/07/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
Endophenotypes are intermediate phenotypes on the putative causal pathway from genotype to phenotype and can aid in discovering the genetic etiology of a disorder. There are currently very few suitable endophenotypes available for substance use disorders (SUD). The amplitude of the P300 event-related brain potential is a possible candidate. The present study determined whether the P300 amplitude fulfils two fundamental criteria for an endophenotype: (1) an association with the disorder (disease marker), and (2) presence in unaffected biological relatives of those who have the disorder (vulnerability marker). For this purpose, two separate meta-analyses were performed. Meta-analysis 1 investigated the P300 amplitude in relation to SUD in 39 studies and Meta-analysis 2 investigated P300 amplitude in relation to a family history (FH+) of SUD in 35 studies. The findings indicate that a reduced P300 amplitude is significantly associated with SUD (d=0.51) and, though to a lesser extent, with a FH+ of SUD (d=0.28). As a disease maker, the association between reduced P300 amplitude and SUD is significantly larger for participants that were exclusively recruited from treatment facilities (d=0.67) than by other methods (i.e., community samples and family studies; d=0.45 and 0.32, respectively), and larger for abstinent SUD patients (d=0.71) than for current substance users (d=0.37). Furthermore, in contrast to FH+ males, a P300 amplitude reduction seems not to be present in FH+ females (d=-0.07). Taken together, these results suggest that P300 amplitude reduction can be both a useful disease and vulnerability marker and is a promising neurobiological endophenotype for SUD, though only in males. Implications and future directions are discussed.
Collapse
Affiliation(s)
- Anja S Euser
- Institute of Psychology, Erasmus University Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
18
|
Kamarajan C, Rangaswamy M, Manz N, Chorlian DB, Pandey AK, Roopesh BN, Porjesz B. Topography, power, and current source density of θ oscillations during reward processing as markers for alcohol dependence. Hum Brain Mapp 2011; 33:1019-39. [PMID: 21520344 DOI: 10.1002/hbm.21267] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 12/06/2010] [Accepted: 12/22/2010] [Indexed: 11/10/2022] Open
Abstract
Recent studies have linked alcoholism with a dysfunctional neural reward system. Although several electrophysiological studies have explored reward processing in healthy individuals, such studies in alcohol-dependent individuals are quite rare. The present study examines theta oscillations during reward processing in abstinent alcoholics. The electroencephalogram (EEG) was recorded in 38 abstinent alcoholics and 38 healthy controls as they performed a single outcome gambling task, which involved outcomes of either loss or gain of an amount (10 or 50¢) that was bet. Event-related theta band (3.0-7.0 Hz) power following each outcome stimulus was computed using the S-transform method. Theta power at the time window of the outcome-related negativity (ORN) and positivity (ORP) (200-500 ms) was compared across groups and outcome conditions. Additionally, behavioral data of impulsivity and task performance were analyzed. The alcoholic group showed significantly decreased theta power during reward processing compared to controls. Current source density (CSD) maps of alcoholics revealed weaker and diffuse source activity for all conditions and weaker bilateral prefrontal sources during the Loss 50 condition when compared with controls who manifested stronger and focused midline sources. Furthermore, alcoholics exhibited increased impulsivity and risk-taking on the behavioral measures. A strong association between reduced anterior theta power and impulsive task-performance was observed. It is suggested that decreased power and weaker and diffuse CSD in alcoholics may be due to dysfunctional neural reward circuitry. The relationship among alcoholism, theta oscillations, reward processing, and impulsivity could offer clues to understand brain circuitries that mediate reward processing and inhibitory control.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Zlojutro M, Manz N, Rangaswamy M, Xuei X, Flury-Wetherill L, Koller D, Bierut LJ, Goate A, Hesselbrock V, Kuperman S, Nurnberger J, Rice JP, Schuckit MA, Foroud T, Edenberg HJ, Porjesz B, Almasy L. Genome-wide association study of theta band event-related oscillations identifies serotonin receptor gene HTR7 influencing risk of alcohol dependence. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:44-58. [PMID: 21184583 PMCID: PMC3139811 DOI: 10.1002/ajmg.b.31136] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 09/16/2010] [Indexed: 01/19/2023]
Abstract
Event-related brain oscillations (EROs) represent highly heritable neuroelectrical correlates of human perception and cognitive performance that exhibit marked deficits in patients with various psychiatric disorders. We report the results of the first genome-wide association study (GWAS) of an ERO endophenotype-frontal theta ERO evoked by visual oddball targets during P300 response in 1,064 unrelated individuals drawn from a study of alcohol dependence. Forty-two SNPs of the Illumina HumanHap 1 M microarray were selected from the theta ERO GWAS for replication in family-based samples (N = 1,095), with four markers revealing nominally significant association. The most significant marker from the two-stage study is rs4907240 located within ARID protein 5A gene (ARID5A) on chromosome 2q11 (unadjusted, Fisher's combined P = 3.68 × 10⁻⁶). However, the most intriguing association to emerge is with rs7916403 in serotonin receptor gene HTR7 on chromosome 10q23 (combined P = 1.53 × 10⁻⁴), implicating the serotonergic system in the neurophysiological underpinnings of theta EROs. Moreover, promising SNPs were tested for association with diagnoses of alcohol dependence (DSM-IV), revealing a significant relationship with the HTR7 polymorphism among GWAS case-controls (P = 0.008). Significant recessive genetic effects were also detected for alcohol dependence in both case-control and family-based samples (P = 0.031 and 0.042, respectively), with the HTR7 risk allele corresponding to theta ERO reductions among homozygotes. These results suggest a role of the serotonergic system in the biological basis of alcohol dependence and underscore the utility of analyzing brain oscillations as a powerful approach to understanding complex genetic psychiatric disorders.
Collapse
Affiliation(s)
- Mark Zlojutro
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Criado JR, Ehlers CL. Event-related oscillations as risk markers in genetic mouse models of high alcohol preference. Neuroscience 2009; 163:506-23. [PMID: 19540906 DOI: 10.1016/j.neuroscience.2009.06.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/12/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Mouse models have been developed to simulate several relevant human traits associated with alcohol use and dependence. However, the neurophysiological substrates regulating these traits remain to be completely elucidated. We have previously demonstrated that differences in the event-related potential (ERP) responses can be found that distinguish high-alcohol preferring from low alcohol preferring mice that resemble differences seen in human studies of individuals with high and low risk for alcohol dependence. Recently, evidence of genes that affect event-related oscillations (EROs) and the risk for alcohol dependence has emerged, however, to date EROs have not been evaluated in genetic mouse models of high and low alcohol preference. Therefore, the objective of the present study was to characterize EROs in mouse models of high (C57BL/6 [B6] and high alcohol preference 1 [HAP-1] mice) and low (DBA/2J [D2] and low alcohol preference-1 [LAP-1] mice) alcohol preference. A time-frequency representation method was used to determine delta, theta and alpha/beta ERO energy and the degree of phase variation in these mouse models. The present results suggest that the decrease in P3 amplitudes previously shown in B6 mice, compared to D2 mice, is related to reductions in evoked delta ERO energy and delta and theta phase locking. In contrast, the increase in P1 amplitudes reported in HAP-1 mice, compared to LAP-1 mice, is associated with increases in evoked theta ERO energy. These studies suggest that differences in delta and theta ERO measures in mice mirror changes observed between groups at high- and low-risk for alcoholism where changes in EROs were found to be more significant than group differences in P3 amplitudes, further suggesting that ERO measures are more stable endophenotypes in the study of alcohol dependence. Further studies are needed to determine the relationship between expression of these neurophysiological endophenotypes and the genetic profile of these mouse models.
Collapse
Affiliation(s)
- J R Criado
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, SP30-1501, La Jolla, CA 92037, USA
| | | |
Collapse
|
21
|
Zaehle T, Fründ I, Schadow J, Thärig S, Schoenfeld MA, Herrmann CS. Inter- and intra-individual covariations of hemodynamic and oscillatory gamma responses in the human cortex. Front Hum Neurosci 2009; 3:8. [PMID: 19562088 PMCID: PMC2701679 DOI: 10.3389/neuro.09.008.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 05/12/2009] [Indexed: 11/20/2022] Open
Abstract
The time course of local field potentials (LFPs) displaying typical discharge frequencies in the gamma frequency range highly correlates with the blood oxygen level dependent (BOLD) signal in response to rotating checkerboard stimuli in animals. In humans, oscillatory gamma-band responses (GBRs) show strong inter-individual variations in frequency and amplitude but considerable intra-individual reliability indicating that individual gamma activity reflects a personal trait. While the functional role of these GBRs is still debated, investigations combining electroencephalography–functional magnetic resonance imaging (EEG–fMRI) measurements provide a tool to obtain further insights into the underlying functional architecture of the human brain and will shed light onto the understanding of the dynamic relation between the BOLD signal and the properties of the electrical activity recorded on the scalp. We investigated the relation between the hemodynamic response and evoked gamma-band response (eGBR) to visual stimulation. We tested the hypothesis that the amplitude of human eGBRs and BOLD responses covary intra-individually as a function of stimulation as well as inter-individually as a function of gamma-trait. Seventeen participants performed visual discrimination tasks during separate EEG and fMRI recordings. Results revealed that visual stimuli that evoked high GBRs also elicited strong BOLD responses in the human V1/V2 complex. Furthermore, inter-individual variations of BOLD responses to visual stimuli in the bilateral primary (Area 17) and secondary (Area V5/MT) visual cortex and the right hippocampal formation were correlated with the individual gamma-trait of the subjects. The present study further supports the notion that neural oscillations in the gamma frequency range are involved in the cascade of neural processes that underlie the hemodynamic responses measured with fMRI.
Collapse
Affiliation(s)
- Tino Zaehle
- Department of Biological Psychology, Otto-von-Guericke University Magdeburg Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
A review of brain oscillations in cognitive disorders and the role of neurotransmitters. Brain Res 2008; 1235:172-93. [PMID: 18640103 DOI: 10.1016/j.brainres.2008.06.103] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 06/23/2008] [Indexed: 12/31/2022]
Abstract
The analysis of the functional correlates of "brain oscillations" has become an important branch of neuroscience. Although research on the functional correlates of brain oscillation has progressed to a high level, studies on cognitive disorders are rare and mainly limited to schizophrenia patients. The present review includes the results of the changes in brain oscillations in patients with Alzheimer's, schizophrenia, bipolar disorders, mild cognitive impairment, attention-deficit hyperactivity disorder (ADHD), alcoholism and those with genetic disorders. Furthermore, the effects of pharmaca and the influence of neurotransmitters in patients with cognitive disorders are also reviewed. Following the review, a short synopsis is given related to the analysis of brain oscillations.
Collapse
|
23
|
Rangaswamy M, Porjesz B. Uncovering genes for cognitive (dys)function and predisposition for alcoholism spectrum disorders: a review of human brain oscillations as effective endophenotypes. Brain Res 2008; 1235:153-71. [PMID: 18634760 DOI: 10.1016/j.brainres.2008.06.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Brain oscillations provide a rich source of potentially useful endophenotypes (intermediate phenotypes) for psychiatric genetics, as they represent important correlates of human information processing and are associated with fundamental processes from perception to cognition. These oscillations are highly heritable, are modulated by genes controlling neurotransmitters in the brain, and provide links to associative and integrative brain functions. These endophenotypes represent traits that are less complex and more proximal to gene function than either diagnostic labels or traditional cognitive measures, providing a powerful strategy in searching for genes in psychiatric disorders. These intermediate phenotypes identify both affected and unaffected members of an affected family, including offspring at risk, providing a more direct connection with underlying biological vulnerability. Our group has utilized heritable neurophysiological features (i.e., brain oscillations) as endophenotypes, making it possible to identify susceptibility genes that may be difficult to detect with diagnosis alone. We have discussed our findings of significant linkage and association between brain oscillations and genes in GABAergic, cholinergic and glutamatergic systems (GABRA2, CHRM2, and GRM8). We have also shown that some oscillatory indices from both resting and active cognitive states have revealed a common subset of genetic foci that are shared with the diagnosis of alcoholism and related disorders. Implications of our findings have been discussed in the context of physiological and pharmacological studies on receptor function. These findings underscore the utility of quantitative neurophysiological endophenotypes in the study of the genetics of brain function and the genetic diathesis underlying complex psychiatric disorders.
Collapse
Affiliation(s)
- Madhavi Rangaswamy
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry and Behavioral Sciences, SUNY Downstate Medical Center, Box 1203, 450 Clarkson Avenue, Brooklyn, NY 11203, USA.
| | | |
Collapse
|
24
|
Kamarajan C, Rangaswamy M, Chorlian DB, Manz N, Tang Y, Pandey AK, Roopesh BN, Stimus AT, Porjesz B. Theta oscillations during the processing of monetary loss and gain: a perspective on gender and impulsivity. Brain Res 2008; 1235:45-62. [PMID: 18616934 DOI: 10.1016/j.brainres.2008.06.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
Abstract
Event-related oscillations (EROs) have proved to be very useful in the understanding of a variety of neurocognitive processes including reward/outcome processing. In the present study, theta power (4.0-7.0 Hz) following outcome stimuli in the time window of the N2-P3 complex (200-500 ms) was analyzed in healthy normals (20 males and 20 females) while performing a gambling task that involved monetary loss and gain. The main aim was to analyze outcome processing in terms of event-related theta power in the context of valence, amount, gender, and impulsivity. The S-transform was used for the signal processing of the ERO data in terms of time-frequency-power. Results from filtered waveforms showed a partially consistent phase-alignment of the increased theta activity corresponding to N2 and P3 components following the outcome stimuli. Gain conditions produced more theta power than loss conditions. While there was anterior involvement in both gain and loss, posterior activation was stronger during gain conditions than during loss conditions. Females exhibited posterior maxima during gain conditions while males had an anterior maxima during both loss and gain conditions. The current source density of theta activity in females involved larger areas with a bilateral frontal activity while males predominantly had a frontal midline activity. Theta power was significantly higher in females than males across all conditions. Low theta (4.0-5.5 Hz) predominantly contributed to the posterior activity during gain conditions. High theta (5.5-7.0 Hz) was more associated with impulsivity measures than low theta activity. These findings may offer valuable clues to understand outcome processing, impulsivity, and gender differences.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, Department of Psychiatry, Box 1203, SUNY Downstate Medical Center, 450 Clarkson Avenue Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Padmanabhapillai A, Tang Y, Ranganathan M, Rangaswamy M, Jones KA, Chorlian DB, Kamarajan C, Stimus A, Kuperman S, Rohrbaugh J, O'Connor SJ, Bauer LO, Schuckit MA, Begleiter H, Porjesz B. Evoked gamma band response in male adolescent subjects at high risk for alcoholism during a visual oddball task. Int J Psychophysiol 2006; 62:262-71. [PMID: 16887227 DOI: 10.1016/j.ijpsycho.2006.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 05/02/2006] [Accepted: 05/04/2006] [Indexed: 11/30/2022]
Abstract
This study investigates early evoked gamma band activity in male adolescent subjects at high risk for alcoholism (HR; n=68) and normal controls (LR; n=27) during a visual oddball task. A time-frequency representation method was applied to EEG data in order to obtain stimulus related early evoked (phase-locked) gamma band activity (29-45 Hz) and was analyzed within a 0-150 ms time window range. Significant reduction of the early evoked gamma band response in the frontal and parietal regions during target stimulus processing was observed in HR subjects compared to LR subjects. Additionally, the HR group showed less differentiation between target and non-target stimuli in both frontal and parietal regions compared to the LR group, indicating difficulty in early stimulus processing, probably due to a dysfunctional frontoparietal attentional network. The results indicate that the deficient early evoked gamma band response may precede the development of alcoholism and could be a potential endophenotypic marker of alcoholism risk.
Collapse
Affiliation(s)
- Ajayan Padmanabhapillai
- Department of Psychiatry, State University of New York, Health Science Center at Brooklyn, SUNY, HSCB, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kamarajan C, Porjesz B, Jones K, Chorlian D, Padmanabhapillai A, Rangaswamy M, Stimus A, Begleiter H. Event-related oscillations in offspring of alcoholics: neurocognitive disinhibition as a risk for alcoholism. Biol Psychiatry 2006; 59:625-34. [PMID: 16213472 PMCID: PMC3766847 DOI: 10.1016/j.biopsych.2005.08.017] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 07/28/2005] [Accepted: 08/10/2005] [Indexed: 11/18/2022]
Abstract
BACKGROUND Event-related oscillations (EROs) are increasingly being used to assess neurocognitive functioning in normal and clinical populations. The current study compares different frequency activities in offspring of alcoholics (OA) and in normal control subjects (NC) to examine whether the OA group exhibits any abnormality in oscillatory activity while performing a Go/NoGo task. METHODS The S-transform algorithm was employed to decompose the electroencephalographic (EEG) signals into different time-frequency bands, and the oscillatory responses in the P300 time window (300-700 milliseconds) were statistically analyzed in both groups. RESULTS The OA group manifested significantly decreased activity in delta (1-3 Hz), theta (4-7 Hz), and alpha1 (8-9 Hz) bands during the NoGo condition, as well as reduced delta and theta activity during the Go condition. This reduction was more prominent in the NoGo than in the Go condition. CONCLUSIONS The decreased response in delta, theta, and alpha1 oscillations, especially during the NoGo condition in high-risk individuals, is perhaps suggestive of cognitive and neural disinhibition and may serve as an endophenotypic marker in the development of alcoholism and/or other disinhibitory disorders.
Collapse
Affiliation(s)
- Chella Kamarajan
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - Bernice Porjesz
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - Kevin Jones
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - David Chorlian
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - Ajayan Padmanabhapillai
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - Madhavi Rangaswamy
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - Arthur Stimus
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| | - Henri Begleiter
- Neurodynamics Laboratory, Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, New York, U.S.A
| |
Collapse
|
27
|
Porjesz B, Rangaswamy M, Kamarajan C, Jones KA, Padmanabhapillai A, Begleiter H. The utility of neurophysiological markers in the study of alcoholism. Clin Neurophysiol 2005; 116:993-1018. [PMID: 15826840 DOI: 10.1016/j.clinph.2004.12.016] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 12/09/2004] [Accepted: 12/17/2004] [Indexed: 02/06/2023]
Abstract
OBJECTIVE This review attempts to differentiate neuroelectric measures (electroencephalogram (EEG), event-related potentials (ERPs) and event-related oscillations (EROs)) related to acute and chronic effects of alcohol on the brain from those that reflect underlying deficits related to the predisposition to develop alcoholism and related disorders. The utility of these neuroelectric measures as endophenotypes for psychiatric genetics is evaluated. METHODS This article reviews the main findings of EEG and ERP abnormalities in alcoholics, offspring of alcoholics at high risk to develop alcoholism and the electrophysiological effects of alcohol on high risk compared to low-risk offspring. It highlights findings using EROs, a fast developing tool in examining brain function and cognition. It also reviews evidence of genetic findings related to these electrophysiological measures and their relationship to clinical diagnosis. RESULTS Many of these abnormal neuroelectric measures are under genetic control, may precede the development of alcoholism, and may be markers of a predisposition toward the development of a spectrum of disinhibitory conditions including alcoholism. Genetic loci underlying some neuroelectic measures that involve neurotransmitter systems of the brain have been identified. CONCLUSIONS Quantitative neuroelectric measures (EEG, ERPs, EROs) provide valuable endophenotypes in the study of genetic risk to develop alcoholism and related disorders. SIGNIFICANCE Genetic studies of neuroelectric endophenotypes offer a powerful strategy for identifying susceptibility genes for developing psychiatric disorders, and provide novel insights into etiological factors.
Collapse
Affiliation(s)
- Bernice Porjesz
- Neurodynamics Laboratory, Department of Psychiatry, SUNY, Downstate Medical Center, Brooklyn, NY 11203, USA.
| | | | | | | | | | | |
Collapse
|