1
|
Xiao H, He Q, Hu Y, Li C, Tian H, Chen F, Song W. A novel DNA damage-related gene index for predicting prognosis in gastric cancer. 3 Biotech 2025; 15:32. [PMID: 39763491 PMCID: PMC11700079 DOI: 10.1007/s13205-024-04166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/18/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer is one of the major cancers with high cancer mortality and shows significant heterogeneity. The development of precise prognostic models is crucial for advancing treatment strategies. Recognizing the pivotal role of DNA damage in tumor progression, we conducted a consensus clustering analysis of DNA damage-related genes to categorize gastric cancer patients from the TCGA clinical cohort into distinct subtypes. Prognostic models were then constructed utilizing machine learning algorithms following Cox regression with differentially expressed genes. Validation was performed using the GSE gastric cancer cohort. Additionally, we investigated other characteristic responses of patients through gene mapping and drug sensitivity analysis. This study 12 differentially prognostic signature genes between the 2 DNA damage subtypes identified were used to calculate risk scores for the patients. This score predicts the prognosis of patients with gastric cancer and their overall survival time. Higher risk scores mean less drug sensitivity, lower survival, and possibly a poorer response to immunotherapy. Our findings provide the basis for future studies targeting DNA damage and its immune microenvironment to improve prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Haipeng Xiao
- Department of General Surgery, Huanggang Central Hospital of Yangtze University, Huanggang, China
| | - Qianjin He
- Department of Hepatobiliary Surgery/Hernia Surgical Ward, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| | - Yang Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, 341000 China
| | - Chang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Han Tian
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Chen
- Department of Hepatobiliary Surgery/Hernia Surgical Ward, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| | - Wenchong Song
- Department of Gastroenterology, Huanggang Central Hospital of Yangtze University, No.6 Qi ‘an Avenue, Huangzhou District, Huanggang, 438000 Hubei China
| |
Collapse
|
2
|
Gardner LL, Thompson SJ, O'Connor JD, McMahon SJ. Modelling radiobiology. Phys Med Biol 2024; 69:18TR01. [PMID: 39159658 DOI: 10.1088/1361-6560/ad70f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Radiotherapy has played an essential role in cancer treatment for over a century, and remains one of the best-studied methods of cancer treatment. Because of its close links with the physical sciences, it has been the subject of extensive quantitative mathematical modelling, but a complete understanding of the mechanisms of radiotherapy has remained elusive. In part this is because of the complexity and range of scales involved in radiotherapy-from physical radiation interactions occurring over nanometres to evolution of patient responses over months and years. This review presents the current status and ongoing research in modelling radiotherapy responses across these scales, including basic physical mechanisms of DNA damage, the immediate biological responses this triggers, and genetic- and patient-level determinants of response. Finally, some of the major challenges in this field and potential avenues for future improvements are also discussed.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| | - John D O'Connor
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
- Ulster University School of Engineering, York Street, Belfast BT15 1AP, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
3
|
Little MP, Lee T, Kimlin MG, Kitahara CM, Zhang R, Alexander BH, Linet MS, Cahoon EK. Lifetime Ambient UV Radiation Exposure and Risk of Basal Cell Carcinoma by Anatomic Site in a Nationwide U.S. Cohort, 1983-2005. Cancer Epidemiol Biomarkers Prev 2021; 30:1932-1946. [PMID: 34289968 DOI: 10.1158/1055-9965.epi-20-1815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cutaneous basal cell carcinoma (BCC) has long been associated with UV radiation (UVR) exposure, but data are limited on risks by anatomic site. METHODS We followed 63,912 cancer-free White U.S. radiologic technologists from cohort entry (1983-1989/1994-1998) to exit (date first BCC via 2003-2005 questionnaire). We estimated associations between cumulative ambient UVR and relative/absolute risks of self-reported BCC by anatomic location via Poisson models. RESULTS For incident first primary BCC in 2,124 subjects (mean follow-up, 16.9 years) log[excess relative risks] (ERR) of BCC per unit cumulative ambient UVR = 1.27/MJ cm-2 [95% confidence interval (CI): 0.86-1.68; P trend < 0.001] did not vary by anatomic site (P = 0.153). However, excess absolute risks of BCC per unit cumulative ambient UVR were large for the head/neck = 5.46/MJ cm-2/104 person-year (95% CI: 2.92-7.36; P trend < 0.001), smaller for the trunk (2.56; 95% CI: 1.26-3.33; P trend = 0.003), with lesser increases elsewhere. There were lower relative risks, but higher absolute risks, for those with Gaelic ancestry (P < 0.001), also higher absolute risks among those with fair complexion, but relative and absolute risks were not generally modified by other constitutional, lifestyle or medical factors for any anatomic sites. Excess absolute and relative risk was concentrated 5-15 years before time of follow-up. CONCLUSIONS BCC relative and absolute risk rose with increasing cumulative ambient UVR exposure, with absolute risk highest for the head/neck, to a lesser extent in the trunk. IMPACT These associations should be evaluated in other White and other racial/ethnic populations along with assessment of possible modification by time outdoors, protective, and behavioral factors.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland.
| | - Terrence Lee
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland
| | - Michael G Kimlin
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cari M Kitahara
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland
| | - Rui Zhang
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland
| | - Bruce H Alexander
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, Minnesota.,Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Martha S Linet
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland
| | - Elizabeth K Cahoon
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland
| |
Collapse
|
4
|
Mohye El-Din AA, Abdelrazzak AB, Ahmed MT, El-Missiry MA. Radiation induced bystander effects in the spleen of cranially-irradiated rats. Br J Radiol 2017; 90:20170278. [PMID: 28937261 DOI: 10.1259/bjr.20170278] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate the radiation-induced abscopal effect in terms of oxidative stress, apoptosis and DNA damage in the spleen cells following cranial X-rays irradiation of rats. METHODS Rats were cranially irradiated using 2 Gy X-rays. Another group was whole-body irradiated with 2 Gy X-rays and a third group was exposed to scattered radiation (measured to be 3 mGy). 24 hours following irradiation, sections from the spleen of the rats were dissected as well as plasma samples. The samples were examined for the desired endpoints. RESULTS The cranially irradiated animals showed a significant increase in the levels of glutathione, superoxide dismutase and catalase with no significant change in the lipid peroxidation product in the spleen cells with a significant increase in the C-reactive protein level the plasma. Apoptotic cell death in the spleen cells was demonstrated as indicated by the decrease of Bcl-2; the increase of p53, Bax, caspase-3 and caspase-8 and induction of DNA damage in the spleen in both of the cranially irradiated rats and whole body exposed rats. The exposure to 3 mGy scattered radiation increased the plasma level of C-RP and also induced apoptosis in the spleen cells. CONCLUSION Cranial irradiation-induced abscopal effect in distant spleen cells. Very low doses of radiation can induce apoptosis in the spleen cells. Advances in knowledge: This paper provides an evidence on the incidence of radiation abscopal effect. Also, the results shed light of the effect very low doses of radiation as low as 3 mGy.
Collapse
Affiliation(s)
- Amal A Mohye El-Din
- 1 Department of Physics, Faculty of Science, Mansoura University , Mansoura , Egypt
| | | | - Moustafa T Ahmed
- 1 Department of Physics, Faculty of Science, Mansoura University , Mansoura , Egypt
| | - Mohamed A El-Missiry
- 3 Department of Zoology, Faculty of Science, Mansoura University , Mansoura , Egypt
| |
Collapse
|
5
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
6
|
Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells. Sci Rep 2016; 6:38832. [PMID: 27958308 PMCID: PMC5153638 DOI: 10.1038/srep38832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy.
Collapse
|
7
|
De Stefano I, Giardullo P, Tanno B, Leonardi S, Pasquali E, Babini G, Saran A, Mancuso M. Nonlinear Radiation-Induced Cataract Using the RadiosensitivePtch1+/–Mouse Model. Radiat Res 2016; 186:315-21. [DOI: 10.1667/rr14440.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Li C, Athar M. Ionizing Radiation Exposure and Basal Cell Carcinoma Pathogenesis. Radiat Res 2016; 185:217-28. [PMID: 26930381 DOI: 10.1667/rr4284.s1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This commentary summarizes studies showing risk of basal cell carcinoma (BCC) development in relationship to environmental, occupational and therapeutic exposure to ionizing radiation (IR). BCC, the most common type of human cancer, is driven by the aberrant activation of hedgehog (Hh) signaling. Ptch, a tumor suppressor gene of Hh signaling pathway, and Smoothened play a key role in the development of radiation-induced BCCs in animal models. Epidemiological studies provide evidence that humans exposed to radiation as observed among the long-term, large scale cohorts of atomic bomb survivors, bone marrow transplant recipients, patients with tinea capitis and radiologic workers enhances risk of BCCs. Overall, this risk is higher in Caucasians than other races. People who were exposed early in life develop more BCCs. The enhanced IR correlation with BCC and not other common cutaneous malignancies is intriguing. The mechanism underlying these observations remains undefined. Understanding interactions between radiation-induced signaling pathways and those which drive BCC development may be important in unraveling the mechanism associated with this enhanced risk. Recent studies showed that Vismodegib, a Smoothened inhibitor, is effective in treating radiation-induced BCCs in humans, suggesting that common strategies are required for the intervention of BCCs development irrespective of their etiology.
Collapse
Affiliation(s)
- Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
9
|
Mavragani IV, Laskaratou DA, Frey B, Candéias SM, Gaipl US, Lumniczky K, Georgakilas AG. Key mechanisms involved in ionizing radiation-induced systemic effects. A current review. Toxicol Res (Camb) 2016; 5:12-33. [PMID: 30090323 PMCID: PMC6061884 DOI: 10.1039/c5tx00222b] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 08/06/2015] [Indexed: 12/11/2022] Open
Abstract
Organisms respond to physical, chemical and biological threats by a potent inflammatory response, aimed at preserving tissue integrity and restoring tissue homeostasis and function. Systemic effects in an organism refer to an effect or phenomenon which originates at a specific point and can spread throughout the body affecting a group of organs or tissues. Ionizing radiation (IR)-induced systemic effects arise usually from a local exposure of an organ or part of the body. This stress induces a variety of responses in the irradiated cells/tissues, initiated by the DNA damage response and DNA repair (DDR/R), apoptosis or immune response, including inflammation. Activation of this IR-response (IRR) system, especially at the organism level, consists of several subsystems and exerts a variety of targeted and non-targeted effects. Based on the above, we believe that in order to understand this complex response system better one should follow a 'holistic' approach including all possible mechanisms and at all organization levels. In this review, we describe the current status of knowledge on the topic, as well as the key molecules and main mechanisms involved in the 'spreading' of the message throughout the body or cells. Last but not least, we discuss the danger-signal mediated systemic immune effects of radiotherapy for the clinical setup.
Collapse
Affiliation(s)
- Ifigeneia V Mavragani
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Danae A Laskaratou
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| | - Benjamin Frey
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Serge M Candéias
- iRTSV-LCBM , CEA , Grenoble F-38000 , France
- IRTSV-LCBM , CNRS , Grenoble F-38000 , France
- iRTSV-LCBM , Univ. Grenoble Alpes , Grenoble F-38000 , France
| | - Udo S Gaipl
- Department of Radiation Oncology , University Hospital Erlangen , Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Erlangen , Germany
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene , Budapest , Hungary
| | - Alexandros G Georgakilas
- Physics Department , School of Applied Mathematical and Physical Sciences , National Technical University of Athens (NTUA) , Zografou 15780 , Athens , Greece . ; ; Tel: +30-210-7724453
| |
Collapse
|
10
|
Lock M, Muinuddin A, Kocha WI, Dinniwell R, Rodrigues G, D'souza D. Abscopal Effects: Case Report and Emerging Opportunities. Cureus 2015; 7:e344. [PMID: 26623199 PMCID: PMC4641721 DOI: 10.7759/cureus.344] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The abscopal effect is a phenomenon observed in the treatment of metastatic cancer where localized irradiation of a particular tumor site causes a response in a site distant to the irradiated volume. The mechanisms of the abscopal effect are speculated to be of several origins, including distant effects on p53, elaboration of inflammatory agents including cytokines, and, most recently, secondary to immune mechanisms. In this case report, we present a rare report of a patient with hepatocellular carcinoma with lung metastases who, after receiving radiation treatment to the liver, had a treatment response in the liver and a complete response in the lung. Recent advances in the understanding of the primary role of immune-modulated cytotoxicity, especially with the success of immune checkpoint inhibitors, have the potential to turn the abscopal effect from a rare phenomenon into a tool to guide antineoplastic therapy and provide a new line of research.
Collapse
Affiliation(s)
- Michael Lock
- Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, CA; Schulich School of Medicine & Dentistry, Western University, London, Ontario, CA
| | | | | | - Robert Dinniwell
- Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre
| | - George Rodrigues
- Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, CA; Schulich School of Medicine & Dentistry, Western University, London, Ontario, CA
| | - David D'souza
- Department of Radiation Oncology, London Regional Cancer Program, London, Ontario, CA; Schulich School of Medicine & Dentistry, Western University, London, Ontario, CA
| |
Collapse
|
11
|
Buonanno M, Randers-Pehrson G, Smilenov LB, Kleiman NJ, Young E, Ponnayia B, Brenner DJ. A Mouse Ear Model for Bystander Studies Induced by Microbeam Irradiation. Radiat Res 2015; 184:219-25. [PMID: 26207682 PMCID: PMC4539936 DOI: 10.1667/rr14057.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Radiation-induced bystander effects have been observed in vitro and in cell and tissue culture models, however, there are few reported studies showing these effects in vivo. To our knowledge, this is the first reported study on bystander effects induced by microbeam irradiation in an intact living mammal. The mouse ear was used to investigate radiation-induced bystander effects in keratinocytes, utilizing a 3 MeV proton microbeam (LET 13.1 keV/μm) with a range in skin of about 135 μm. Using a custom-designed holder, the ear of an anesthetized C57BL/6J mouse was flattened by gentle suction and placed over the microbeam port to irradiate cells along a 35 μm wide, 6 mm long path. Immunohistochemical analysis of γ-H2AX foci formation in tissue sections revealed, compared to control tissue, proton-induced γ-H2AX foci formation in one of the two epidermal layers of the mouse ear. Strikingly, a higher number of cells than expected showed foci from direct irradiation effects. Although the proton-irradiated line was ~35 μm wide, the average width spanned by γ-H2AX-positive cells exceeded 150 μm. Cells adjacent to or in the epidermal layer opposite the γ-H2AX-positive region did not exhibit foci. These findings validate this mammalian model as a viable system for investigating radiation-induced bystander effects in an intact living organism.
Collapse
Affiliation(s)
- M. Buonanno
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - G. Randers-Pehrson
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - L. B. Smilenov
- Center for Radiological Research, New York, New York 10032
| | - N. J. Kleiman
- Mailman School of Public Health, Columbia University Medical Center, New York, New York 10032
| | - E. Young
- Center for Radiological Research, New York, New York 10032
| | - B. Ponnayia
- Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - D. J. Brenner
- Center for Radiological Research, New York, New York 10032
| |
Collapse
|
12
|
Dong C, He M, Tu W, Konishi T, Liu W, Xie Y, Dang B, Li W, Uchihori Y, Hei TK, Shao C. The differential role of human macrophage in triggering secondary bystander effects after either gamma-ray or carbon beam irradiation. Cancer Lett 2015; 363:92-100. [PMID: 25896631 DOI: 10.1016/j.canlet.2015.04.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 12/30/2022]
Abstract
The abscopal effect could be an underlying factor in evaluating prognosis of radiotherapy. This study established an in vitro system to examine whether tumor-generated bystander signals could be transmitted by macrophages to further trigger secondary cellular responses after different irradiations, where human lung cancer NCI-H446 cells were irradiated with either γ-rays or carbon ions and co-cultured with human macrophage U937 cells, then these U937 cells were used as a bystander signal transmitter and co-cultured with human bronchial epithelial cells BEAS-2B. Results showed that U937 cells were only activated by γ-irradiated NCI-H446 cells so that the secondary injuries in BEAS-2B cells under carbon ion irradiation were weaker than γ-rays. Both TNF-α and IL-1α were involved in the γ-irradiation induced secondary bystander effect but only TNF-α contributed to the carbon ion induced response. Further assay disclosed that IL-1α but not TNF-α was largely responsible for the activation of macrophages and the formation of micronucleus in BEAS-2B cells. These data suggest that macrophages could transfer secondary bystander signals and play a key role in the secondary bystander effect of photon irradiation, while carbon ion irradiation has conspicuous advantage due to its reduced secondary injury.
Collapse
Affiliation(s)
- Chen Dong
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Mingyuan He
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhi Tu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Teruaki Konishi
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Weili Liu
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China
| | - Yuexia Xie
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China; Central Laboratory, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Bingrong Dang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Wenjian Li
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou 730000, China
| | - Yukio Uchihori
- Research Development and Support Center, National Institute of Radiological Sciences, Inage, Chiba 263-8555, Japan
| | - Tom K Hei
- Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - Chunlin Shao
- Institute of Radiation Medicine, Fudan University, No. 2094 Xie-Tu Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Sun R, Sbai A, Ganem G, Boudabous M, Collin F, Marcy PY, Doglio A, Thariat J. [Non-targeted effects (bystander, abscopal) of external beam radiation therapy: an overview for the clinician]. Cancer Radiother 2014; 18:770-8. [PMID: 25451674 DOI: 10.1016/j.canrad.2014.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 07/21/2014] [Accepted: 08/05/2014] [Indexed: 11/19/2022]
Abstract
Radiotherapy is advocated in the treatment of cancer of over 50 % of patients. It has long been considered as a focal treatment only. However, the observation of effects, such as fatigue and lymphopenia, suggests that systemic effects may also occur. The description of bystander and abscopal effects suggests that irradiated cells may exert an action on nearby or distant unirradiated cells, respectively. A third type of effect that involves feedback interactions between irradiated cells was more recently described (cohort effect). This new field of radiation therapy is yet poorly understood and the definitions suffer from a lack of reproducibility in part due to the variety of experimental models. The bystander effect might induce genomic instability in non-irradiated cells and is thus extensively studied for a potential risk of radiation-induced cancer. From a therapeutic perspective, reproducing an abscopal effect by using a synergy between ionizing radiation and immunomodulatory agents to elicit or boost anticancer immune responses is an interesting area of research. Many applications are being developed in particular in the field of hypofractionated stereotactic irradiation of metastatic disease.
Collapse
Affiliation(s)
- R Sun
- Département de radiothérapie, hôpital de la Pitié-Salpêtrière, 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - A Sbai
- Centre régional d'oncologie Hassan-II, BP 2013, Oued Nachef, Oujda, Maroc
| | - G Ganem
- Centre Jean-Bernard, clinique Victor-Hugo, 9, rue Beauverger, 72000 Le Mans, France
| | - M Boudabous
- Université Nice-Sophia Antipolis, 33, avenue Valombrose, 06189 Nice, France
| | - F Collin
- UMR 152 Pharma-Dev, université Toulouse-3, 31062 Toulouse cedex 09, France; UMR 152 Pharma-Dev, institut de recherche pour le développement (IRD), 31062 Toulouse cedex 09, France
| | - P-Y Marcy
- Département de radiologie, centre Antoine-Lacassagne, 33, avenue Valombrose, 06189 Nice, France
| | - A Doglio
- Unité de thérapie cellulaire et génique, faculté de médecine, université Nice-Sophia Antipolis, 33, avenue Valombrose, 06189 Nice, France
| | - J Thariat
- Université Nice-Sophia Antipolis, 33, avenue Valombrose, 06189 Nice, France; Département de radiothérapie, centre Antoine-Lacassagne, 227, avenue de la Lanterne, 06200 Nice, France.
| |
Collapse
|
14
|
Non-targeted radiation effects in vivo: a critical glance of the future in radiobiology. Cancer Lett 2013; 356:34-42. [PMID: 24333869 DOI: 10.1016/j.canlet.2013.11.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/21/2013] [Indexed: 11/22/2022]
Abstract
Radiation-induced bystander effects (RIBE), demonstrate the induction of biological non-targeted effects in cells which have not directly hit by radiation or by free radicals produced by ionization events. Although RIBE have been demonstrated using a variety of biological endpoints the mechanism(s) of this phenomenon still remain unclear. The controversial results of the in vitro RIBE and the evidence of non-targeted effects in various in vivo systems are discussed. The experimental evidence on RIBE, indicate that a more analytical and mechanistic in depth approach is needed to secure an answer to one of the most intriguing questions in radiobiology.
Collapse
|