1
|
Ding Y, Wang Y, Qi M, Zhang X, Wu D. Pioglitazone Modulates Microglia M1/M2 Polarization Through PPAR-γ Pathway and Exerts Neuroprotective Effects in Experimental Subarachnoid Hemorrhage. Mol Neurobiol 2024:10.1007/s12035-024-04664-w. [PMID: 39668302 DOI: 10.1007/s12035-024-04664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/04/2024] [Indexed: 12/14/2024]
Abstract
Subarachnoid hemorrhage (SAH), a subtype of hemorrhagic stroke primarily resulting from the rupture of intracranial aneurysms, remains a significant contributor to disability and mortality, notwithstanding advancements in treatment. This study investigates the neuroprotective effects of pioglitazone in SAH, focusing on the PPAR-γ pathway and its potential role in mitigating early brain injury (EBI) following SAH. Neuroprotective efficacy was assessed through neurobehavioral assessment, brain water content analysis, TUNEL, immunofluorescence, western blotting, and inflammatory factor assay. Results indicate that pioglitazone treatment effectively mitigated brain edema, reduced neuronal death, and enhanced short-term neurobehavioral function in SAH-afflicted rats. Furthermore, pioglitazone demonstrated sustained improvements in long-term neurobehavioral function and decreased neuronal loss post-SAH. Mechanistically, SAH induced the polarization of microglia towards the M1 phenotype and the release of pro-inflammatory cytokines. Conversely, pioglitazone treatment predominantly shifted microglia polarization towards the M2 phenotype, eliciting a notable release of anti-inflammatory cytokines. Notably, the positive effects of pioglitazone were nullified by the PPAR-γ inhibitor T0070907. In conclusion, our findings suggest that pioglitazone may alleviate neuroinflammation by modulating microglia M1/M2 polarization through the PPAR-γ pathway, thereby conferring neuroprotection against SAH injury and positing itself as a potential therapeutic agent for SAH treatment.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Neurosurgery, The Affiliated Yixing Hospital of Jiangsu University, Jiangsu Province, Yixing, 214200, China
| | - Yue Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA) Jiangsu Province, Wuxi, 214044, China
| | - Ming Qi
- Department of Neurosurgery, The Affiliated Yixing Hospital of Jiangsu University, Jiangsu Province, Yixing, 214200, China
| | - Xu Zhang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA) Jiangsu Province, Wuxi, 214044, China
| | - Da Wu
- Department of Neurosurgery, The Affiliated Yixing Hospital of Jiangsu University, Jiangsu Province, Yixing, 214200, China.
| |
Collapse
|
2
|
Jakkamsetti MS, Kolusu AS, Rongala S, Arakareddy BP, Nori LP, Samudrala PK. Saroglitazar, a PPAR α/γ agonist alleviates 3-Nitropropionic acid induced neurotoxicity in rats: Unveiling the underlying mechanisms. Neurotoxicology 2024; 105:131-146. [PMID: 39326639 DOI: 10.1016/j.neuro.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Saroglitazar (SGZ), a peroxisomal proliferated activated receptor α/γ agonist showed neuroprotective effects in various neurodegenerative disorders like Alzheimer's and Parkinson's. However, no studies were performed on Huntington's, so the goal of the current study is to examine the effect of SGZ on Huntington's disease like symptoms induced by 3-Nitropropionic acid. In this protocol, twenty-four rats were divided into four groups, each group consisting of 6 animals. Group 1: The control group received 1 % CMC 10 mg/kg, p.o. for 14 days. Groups 2, 3, and 4 received 3-NP 15 mg/kg, i.p. from Day 1 to Day 7. Groups 3 and 4 received SGZ 5 mg/kg, p.o. and 10 mg/kg, p.o. respectively once daily from day 1 to day 14. Various behavioral tests like OFT, rotarod, hanging wire, narrow beam walk, MWM, and Y-maze were performed. On day-15, the animals were euthanised by cervical dislocation and brain sample were isolated for biochemical and histopathological analysis. Administration of 3-NP showed a significant decrease in motor coordination and cognitive function. Furthermore, 3-NP altered the activity of acetylcholinesterase, anti-oxidant enzymes, Nrf-2, NF-κB, BDNF, CREB levels, and histological features. However, treatment with SGZ showed ameliorative effects in the 3-NP induced neurotoxicity via PPAR α/γ pathway by reducing motor dysfunction, memory impairment, cholinesterase levels, oxidative stress, neuroinflammation. It also enhanced the levels of Nrf-2, BDNF, and CREB expression and improved histological features. In conclusion, treatment with Saroglitazar attenuated Huntington's disease-like symptoms in rats which are induced by 3-NP via activation of PPAR α/γ pathway.
Collapse
Affiliation(s)
- Madhuri Suma Jakkamsetti
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Aravinda Sai Kolusu
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Suma Rongala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Bhanu Prakash Arakareddy
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Lakshmi Prashanthi Nori
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India
| | - Pavan Kumar Samudrala
- Department of Pharmacology, Shri Vishnu College of Pharmacy (SVCP), Vishnupur, Bhimavaram, West Godavari, Andhra Pradesh 534202, India.
| |
Collapse
|
3
|
Nassar A, Kaplanski J, Azab AN. A Selective Nuclear Factor-κB Inhibitor, JSH-23, Exhibits Antidepressant-like Effects and Reduces Brain Inflammation in Rats. Pharmaceuticals (Basel) 2024; 17:1271. [PMID: 39458912 PMCID: PMC11509963 DOI: 10.3390/ph17101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that nuclear factor (NF)-κB is involved in the pathophysiology of mood disorders. OBJECTIVES AND METHODS We conducted two experimental protocols in rats to investigate the effects of a selective NF-κB inhibitor (JSH-23) on (i) lipopolysaccharide (LPS)-induced inflammation and (ii) on behavioral phenotypes in rat models of depression (sucrose consumption test and forced swim test) and mania (amphetamine-induced hyperactivity test). Additionally, we tested the effects of JSH-23 on levels of inflammatory components (interleukin-6, prostaglandin E2, nuclear phospho-p65, and tumor necrosis factor-α) in the brain. RESULTS Acute treatment with JSH-23 (10 mg/kg, intraperitoneally [ip]) led to potent anti-inflammatory effects in LPS-treated rats, including a diminished hypothermic response to LPS and a reduction in pro-inflammatory mediators' levels in the brain. Chronic treatment with JSH-23 (3 mg/kg, ip, once daily, for 14 days) resulted in robust antidepressant-like effects (increased sucrose consumption and decreased immobility time). The antidepressant-like effects of JSH-23 were mostly accompanied by a reduction in levels of pro-inflammatory mediators in the brain. On the other hand, JSH-23 did not reduce amphetamine-induced hyperactivity. CONCLUSIONS Altogether, these data suggest that NF-κB may be a potential therapeutic target for pharmacological interventions for depression.
Collapse
Affiliation(s)
- Ahmad Nassar
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Jacob Kaplanski
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Abed N. Azab
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Department of Nursing, School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
4
|
Baghcheghi Y, Razazpour F, Seyedi F, Arefinia N, Hedayati-Moghadam M. Exploring the molecular mechanisms of PPARγ agonists in modulating memory impairment in neurodegenerative disorders. Mol Biol Rep 2024; 51:945. [PMID: 39215798 DOI: 10.1007/s11033-024-09850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative diseases are characterized by progressive memory impairment and cognitive decline. This review aims to unravel the molecular mechanisms involved in the enhancement of memory function and mitigation of memory impairment through the activation of PPARγ agonists in neurodegenerative diseases. The findings suggest that PPARγ agonists modulate various molecular pathways involved in memory formation and maintenance. Activation of PPARγ enhances synaptic plasticity, promotes neuroprotection, suppresses neuroinflammation, attenuates oxidative stress, and regulates amyloid-beta metabolism. The comprehensive understanding of these molecular mechanisms would facilitate the development of novel therapeutic approaches targeting PPARγ to improve memory function and ultimately to alleviate the burden of neurodegenerative diseases. Further research, including clinical trials, is warranted to explore the efficacy, safety, and optimal use of specific PPARγ agonists as potential therapeutic agents in the treatment of memory impairments associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Seyedi
- Department of Anatomical Sciences, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Nasir Arefinia
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
5
|
Dey AD, Mannan A, Dhiman S, Singh TG. Unlocking new avenues for neuropsychiatric disease therapy: the emerging potential of Peroxisome proliferator-activated receptors as promising therapeutic targets. Psychopharmacology (Berl) 2024; 241:1491-1516. [PMID: 38801530 DOI: 10.1007/s00213-024-06617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
RATIONALE Peroxisome proliferator-activated receptors (PPARs) are transcription factors that regulate various physiological processes such as inflammation, lipid metabolism, and glucose homeostasis. Recent studies suggest that targeting PPARs could be beneficial in treating neuropsychiatric disorders by modulating neuronal function and signaling pathways in the brain. PPAR-α, PPAR-δ, and PPAR-γ have been found to play important roles in cognitive function, neuroinflammation, and neuroprotection. Dysregulation of PPARs has been associated with neuropsychiatric disorders like bipolar disorder, schizophrenia, major depression disorder, and autism spectrum disorder. The limitations and side effects of current treatments have prompted research to target PPARs as a promising novel therapeutic strategy. Preclinical and clinical studies have shown the potential of PPAR agonists and antagonists to improve symptoms associated with these disorders. OBJECTIVE This review aims to provide an overview of the current understanding of PPARs in neuropsychiatric disorders, their potential as therapeutic targets, and the challenges and future directions for developing PPAR-based therapies. METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out with the keywords "PPAR, Neuropsychiatric disorders, Oxidative stress, Inflammation, Bipolar Disorder, Schizophrenia, Major depression disorder, Autism spectrum disorder, molecular pathway". RESULT & CONCLUSION Although PPARs present a hopeful direction for innovative therapeutic approaches in neuropsychiatric conditions, additional research is required to address obstacles and convert this potential into clinically viable and individualized treatments.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, India
| | | |
Collapse
|
6
|
Ardenkjær-Skinnerup J, Saar D, Christiansen S, Svingen T, Hadrup N, Brown KA, Emanuelli B, Kragelund BB, Ravn-Haren G, Vogel U. Effects of ethanol or ethylene glycol exposure on PPARγ and aromatase expression in adipose tissue. Biochem Biophys Rep 2024; 38:101742. [PMID: 38873224 PMCID: PMC11170351 DOI: 10.1016/j.bbrep.2024.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
The estrogen-synthesizing enzyme aromatase is expressed in adipose tissue where it controls the local concentration of estrogen. It has been suggested that the organic solvents ethanol and ethylene glycol can induce estrogen synthesis by inhibiting PPARγ activity. Since elevated estrogen synthesis in adipose tissue is a risk factor for breast cancer development, it is of interest to further characterize the mechanisms regulating aromatase expression. Here, we explored the mechanisms by which ethanol and ethylene glycol modulate aromatase mRNA expression and the ultimate conversion of androgens into estrogens. NMR spectroscopy revealed that ethanol and ethylene glycol influence the active state of PPARγ. An inhibitory effect on PPARγ was confirmed by adipogenesis assays and PPARγ target gene expression analysis in adipocytes. However, only ethanol increased aromatase mRNA in differentiated human adipocytes. In contrast, ethylene glycol downregulated aromatase in a PPARγ-independent manner. An animal study using female Wistar rats was conducted to assess the acute effects of ethanol and ethylene glycol on aromatase expression in adipose tissue within a physiological context. No changes in aromatase or PPARγ target gene (Adipoq and Fabp4) levels were observed in adipose tissue or ovary in response to the chemical exposures, suggesting an absence of acute PPARγ-mediated effects in these organs. The results suggest that ethanol and ethylene glycol are weak PPARγ antagonists in mouse and human adipocytes as well as in cell-free NMR spectroscopy. Both compounds seem to affect adipocyte aromatase expression in vitro, where ethanol increased aromatase expression PPARγ-dependently and ethylene glycol decreased aromatase expression independently of PPARγ. No acute effects on aromatase expression or PPARγ activity were observed in adipose tissue or ovary in rats in this study design.
Collapse
Affiliation(s)
- Jacob Ardenkjær-Skinnerup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Daniel Saar
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Sofie Christiansen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Terje Svingen
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Niels Hadrup
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| | - Kristy A. Brown
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Brice Emanuelli
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe B. Kragelund
- REPIN and Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Gitte Ravn-Haren
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulla Vogel
- The National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- The National Research Centre for the Working Environment, Copenhagen Ø, Denmark
| |
Collapse
|
7
|
Ma Z, Yu Y, Gao M, Chen P, Hong H, Yu D, Liang Z, Bai Y, Ye Q, Wang Y, Huang G, Tan H. Protective Effect of Hop Ethyl Acetate Extract on Corticosterone-Induced PC12 and Improvement of Depression-like Behavior in Mice. ACS Chem Neurosci 2024; 15:1893-1903. [PMID: 38613492 DOI: 10.1021/acschemneuro.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Depression is a common mental disorder. In recent years, more and more attention has been paid to depression and its etiology and pathogenesis. This review aims to explore the neuroprotective and antidepressant effects of hop components. By establishing an in vitro cell damage model using PC12 cells induced by corticosterone (CORT) and an in vivo depression model through the intracranial injection of lipopolysaccharide (LPS) in mice, hop ethyl acetate extract (HEA) was used to study the protective effect and mechanism of HEA on neuronal cells in vitro and the antidepression effect and mechanism in vivo. The results showed that HEA increased the survival and decreased the rate of lactate dehydrogenase (LDH) release, apoptosis, and the ROS and NO content of CORT-induced PC12 cells. HEA alleviated depressive-like behavior, neuroinflammation, reduction of norepinephrine, and dendritic spines induced by intracerebroventricular injection of LPS in mice and increases the expression levels of BDNF, SNAP 25, and TrkB proteins without any significant side effects or toxicity. Hops demonstrated significant comprehensive utilization value, and this work provided an experimental basis for the role of hops in the treatment of depression and provided a basis for the development of HEA for antidepressant drugs or dietary therapy products.
Collapse
Affiliation(s)
- Ziwei Ma
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Yuming Yu
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Ming Gao
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Peng Chen
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Huixia Hong
- State Key Laboratory of Chemistry and Utilization of Carbon-Based Energy Resources; College of Chemistry, Xinjiang University, Urumqi, Xinjiang 830017, P. R. China
| | - Dingle Yu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Zhenjiang Liang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Yu Bai
- Center for Child Care and Mental Health, Shenzhen Pediatrics Institute of Shantou University Medical College Health, Shenzhen 518035, China
| | - Qinlian Ye
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518038, China
| | - Yachao Wang
- The Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518038, China
- Department of Neurosurgery, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Guodong Huang
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, and the Institute of Translational Medicine, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, No. 3002 Sungang Westroad, Futian District, Shenzhen 518035, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Pediatrics Institute of Shantou University Medical College Health, Shenzhen 518035, China
| |
Collapse
|
8
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Tang HT, Zhang YP, Zhao S, Song C. Common mechanisms involved in lung cancer and depression: The dominant role of interleukin-6-IDO pathway in the lung-brain axis. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2023.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
10
|
Lan Y, Ma Z, Chang L, Peng J, Zhang M, Sun Q, Qiao R, Hou X, Ding X, Zhang Q, Peng Q, Dong J, Liu X. Sea buckthorn polysaccharide ameliorates high-fat diet induced mice neuroinflammation and synaptic dysfunction via regulating gut dysbiosis. Int J Biol Macromol 2023; 236:123797. [PMID: 36828095 DOI: 10.1016/j.ijbiomac.2023.123797] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/04/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Currently, definitive treatment for neurodegenerative diseases without side effects has not been developed, therefore, exploring natural polysaccharides with neuroprotection to prevent the occurrences and progressions of cognitive dysfunctions has important significance. The purpose of this study was to investigate the effects of sea buckthorn polysaccharide (SBP) on high-fat diet (HFD) induced mice cognitive dysfunctions and attempted to explore its biological mechanisms. Behavior tests (Y-maze and Barnes maze) suggested that SBP effectively alleviated the HFD induced behavioral disorders, which was in accordance with the inhibition of neuroinflammation via suppressing the NF-κB pathway and amelioration of synaptic dysfunction via upregulating CREB/BDNF/TrkB pathway in mice brain. Furthermore, SBP alleviated the gut barrier impairment, inflammatory responses, and lipopolysaccharide invasion into blood circulation via regulating the gut microbiome structure, especially correcting the reduction of Ileibacterium and increase of Lactobacillus, Dubosiella, Olsenella, Helicobacter, and Ruminiclostridium_9 in HFD mice. Therefore, the reversal effects of SBP on gut dysbiosis might be the important reason for its positive effects on cognitive dysfunction induced by HFD in mice.
Collapse
Affiliation(s)
- Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhiyuan Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lili Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Mengqi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qingyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruixue Qiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinglin Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuechao Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; Puredia Limited, Xining, China
| | - Juane Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Wang L, Li M, Zhu C, Qin A, Wang J, Wei X. The protective effect of Palmatine on depressive like behavior by modulating microglia polarization in LPS-induced mice. Neurochem Res 2022; 47:3178-3191. [PMID: 35917005 DOI: 10.1007/s11064-022-03672-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
The purpose of the present study was to evaluate the protective effect of Palmatine on LPS-induced depressive like behavior and explore its potential mechanism. The mice were intragastrically treated with Fluoxetine or Palmatine once daily for 1 week. After the last drug administration, the mice were intraperitoneally challenged with LPS and suffered for Sucrose preference test, Tail suspension test, Forced swimming test and Open field test. The pro-inflammatory biomarkers were measured by ELISA, qPCR, WB and immunofluorescence. As a result, the administration of Palmatine effectively lessened depressive-like behavior. Palmatine could decrease the levels of pro-inflammatory cytokines TNF-α, IL-6, the expressions of CD68, iNOS mRNA, as well as increase the levels of anti-inflammatory cytokines IL-4, IL-10, the expressions of CD206, Arg1 mRNA, Ym1 mRNA both in LPS-induced mice and in LPS-induced BV2 cells. The beneficial effect of Palmatine might be attributed to the suppression of M1 microglia polarization and the promotion of M2 microglia polarization via PDE4B/KLF4 signaling. The similar results were observed in CUMS-induced depressive mice. The transfection with PDE4B SiRNA or KLF4 SiRNA indicated that PDE4B and KLF4 were both involved in the Palmatine-mediated microglia polarization. Molecular docking indicated that Palmatine could interact with PDE4B. In conclusion, this research demonstrated that Palmatine attenuated depressive like behavior by modulating microglia polarization via PDE4B/KLF4 signaling.
Collapse
Affiliation(s)
- Lei Wang
- School of Pharmacy, Jiangsu Health Vocational College, No.69, Huangshanling Road, 211800, Nanjing, China
| | - Min Li
- Department of pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jingshi Road, 250014, Jinan, China
| | - Cuiping Zhu
- Pukou branch of Jiangsu Province Hospital, No.166, Shanghe street, 211800, Nanjing, China
| | - Aiping Qin
- School of Pharmacy, Jiangsu Health Vocational College, No.69, Huangshanling Road, 211800, Nanjing, China
| | - Jinchun Wang
- School of Pharmacy, Jiangsu Health Vocational College, No.69, Huangshanling Road, 211800, Nanjing, China.
| | - Xianni Wei
- Department of Pharmacy, Xiamen Haicang Hospital, No. 89, Haiyu Road, 361026, Xiamen, China.
| |
Collapse
|
12
|
Farajdokht F, Oghbaei F, Sadigh-Eteghad S, Majdi A, Aghsan SR, Farhoudi M, Vahidi-Eyrisofla N, Mahmoudi J. Cerebrolysin® and environmental enrichment, alone or in combination, ameliorate anxiety- and depressive-like behaviors in a post-ischemic depression model in mice. J Stroke Cerebrovasc Dis 2022; 31:106519. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/18/2022] [Accepted: 04/14/2022] [Indexed: 11/27/2022] Open
|
13
|
Targeting NRF2 in Type 2 diabetes mellitus and depression: Efficacy of natural and synthetic compounds. Eur J Pharmacol 2022; 925:174993. [PMID: 35513015 DOI: 10.1016/j.ejphar.2022.174993] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/18/2022]
Abstract
Evidence supports a strong bidirectional association between depression and Type 2 diabetes mellitus (T2DM). The harmful impact of oxidative stress and chronic inflammation on the development of both disorders is widely accepted. Nuclear factor erythroid 2-related factor 2 (NRF2) is a pertinent target in disease management owing to its reputation as the master regulator of antioxidant responses. NRF2 influences the expression of various cytoprotective phase 2 antioxidant genes, which is hampered in both depression and T2DM. Through interaction and crosstalk with several signaling pathways, NRF2 endeavors to contain the widespread oxidative damage and persistent inflammation involved in the pathophysiology of depression and T2DM. NRF2 promotes the neuroprotective and insulin-sensitizing properties of its upstream and downstream targets, thereby interrupting and preventing disease advancement. Standard antidepressant and antidiabetic drugs may be powerful against these disorders, but unfortunately, they come bearing distressing side effects. Therefore, exploiting the therapeutic potential of NRF2 activators presents an exciting opportunity to manage such bidirectional and comorbid conditions.
Collapse
|
14
|
Tang S, Lian X, Cheng H, Guo J, Ni D, Huang C, Gu X, Meng H, Jiang J, Li X. Bacterial Lipopolysaccharide Augmented Malignant Transformation and Promoted the Stemness in Prostate Cancer Epithelial Cells. J Inflamm Res 2021; 14:5849-5862. [PMID: 34785925 PMCID: PMC8590462 DOI: 10.2147/jir.s332943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose To study bacterial lipopolysaccharide (LPS)-induced cancer stem-like transformation and to investigate the inhibitory effect of Trichostatin A (TSA) on the malignant transformation through targeting p-Stat3 signaling. Methods 2D, 3D, and serum-free suspension culture system were used to study LPS-induced malignant transformation in series malignant grade of prostate cancer (PCa) epithelial cells. Flow cytometry assay and RT-PCR were utilized to evaluate the CD44+CD133+ stem cell population, the expression of inflammatory cytokines and series tumor stemness biomarkers. Meanwhile, Western blot was used to analyze the alteration of cell signaling associated-molecules by treatment with TSA, an original antifungal antibiotic and a panel inhibitor of histone deacetylase. Results Our study found that LPS promoted the migration, invasion and stem-like tumoroshpere forming in multiple PCa cell lines including DU145, PC3, 22RV1, LNCaP. LPS also enriched CD44+CD133+ stem cell population and increased the expression of series tumor stemness biomarkers (e.g., CD44, CD133, SOX-2, α-intergrin, Nestin, etc.). TSA was found to prevent tumor cell migration, invasion and tumorosphere forming in DU145 and PC3 cells with increasing tumor suppressive Maspin and reducing both phosphorylation of Stat3 (p-Stat3) and pro-oncogene c-Myc expression in LPS-treated DU145 cells. Furthermore, blocking Stat3 signaling pathway by treatment with TSA and/or small molecule compound Stattic of an p-Stat3 inhibitor effectively abrogated LPS-induced tumorosphere forming with decrease of IL-6, IL-8 and stemness biomarkers CD44, SOX-2 expression. Conclusion Our data demonstrated that the inflammatory agent of bacterial LPS augmented malignant transformation and promoted the cancerous stemness in PCa epithelial cells. TSA could prevent, at least in part, the LPS-induced malignant transformation by targeting p-Stat3/c-Myc signaling pathway and reducing inflammatory IL-6, IL-8. In addition, the assay of LPS-induced tumorosphere forming could serve as a simple and an easy handling method for targeting cancer stem cells drug screening in vitro in clinical practice.
Collapse
Affiliation(s)
- Sijie Tang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China.,Department of Urology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xueqi Lian
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Huiying Cheng
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Jiaqian Guo
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Daguang Ni
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Can Huang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xiang Gu
- Department of Urology, the Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Hong Meng
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, 48201, USA
| | - Jiajia Jiang
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China
| | - Xiaohua Li
- The Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, Suzhou, 215600, People's Republic of China.,The Laboratory of Clinical Genomics, Hefei KingMed Diagnostics Ltd, Hefei, 230088, People's Republic of China.,National Center for Gene Testing Technology Application & Demonstration (Anhui), Hefei, 230088, People's Republic of China
| |
Collapse
|
15
|
Prowse N, Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci Biobehav Rev 2021; 131:135-163. [PMID: 34537262 DOI: 10.1016/j.neubiorev.2021.09.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
Stressors ranging from psychogenic/social to neurogenic/injury to systemic/microbial can impact microglial inflammatory processes, but less is known regarding their effects on trophic properties of microglia. Recent studies do suggest that microglia can modulate neuronal plasticity, possibly through brain derived neurotrophic factor (BDNF). This is particularly important given the link between BDNF and neuropsychiatric and neurodegenerative pathology. We posit that certain activated states of microglia play a role in maintaining the delicate balance of BDNF release onto neuronal synapses. This focused review will address how different "activators" influence the expression and release of microglial BDNF and address the question of tropomyosin receptor kinase B (TrkB) expression on microglia. We will then assess sex-based differences in microglial function and BDNF expression, and how microglia are involved in the stress response and related disorders such as depression. Drawing on research from a variety of other disorders, we will highlight challenges and opportunities for modulators that can shift microglia to a "trophic" phenotype with a view to potential therapeutics relevant for stressor-related disorders.
Collapse
Affiliation(s)
- Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| | - Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
16
|
Jia Z, Yang J, Cao Z, Zhao J, Zhang J, Lu Y, Chu L, Zhang S, Chen Y, Pei L. Baicalin ameliorates chronic unpredictable mild stress-induced depression through the BDNF/ERK/CREB signaling pathway. Behav Brain Res 2021; 414:113463. [PMID: 34280458 DOI: 10.1016/j.bbr.2021.113463] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) can activate the extracellular regulated protein kinase (ERK)/cAMP response element binding protein (CREB) cascade revealing an important role in antidepressant effects. Here, we studied the neuroprotective effect of baicalin (BA) in mice with chronic unpredictable mild stress (CUMS)-induced via a BDNF/ERK/CREB signaling pathway. Depression was induced via six weeks of CUMS in male ICR mice, and drug therapy was given simultaneously for the last three weeks. Cognitive dysfunctions were then evaluated via sucrose preference test (SPT), open field test (OFT), Morris water maze test (MWM), tail suspension test (TST), and novelty suppressed feeding test (NSF). Western blot and real-time PCR were then used to detect the relative expression of ERK, CREB, p-ERK, and p-CREB. Integrated optical density (IOD) tests of p-ERK and p-CREB were then evaluated via immunofluorescence. The behavior results showed that the cognitive dysfunctions increased in the CUMS group versus the control (CON) group (p < 0.01). There were decreases in fluoxetine (FLU) and BA groups (p < 0.05, p < 0.01). The protein ratios of p-ERK/ERK, p-CREB/CREB and ERK mRNA, and CREB mRNA expression decreased in the CUMS group (p < 0.01) and markedly increased in the FLU and BA groups (p < 0.05, p < 0.01). The IOD value of the p-ERK and p-CREB in the CUMS group was decreased versus the CON group (p < 0.01), and these changes were improved via BA and FLU treatment (p < 0.05, p < 0.01). This study indicated that BA can improve cognitive functions and has antidepressant effects in mice, which may be associated with activation of the BDNF/ERK/CREB signaling pathway in the hippocampus.
Collapse
Affiliation(s)
- Zhixia Jia
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiali Yang
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zhuoqing Cao
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jing Zhao
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Jinhu Zhang
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Ye Lu
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China
| | - Li Chu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Shaodan Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yuan Chen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Lin Pei
- Hebei Key Laboratory of Turbidity, Hebei Academy of Chinese Medicine Sciences, Shijiazhuang, Hebei, 050011, China.
| |
Collapse
|
17
|
Sağır D. Dose-dependent effects of prenatal exposure of pioglitazone, the PPARγ agonist, on the hippocampus development and learning and memory performance of rat offspring. Toxicol Appl Pharmacol 2021; 421:115544. [PMID: 33894214 DOI: 10.1016/j.taap.2021.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
It is known that pioglitazone, defined as a PPARγ agonist, has neuron-protective properties in nervous system disorders. The aim of this study is to investigate the effects of pioglitazone administration at different doses during prenatal period on the neurons, glial cells and learning-memory levels in the hippocampus of rat offspring. Pregnant rats were divided into three groups; Low-Dose Pioglitazone (LDP), High-Dose Pioglitazone (HDP) and control (C) (n = 3). Pregnant rats in the HDP and LDP groups were given pioglitazone at 30 mg/kg and 5 mg/kg doses, respectively, by gavage once a day during their pregnancy. No procedure was applied to the rats in the control group. Morris water tank test was applied to offspring obtained from postnatal 24th to 28th day. The offspring were sacrificed on the 29th postal day and their brain tissues removed. Stereological, histopathological and immunohistochemical techniques were used to analyze brain tissues. As a result of the analysis, it was observed that there were delays in learning and memory, the number of pyramidal neurons decreased, and the density of cells stained with glial fibrillar acidic protein (GFAP) positive increased in the HDP group compared to the other groups (p < 0.05). No significant difference was found between the LDP and control groups in terms of these parameters (p > 0.05). Our results showed that pioglitazone administered in the prenatal period had an effect on the hippocampus development and learning and memory performance of rats, depending on the dose.
Collapse
Affiliation(s)
- Dilek Sağır
- Faculty of Health Sciences, Sinop University, 57000 Sinop, Turkey.
| |
Collapse
|
18
|
Yang WS, Shi Z, Dong X, Liu P, Chen M, Hu Y. Involvement of 5-HT-BDNF signaling axis in mediating synergistic antidepressant-like effects after combined administration of two oligosaccharide esters. Food Sci Nutr 2021; 9:1180-1191. [PMID: 33598202 PMCID: PMC7866620 DOI: 10.1002/fsn3.2098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
Potential mechanisms of depression involving herbal medicines and their specific compounds include elevated 5-HT level and downstream BDNF pathway. To identify potentially new combined therapeutic strategies, 3,6'-disinapoylsucrose (DISS) and tenuifoliside A (TFSA) have been observed to show antidepressant-like effects and its related 5-HT-BDNF pathway. We have tried to investigate whether combined administration of DISS and TFSA exerted more effective in the treatment of depression, as assessed through tail suspension test (TST) and forced swimming test (FST). In addition, we also analyzed the expression of three important proteins, cyclic adenosine monophosphate (cAMP) response element binding (CREB), brain-derived neurotrophic factor (BDNF), and cAMP-regulated transcriptional coactivators (CRTC1), which have been shown to be involved in the regulation of the neurotrophic factors in the hippocampus. The DISS and TFSA separately, both at a dose of 5 mg/kg each, displayed small effect in the immobility time. However, combined treatment of these two in multiple doses exhibited better effect. Moreover, combined treatment of DISS and TFSA also demonstrated enhanced levels of 5-hydroxytryptamine (5-HT), and stronger increase in the phosphorylation levels of CREB, BDNF, and CRTC1 proteins in the hippocampus. Overall, our results indicated that coadministration of these two oligosaccharide esters at low dose may induce more pronounced antidepressant activity, in comparison with individual treatment even at high dosage. Thus, the antidepressant properties of both these compounds can be attributed to their ability to influence 5-HT and BDNF pathway, and thereby suggesting that this combination strategy can definitely act as alternative therapy for depression disorder with very limited side effects.
Collapse
Affiliation(s)
- Wen Shan Yang
- Department of PharmacyMedical Supplier CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLAChinese PLA General HospitalBeijingChina
- Department of OutpatientGroup 82 Military HospitalBaodingChina
| | - Zhen‐Guo Shi
- Department of PharmacyMedical Supplier CenterChinese PLA General HospitalBeijingChina
- Medical AffairPharmacy OfficeChinese PLA General HospitalBeijingChina
| | - Xian‐Zhe Dong
- Department of PharmacyMedical Supplier CenterChinese PLA General HospitalBeijingChina
- Department of PharmacyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ping Liu
- Department of PharmacyMedical Supplier CenterChinese PLA General HospitalBeijingChina
| | - Meng‐li Chen
- Department of PharmacyMedical Supplier CenterChinese PLA General HospitalBeijingChina
| | - Yuan Hu
- Department of PharmacyMedical Supplier CenterChinese PLA General HospitalBeijingChina
| |
Collapse
|
19
|
Martin H, Bullich S, Guiard BP, Fioramonti X. The impact of insulin on the serotonergic system and consequences on diabetes-associated mood disorders. J Neuroendocrinol 2021; 33:e12928. [PMID: 33506507 DOI: 10.1111/jne.12928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
The idea that insulin could influence emotional behaviours has long been suggested. However, the underlying mechanisms have yet to be solved and there is no direct and clear-cut evidence demonstrating that such action involves brain serotonergic neurones. Indeed, initial arguments in favour of the association between insulin, serotonin and mood arise from clinical or animal studies showing that impaired insulin action in type 1 or type 2 diabetes causes anxiety- and depressive symptoms along with blunted plasma and brain serotonin levels. The present review synthesises the main mechanistic hypotheses that might explain the comorbidity between diabetes and depression. It also provides a state of knowledge of the direct and indirect experimental evidence that insulin modulates brain serotonergic neurones. Finally, it highlights the literature suggesting that antidiabetic drugs present antidepressant-like effects and, conversely, that serotonergic antidepressants impact glucose homeostasis. Overall, this review provides mechanistic insights into how insulin signalling alters serotonergic neurotransmission and related behaviours bringing new targets for therapeutic options.
Collapse
Affiliation(s)
- Hugo Martin
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| | - Sébastien Bullich
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), CNRS UMR5169, UPS, Université de Toulouse, Toulouse, France
| | - Xavier Fioramonti
- NutriNeuro, UMR 1286 INRAE, Bordeaux INP, Bordeaux University, Bordeaux, France
| |
Collapse
|
20
|
STAT3 in the dorsal raphe gates behavioural reactivity and regulates gene networks associated with psychopathology. Mol Psychiatry 2021; 26:2886-2899. [PMID: 33046834 PMCID: PMC8505245 DOI: 10.1038/s41380-020-00904-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/02/2023]
Abstract
The signal transducer and activator of transcription 3 (STAT3) signalling pathway is activated through phosphorylation by Janus kinases in response to a diverse set of immunogenic and non-immunogenic triggers. Several distinct lines of evidence propose an intricate involvement of STAT3 in neural function relevant to behaviour in health and disease. However, in part due to the pleiotropic effects resulting from its DNA binding activity and the consequent regulation of expression of a variety of genes with context-dependent cellular consequences, the precise nature of STAT3 involvement in the neural mechanisms underlying psychopathology remains incompletely understood. Here, we focused on the midbrain serotonergic system, a central hub for the regulation of emotions, to examine the relevance of STAT3 signalling for emotional behaviour in mice by selectively knocking down raphe STAT3 expression using germline genetic (STAT3 KO) and viral-mediated approaches. Mice lacking serotonergic STAT3 presented with reduced negative behavioural reactivity and a blunted response to the sensitising effects of amphetamine, alongside alterations in midbrain neuronal firing activity of serotonergic neurons and transcriptional control of gene networks relevant for neuropsychiatric disorders. Viral knockdown of dorsal raphe (DR) STAT3 phenocopied the behavioural alterations of STAT3 KO mice, excluding a developmentally determined effect and suggesting that disruption of STAT3 signalling in the DR of adult mice is sufficient for the manifestation of behavioural traits relevant to psychopathology. Collectively, these results suggest DR STAT3 as a molecular gate for the control of behavioural reactivity, constituting a mechanistic link between the upstream activators of STAT3, serotonergic neurotransmission and psychopathology.
Collapse
|
21
|
Essmat N, Soliman E, Mahmoud MF, Mahmoud AAA. Antidepressant activity of anti-hyperglycemic agents in experimental models: A review. Diabetes Metab Syndr 2020; 14:1179-1186. [PMID: 32673838 DOI: 10.1016/j.dsx.2020.06.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Diabetes Mellitus (DM) and depression occur comorbidly and share some pathophysiological mechanisms. The course of depression in patients with the two conditions is severe. Treatment of depression in diabetic patients requires special attention because most of psychopharmacological agents can worsen glycemic control. This article aims to review studies evaluating the antidepressant effect of anti-hyperglycemic agents from preclinical perspective. METHODS A literature search was performed with PubMed and Google Scholar using relevant keywords (antidiabetic; diabetes; depression; antidepressant; animals) to extract relevant studies evaluating the antidepressant activity of anti-hyperglycemic agents in experimental models. RESULTS Several studies have reported that some traditional anti-hyperglycemic agents reduce depression-like behavior in the absence or presence of diabetes. These drugs include insulin, glyburide, metformin, pioglitazone, vildagliptin, liraglutide, and exenatide. The antidepressant activity of anti-hyperglycemic agents may be mediated by reducing the blood glucose level, ameliorating the central oxidative stress and inflammation, and regulating the hypothalamic-pituitary-adrenal axis (HPAA). CONCLUSIONS Drugs which have both antidiabetic and antidepressant activities can provide better treatment strategy for patients with diabetes-associated depression. However, further research studies are still required in human subjects.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Mona F Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Amr A A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt; Department of Pharmacology, Pharmacy Program, Oman College of Health Sciences, Muscat, 114, Oman
| |
Collapse
|
22
|
Qin X, Wang W, Wu H, Liu D, Wang R, Xu J, Jiang H, Pan F. PPARγ-mediated microglial activation phenotype is involved in depressive-like behaviors and neuroinflammation in stressed C57BL/6J and ob/ob mice. Psychoneuroendocrinology 2020; 117:104674. [PMID: 32422516 DOI: 10.1016/j.psyneuen.2020.104674] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/06/2020] [Accepted: 03/25/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND There is an increased risk for obese patients with chronic low-grade inflammation to develop depression. Stress induces microglial activation and neuroinflammation that play crucial roles in the pathogenesis of depression. Peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear transcription factor, regulates microglial polarization and neuroinflammation. Our study aimed to investigate the role of PPARγ in the development of depressive symptoms and neuroinflammation induced by chronic unpredictable mild stress (CUMS) in wild-type/C57BL/6J (wt) and leptin-deficient (ob/ob) mice. METHODS CUMS was used to build a depression model with wt and ob/ob mice. Depressive-like behaviors were evaluated by sucrose preference test, open field test, tail suspension test, and Morris water maze test. Cytokines, the activated microglial state, and nuclear factor-κB (NF-κB) and PPARγ expression in the prefrontal cortex (PFC) and hippocampus (HIP) were examined by enzyme-linked immunosorbent assay (ELISA), immunofluorescence, and western blotting. Additionally, pioglitazone, an agonist of PPARγ, was used as a treatment intervention. RESULTS After CUMS, ob/ob mice exhibited severe behavioral disorders and spatial memory impairment, and higher levels of pro-inflammatory cytokines, M1/M2 ratios, and NF-κB activation, as well as lower levels of anti-inflammatory cytokines and PPARγ expression in the PFC and HIP compared to wt mice. Administration of pioglitazone relieved these alterations in wt and ob/ob mice. CONCLUSIONS CUMS was able to induce severe depressive-like behaviors, neuroinflammation, and reduced expression of PPARγ in ob/ob mice as compared to wt mice. This suggests that PPARγ mediates the microglial activation phenotype, which might be related to the susceptibility of stressed ob/ob mice to develop depressive disorder.
Collapse
Affiliation(s)
- Xiaqing Qin
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiran Wu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Xu
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
23
|
Hua TNM, Oh J, Kim S, Antonio JM, Vo VTA, Om J, Choi JW, Kim JY, Jung CW, Park MJ, Jeong Y. Peroxisome proliferator-activated receptor gamma as a theragnostic target for mesenchymal-type glioblastoma patients. Exp Mol Med 2020; 52:629-642. [PMID: 32280134 PMCID: PMC7210935 DOI: 10.1038/s12276-020-0413-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 01/18/2023] Open
Abstract
Glioblastomas (GBMs) are characterized by four subtypes, proneural (PN), neural, classical, and mesenchymal (MES) GBMs, and they all have distinct activated signaling pathways. Among the subtypes, PN and MES GBMs show mutually exclusive genetic signatures, and the MES phenotype is, in general, believed to be associated with more aggressive features of GBM: tumor recurrence and drug resistance. Therefore, targeting MES GBMs would improve the overall prognosis of patients with fatal tumors. In this study, we propose peroxisome proliferator-activated receptor gamma (PPARγ) as a potential diagnostic and prognostic biomarker as well as therapeutic target for MES GBM; we used multiple approaches to assess PPARγ, including biostatistics analysis and assessment of preclinical studies. First, we found that PPARγ was exclusively expressed in MES glioblastoma stem cells (GSCs), and ligand activation of endogenous PPARγ suppressed cell growth and stemness in MES GSCs. Further in vivo studies involving orthotopic and heterotopic xenograft mouse models confirmed the therapeutic efficacy of targeting PPARγ; compared to control mice, those that received ligand treatment exhibited longer survival as well as decreased tumor burden. Mechanistically, PPARγ activation suppressed proneural-mesenchymal transition (PMT) by inhibiting the STAT3 signaling pathway. Biostatistical analysis using The Cancer Genomics Atlas (TCGA, n = 206) and REMBRANDT (n = 329) revealed that PPARγ upregulation is linked to poor overall survival and disease-free survival of GBM patients. Analysis was performed on prospective (n = 2) and retrospective (n = 6) GBM patient tissues, and we finally confirmed that PPARγ expression was distinctly upregulated in MES GBM. Collectively, this study provides insight into PPARγ as a potential therapeutic target for patients with MES GBM.
Collapse
Affiliation(s)
- Tuyen N M Hua
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea
| | - Jiwoong Oh
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jayson M Antonio
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea
| | - Vu T A Vo
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea
| | - Jiyeon Om
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
| | - Jong-Whan Choi
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea
| | - Jeong-Yub Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Chan-Woong Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Myung-Jin Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea.
| | - Yangsik Jeong
- Departments of Biochemistry, Yonsei University, Wonju, Republic of Korea.
- Departments of Global Medical Science, Yonsei University, Wonju, Republic of Korea.
- Departments of Mitohormesis Research Center, Yonsei University, Wonju, Republic of Korea.
- Institutes of Lifestyle Medicine, Yonsei University, Wonju, Republic of Korea.
- Departments of Mitochondrial Medicine, Yonsei University, Wonju, Republic of Korea.
- Departments of Nuclear Receptor Research Consortium, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-Do, 26426, Republic of Korea.
| |
Collapse
|
24
|
Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109792. [PMID: 31676463 DOI: 10.1016/j.pnpbp.2019.109792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Pigment epithelium-derived factor (PEDF, also known as SERPINF1) is a secreted glycoprotein with neuroprotective effects. However, the potential role of PEDF in major depressive disorder (MDD) remains largely unknown. Here, applying two-dimensional gel electrophoresis (2-DE) proteomics, we found that PEDF levels were significantly decreased in the plasma of 12 first-episode treatment-naïve MDD patients (FETND) compared to the levels in 12 healthy controls (HCs). PEDF levels were especially lower in MDD patients than in HCs and patients with bipolar disorder (BD) and schizophrenia (SCZ), and elevated PEDF were consistent with decreased HAM-D scores in patients given antidepressant therapy (ADT). Animal research indicated that PEDF was decreased in the periphery and hippocampus of two well-known depression rodent models (the chronic unpredictable mild stress (CUMS) rat model and chronic social defeat stress (CSDS) mouse model). Decreased PEDF levels in the hippocampus led to depressive-like behaviors, synaptic impairments and aberrant Wnt signaling in C57BL mice, while increased PEDF resulted in the opposite results. Mechanistic studies indicated that PEDF contributes to dendritic growth and Wnt signaling activation in the hippocampus of adult mice. Taken together, the results of our study demonstrate the involvement of PEDF and its related mechanism in depression, thus providing translational evidence suggesting that PEDF may be a novel therapeutic target for depression.
Collapse
|
25
|
Tufano M, Pinna G. Is There a Future for PPARs in the Treatment of Neuropsychiatric Disorders? Molecules 2020; 25:molecules25051062. [PMID: 32120979 PMCID: PMC7179196 DOI: 10.3390/molecules25051062] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, peroxisome proliferator-activated receptor (PPAR)-α and γ isoforms have been gaining consistent interest in neuropathology and treatment of neuropsychiatric disorders. Several studies have provided evidence that either the receptor expression or the levels of their endogenously-produced modulators are downregulated in several neurological and psychiatric disorders and in their respective animal models. Remarkably, administration of these endogenous or synthetic ligands improves mood and cognition, suggesting that PPARs may offer a significant pharmacological target to improve several neuropathologies. Furthermore, various neurological and psychiatric disorders reflect sustained levels of systemic inflammation. Hence, the strategy of targeting PPARs for their anti-inflammatory role to improve these disorders is attracting attention. Traditionally, classical antidepressants fail to be effective, specifically in patients with inflammation. Non-steroidal anti-inflammatory drugs exert potent antidepressant effects by acting along with PPARs, thereby strongly substantiating the involvement of these receptors in the mechanisms that lead to development of several neuropathologies. We reviewed running findings in support of a role for PPARs in the treatment of neurological diseases, including Alzheimer's disease or psychiatric disorders, such as major depression. We discuss the opportunity of targeting PPARs as a future pharmacological approach to decrease neuropsychiatric symptoms at the same time that PPAR ligands resolve neuroinflammatory processes.
Collapse
Affiliation(s)
| | - Graziano Pinna
- Correspondence: or ; Tel.: +1-312-355-1464; Fax: +1-312-413-4569
| |
Collapse
|
26
|
Impact of some oral hypoglycemic agents on type 2 diabetes-associated depression and reserpine-induced depression in rats: the role of brain oxidative stress and inflammation. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1391-1404. [PMID: 32077986 DOI: 10.1007/s00210-020-01838-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus and depression are comorbid diseases affecting many patients all over the world. The current study was designed to compare the antidepressant effect of some antidiabetic drugs such as vildagliptin, pioglitazone, glyburide, and metformin on depression-related or unrelated to type 2 diabetes mellitus (T2DM). T2DM was induced by high-fat diet and streptozotocin, while diabetes-unrelated depression was induced by reserpine. Antidiabetic agents reduced diabetes-associated depression as indicated by the reduction in the immobility time in the forced swim test, elevation of cortical and hippocampal serotonin and brain-derived neurotrophic factor (BDNF), and the increase in serum β-Amyloid 1-42 (Aβ1-42) levels. Antidiabetic agents also reduced serum corticosterone levels suggesting their inhibitory effect on hypothalamus-pituitary-adrenal axis activity. The antidepressant activity of the tested compounds was associated with reduction of oxidative stress and inflammation in brain. Vildagliptin showed the highest, while glyburide showed the least antidiabetic and antidepressant activity. Antidepressant activities of pioglitazone and metformin were comparable. The difference in antioxidant and anti-inflammatory activities between groups showed the same pattern of the antidepressant effect suggesting that these two pathways may play role in ameliorating depression in diabetic rats. On the other hand, the administration of reserpine in small doses (0.2 mg/kg) induced depression associated with hyperglycemia in non-diabetic rats. Although all treatments improved glycemic parameters to similar levels, vildagliptin showed the greatest effect on Aβ1-42, serotonin, norepinephrine, and BDNF levels. In conclusion, vildagliptin seems to be the leading drug among the tested antidiabetics and may be the most appropriate antidiabetic for managing diabetes-associated depression.
Collapse
|
27
|
Li X, Qiu W, Li N, Da X, Ma Q, Hou Y, Wang T, Song M, Chen J. Susceptibility to Hyperglycemia in Rats With Stress-Induced Depressive-Like Behavior: Involvement of IL-6 Mediated Glucose Homeostasis Signaling. Front Psychiatry 2020; 11:557. [PMID: 32655424 PMCID: PMC7324635 DOI: 10.3389/fpsyt.2020.00557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Depression is a common psychiatric disorder comorbid with diabetes and may lead to high morbidity, disability, and mortality. However, the underlying mechanism behind their association remains unknown. Cytokine-mediated inflammation in brain may play important roles in the pathogenesis of depression and insulin resistance. In the present study, we subjected the rats to chronic unpredictable mild stress (CUMS) for 3 to 8 weeks. The tests to ascertain depression-like behaviors including open field test (OFT) and forced swimming test (FST) were performed, and levels of morning fasting blood glucose, triglyceride (TG), total cholesterol (CHOL), high density lipoprotein cholesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C), body weight, food intake, histopathological examinations of liver, adipose tissues and hypothalamus, hypothalamic GLUT4 as well as the IL-6-mediated glucose homeostasis signaling pathway were measured. The results showed that CUMS exposure resulted in the depression-like behavior at various time points in rats. Moreover, the rats exhibited increased peripheral glucose levels, impaired hepatocytes and hippocampal neurons, and decreased hypothalamic GLUT4 levels after 6 weeks of CUMS exposure. Meanwhile, activated IL-6 but suppressed IL-6-mediated glucose homeostasis signaling was observed in the hypothalamus. Markers of lipid metabolism including TG, CHOL, HDL-C and LDL-C were dysregulated, and body weight and food intake were decreased in the CUMS-exposed rats. Our results show that depressed rats induced by 6-week CUMS stimulation display susceptibility to hyperglycemia, which is associated with IL-6-mediated inhibition of glucose homeostasis signaling in the hypothalamus.
Collapse
Affiliation(s)
- Xiaojuan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenqi Qiu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Li
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaoli Da
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingyu Ma
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yajing Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingye Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Song
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
28
|
Lee JE, Kwon HJ, Choi J, Han PL. Stress-Induced Epigenetic Changes in Hippocampal Mkp-1 Promote Persistent Depressive Behaviors. Mol Neurobiol 2019; 56:8537-8556. [PMID: 31267372 DOI: 10.1007/s12035-019-01689-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/25/2019] [Indexed: 01/08/2023]
Abstract
Chronic stress induces persistent depressive behaviors. Stress-induced transcriptional alteration over the homeostatic range in stress hormone-sensitive brain regions is believed to underlie long-lasting depressive behaviors. However, the detailed mechanisms by which chronic stress causes those adaptive changes are not clearly understood. In the present study, we investigated whether epigenetic changes regulate stress-induced depressive behaviors. We found that chronic stress in mice downregulates the epigenetic factors HDAC2 and SUV39H1 in the hippocampus. A series of follow-up analyses including ChIP assay and siRNA-mediated functional analyses reveal that glucocorticoids released by stress cumulatively increase Mkp-1 expression in the hippocampus, and increased Mkp-1 then debilitates p-CREB and PPARγ, which in turn suppress the epigenetic factors HDAC2 and SUV39H1. Furthermore, HDAC2 and SUV39H1 normally suppress the transcription of the Mkp-1, and therefore the reduced expression of HDAC2 and SUV39H1 increases Mkp-1 expression. Accordingly, repeated stress progressively strengthens a vicious cycle of the Mkp-1 signaling cascade that facilitates depressive behaviors. These results suggest that the hippocampal stress adaptation system comprising HDAC2/SUV39H1-regulated Mkp-1 signaling network determines the vulnerability to chronic stress and the maintenance of depressive behaviors.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 03760, Republic of Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 03760, Republic of Korea
| | - Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 03760, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul, 03760, Republic of Korea.
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Brain Disease Research Institute, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
29
|
A selective peroxisome proliferator-activated receptor-γ agonist benefited propionic acid induced autism-like behavioral phenotypes in rats by attenuation of neuroinflammation and oxidative stress. Chem Biol Interact 2019; 311:108758. [DOI: 10.1016/j.cbi.2019.108758] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023]
|
30
|
Modulation of the neurotransmitter systems through the anti-inflammatory and antidepressant-like effects of squalene from Aurantiochytrium sp. PLoS One 2019; 14:e0218923. [PMID: 31251788 PMCID: PMC6599144 DOI: 10.1371/journal.pone.0218923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 06/13/2019] [Indexed: 11/19/2022] Open
Abstract
Although algae have been the focal point of biofuel research, studies on their biological activities have been limited. In recent years, however, the importance of algae as sources of functional ingredients has been recognized due to their health beneficial effects. In this study, we evaluated the antidepressant-like activities of ethanol extract of Aurantiochytrium sp. (EEA) in the forced swimming test (FST)-induced depression in ICR mice. Imipramine, a commercially available tricyclic antidepressant drug, was used as positive control. Animals were administered EEA orally for 14 consecutive days and were subjected to the locomotor activity testing. Additionally, changes in gene expression in mice brain were assessed by real-time PCR and microarray assays to understand the molecular mechanisms underlying the effect of EEA. We found that the immobility time in FST was significantly reduced in the EEA-treated mice compared to that of in the control mice. Microarray and real-time PCR results revealed that EEA treatment induced changes in several genes in mice brain associated with pro-inflammation and dopaminergic, cholinergic, glutamatergic, and serotonergic synapses. It has previously been reported that several cytokines, such as IL-6 and TNF-α, which mediate neuroinflammation, are also responsible for indirectly altering brain neurotransmitter levels in neuropsychiatric disorders. Therefore, the regulation of the expression of pro-inflammatory genes in EEA-administered mice brain is considered to contribute to the enhancement of neurotransmitter systems-related gene expression in our study. Moreover, our in vitro study suggested that squalene, a component produced by Aurantiochytrium, was one of the active substances in EEA. In conclusion, our study provides the first evidence that Aurantiochytrium sp. can reduce neuroinflammation that may contribute to the modulation of the neurotransmitter systems, which could underlie its antistress and antidepressant effects.
Collapse
|
31
|
Mirza R, Sharma B. Beneficial effects of pioglitazone, a selective peroxisome proliferator-activated receptor-γ agonist in prenatal valproic acid-induced behavioral and biochemical autistic like features in Wistar rats. Int J Dev Neurosci 2019; 76:6-16. [PMID: 31128204 DOI: 10.1016/j.ijdevneu.2019.05.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/23/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder in children. It is diagnosis by two main behavioral phenotypes i.e. social-communication impairments and repetitive behavior. ASD is complex disorder with unsolved etiology due to multiple genes involvement, epigenetic mechanism and environmental factors. Valproic acid (VPA), a teratogen is known to induce characteristic features related to ASD in rodents. Numerous studies suggest the potential therapeutic effects of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in different brain disorders. This research evaluates the utility of selective agonist of PPAR-γ, pioglitazone in prenatal VPA induced experimental ASD symptomatology in Wistar rats. The prenatal administration of VPA has induced social impairment, repetitive behavior, hyperlocomotion, anxiety and low exploratory activity in rats. Also, prenatal VPA-treated rats have shown higher levels of oxidative stress (increased in thiobarbituric acid reactive species, and decreased in reduced glutathione level) and inflammation (increased in interleukin-6, tumor necrosis factor-alpha and decreased in interleukin-10) in the cerebellum, brainstem and prefrontal cortex. Treatment with pioglitazone significantly attenuated the prenatal VPA-induced social impairment, repetitive behavior, hyperactivity, anxiety and low exploratory activity. Furthermore, pioglitazone also reduced the prenatal VPA-induced oxidative stress and neuroinflammation in aforementioned brain regions. Hence, it may be concluded that pioglitazone may provide neurobehavioral and biochemical benefits in prenatal VPA-induced autistic phenotypes in rats.
Collapse
Affiliation(s)
- Roohi Mirza
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, India.,CNS Pharmacology, Conscience Research, Delhi, India
| |
Collapse
|
32
|
Ni S, Huang H, He D, Chen H, Wang C, Zhao X, Chen X, Cui W, Zhou W, Zhang J. Adeno‐associated virus‐mediated over‐expression of CREB‐regulated transcription coactivator 1 in the hippocampal dentate gyrus ameliorates lipopolysaccharide‐induced depression‐like behaviour in mice. J Neurochem 2019; 149:111-125. [DOI: 10.1111/jnc.14670] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/14/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Saiqi Ni
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Hua Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Danni He
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Hang Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Chuang Wang
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Xin Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Xiaowei Chen
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Wei Cui
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| | - Junfang Zhang
- Zhejiang Provincial Key Laboratory of Pathophysiology Ningbo University Ningbo, Zhejiang PR China
- Department of Physiology and Pharmacology Ningbo University School of Medicine Ningbo, Zhejiang PR China
- Ningbo Key Laboratory of Behavioural Neuroscience Ningbo University School of Medicine Ningbo, Zhejiang PR China
| |
Collapse
|
33
|
Taniguti EH, Ferreira YS, Stupp IJV, Fraga-Junior EB, Doneda DL, Lopes L, Rios-Santos F, Lima E, Buss ZS, Viola GG, Vandresen-Filho S. Atorvastatin prevents lipopolysaccharide-induced depressive-like behaviour in mice. Brain Res Bull 2019; 146:279-286. [PMID: 30690060 DOI: 10.1016/j.brainresbull.2019.01.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 11/21/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022]
Abstract
Clinical and pre-clinical evidences indicate an association between inflammation and depression since increased levels of pro-inflammatory cytokines are associated with depression-related symptoms. Atorvastatin is a cholesterol-lowering statin that possesses pleiotropic effects including neuroprotective and antidepressant actions. However, the putative neuroprotective effect of atorvastatin treatment in the acute inflammation mice model of depressive-like behaviour has not been investigated. In the present study, we aimed to investigate the effect of atorvastatin treatment on lipopolysaccharide (LPS) induced depressive-like behaviour in mice. Mice were treated with atorvastatin (1 or 10 mg/kg, v.o.) or fluoxetine (30 mg/kg, positive control, v.o.) for 7 days before LPS (0.5 mg/kg, i.p.) injection. Twenty four hours after LPS infusion, mice were submitted to the forced swim test, tail suspension test or open field test. After the behavioural tests, mice were sacrificed and the levels of tumour necrosis factor-α (TNF-α), brain-derived neurotrophic factor (BDNF), glutathione and malondialdehyde were measured. Atorvastatin (1 or 10 mg/kg/day) or fluoxetine treatment prevented LPS-induced increase in the immobility time in the forced swim and tail suspension tests with no alterations in the locomotor activity evaluated in the open field test. Atorvastatin (1 or 10 mg/kg/day) or fluoxetine treatment also prevented LPS-induced increase in TNF-α and reduction of BDNF levels in the hippocampus and prefrontal cortex. Treatment with atorvastatin (1 or 10 mg/kg/day) or fluoxetine prevented LPS-induced increase in lipid peroxidation and the reduction of glutathione levels in the hippocampus and prefrontal cortex. The present study suggests that atorvastatin treatment exerted neuroprotective effects against LPS-induced depressive-like behaviour which may be related to reduction of TNF-α release, oxidative stress and modulation of BDNF expression.
Collapse
Affiliation(s)
- E H Taniguti
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Y S Ferreira
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - I J V Stupp
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil; Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - E B Fraga-Junior
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - D L Doneda
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - L Lopes
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - F Rios-Santos
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - E Lima
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - Z S Buss
- Laboratório de Imunologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil
| | - G G Viola
- Programa de Pós-Graduação em Ensino, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte/Mossoró, Rua Raimundo Firmino de Oliveira, 400- Conj. Ulrick Graff, CEP 59628-330, Mossoró, RN, Brazil
| | - S Vandresen-Filho
- Laboratório de Fisiologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Boa Esperança, 78060900, Cuiabá, MT, Brazil.
| |
Collapse
|
34
|
Cao K, Shen C, Yuan Y, Bai S, Yang L, Guo L, Zhang R, Shi Y. SiNiSan Ameliorates the Depression-Like Behavior of Rats That Experienced Maternal Separation Through 5-HT1A Receptor/CREB/BDNF Pathway. Front Psychiatry 2019; 10:160. [PMID: 30984042 PMCID: PMC6447714 DOI: 10.3389/fpsyt.2019.00160] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Early adverse life stress is an important dangerous factor in the development of psychiatric disorders, particularly depression. Available clinical antidepressant agents, such as fluoxetine, [a selective serotonin reuptake inhibitor (SSRI)], are unsatisfactory because of their side effects. SiNiSan (SNS) is a classic Chinese medicine prescription regarded to disperse stagnated liver qi to relieve qi stagnation. Therefore, this study was designed to detect the effects and molecular mechanism of SNS treatment in rats subjected to maternal separation (MS). Method: Male neonatal Wistar rats were divided into six groups including control + ddH2O, MS + ddH2O, MS + fluoxetine (5 g/kg), MS + SNS -low dose (2.5 g/kg), MS + SNS -medium dose (5 g/kg), MS + SNS -high dose (10 g/kg). The volume of drugs and ddH2O in each group are according to the weight of rats every day (10 mL/kg). Each group comprised 16 pups with 8 young and 8 adult pups. Except for the control group, all MS groups were separated from their mothers for 4 h/day from 9:00 to 13:00 during postnatal days (PNDs) 1 to 21. After MS, the six groups were intragastrically administered with ddH2O, fluoxetine, and different doses of SNS until PND 28 (for young pups) and PND 56 (for adult pups). The pups were weighed every day, and depression-like behavior was assessed by sucrose preference test, open field test, and forced swimming test. Serotonin 1A (5-HT1A) receptor, phosphorylated protein kinase A (p-PKA) substrate, cAMP response element-binding protein (CREB), p-CREB and brain-derived neurotrophic factor (BDNF) in the hippocampus were examined by Western blot, and in situ 5-HT1A receptor expression was measured by IHC. Results: Young and adult MS rats exhibited depression-like behavior. However, the depression-like behavior was ameliorated by SNS in both age groups. The levels of 5-HT1A receptor, p-CREB, and BDNF in the hippocampus were reduced in young and adult MS rats. SNS treatment significantly up-regulated the expression of 5-HT1A receptor, p-CREB, and BDNF in the hippocampus of adult MS rats. However, few significant effects on the protein expression were observed in the young MS rats. Conclusion: MS in infancy could develop depression-like behavior in young and adult. SNS treatment may perform antidepressant effects on young and adult MS rats through the BDNF/PKA/CREB pathway.
Collapse
Affiliation(s)
- Kerun Cao
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chongkun Shen
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yumei Yuan
- Shenzhen Baoan Hospital of Chinese Medicine, Shenzhen, China
| | - Shasha Bai
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Yang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Guo
- Third Affiliated Hospital of Henan University of Chinese Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Rong Zhang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafei Shi
- School of Fundamental Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
35
|
Dey A, Hankey Giblin PA. Insights into Macrophage Heterogeneity and Cytokine-Induced Neuroinflammation in Major Depressive Disorder. Pharmaceuticals (Basel) 2018; 11:E64. [PMID: 29941796 PMCID: PMC6160985 DOI: 10.3390/ph11030064] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
Over 350 million individuals suffer from depression, a psychiatric illness classified as major depressive disorder (MDD) with symptoms that include a loss of interest or pleasure in life accompanied by depressed mood. The present understanding of major depressive disorder does not encompass a systematic characterization of the neurobiological processes that drive the behavioral physiology in patients diagnosed with major depressive disorder. Psychiatric illness is a complex intersection between genetics, physiology, immunology and environmental stress. The increased attention to the relevance of depression has led to new discoveries that highlight the biological significance of ‘neuroinflammation’ and immunity underlying a spectrum of psychiatric illnesses. The process of neuroinflammation involves sentinel immune cells in the central nervous system (CNS). The activation and polarization of microglia, CNS-resident macrophages, modulates the production and secretion of pro-inflammatory cytokines implicated in the etiology of major depressive disorder, and this phenomenon has been aptly titled the ‘macrophage theory of depression’. Of particular interest are three hallmark cytokines, IL-6, TNFα and IL-1β, which have been studied extensively in basic research, cell-receptor signaling and drug development. The field of inflammasome-mediated neuroinflammation is an emerging area of MDD research that is providing new cellular insight into how macrophages mechanistically support cytokine-associated neuropathology, particularly in the case of IL-1β-associated inflammation in MDD. With the increasing number of individuals identified with depression, a comprehensive understanding of macrophage-cytokine signaling pathways in the CNS in depression is necessary for developing effective anti-depressant therapeutics.
Collapse
Affiliation(s)
- Adwitia Dey
- Center for Molecular Immunology and Infectious Diseases, The Pennsylvania State University, University Park, State College, PA 16802, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| | - Pamela A Hankey Giblin
- Center for Molecular Immunology and Infectious Diseases, The Pennsylvania State University, University Park, State College, PA 16802, USA.
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, State College, PA 16802, USA.
| |
Collapse
|
36
|
Silva JC, de Oliveira EM, Turato WM, Trossini GHG, Maltarollo VG, Pitta MGR, Pitta IR, de Las Heras B, Boscá L, Rudnicki M, Abdalla DSP. GQ-11: A new PPAR agonist improves obesity-induced metabolic alterations in LDLr -/- mice. Int J Obes (Lond) 2018; 42:1062-1072. [PMID: 29453462 DOI: 10.1038/s41366-018-0011-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity and insulin resistance/diabetes are important risk factors for cardiovascular diseases and demand safe and efficacious therapeutics. OBJECTIVE To assess the effects of a new thiazolidine compound-GQ-11-on obesity and insulin resistance induced by a diabetogenic diet in LDL receptor-deficient (LDLr-/-) mice. METHODS Molecular docking simulations of GQ-11, PPARα and PPARγ structures were performed. Male C57BL/6J LDLr-/- mice fed a diabetogenic diet for 24 weeks were treated with vehicle, GQ-11 or pioglitazone or (20 mg/kg/day) for 28 days by oral gavage. Glucose tolerance test, insulin, HOMA-IR, adipokines (leptin, adiponectin) and the lipid profile were assessed after treatment. Adipose tissue was analysed by X-ray analysis and morphometry; gene and protein expression were evaluated by real-time PCR and western blot, respectively. RESULTS GQ-11 showed partial agonism to PPARγ and PPARα. In vivo, treatment with GQ-11 ameliorated insulin sensitivity and did not modify subcutaneous adipose tissue and body weight gain. In addition, GQ-11 restored adipokine imbalance induced by a diabetogenic diet and enhanced Glut-4 expression in the adipose tissue. Improved insulin sensitivity was also associated with lower levels of MCP-1 and higher levels of IL-10. Furthermore, GQ-11 reduced triglycerides and VLDL cholesterol and increased HDL-cholesterol by upregulation of Apoa1 and Abca1 gene expression in the liver. CONCLUSION GQ-11 is a partial/dual PPARα/γ agonist that demonstrates anti-diabetic effects. Additionally, it improves the lipid profile and ameliorates chronic inflammation associated with obesity in atherosclerosis-prone mice.
Collapse
Affiliation(s)
- Jacqueline C Silva
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Edson M de Oliveira
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Walter M Turato
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Gustavo H G Trossini
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Vinícius G Maltarollo
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marina G R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Ivan R Pitta
- Core of Therapeutic Innovation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Beatriz de Las Heras
- Department of Pharmacology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Martina Rudnicki
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Dulcineia S P Abdalla
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Wang Q, Dong X, Li N, Wang Y, Guan X, Lin Y, Kang J, Zhang X, Zhang Y, Li X, Xu T. JSH-23 prevents depressive-like behaviors in mice subjected to chronic mild stress: Effects on inflammation and antioxidant defense in the hippocampus. Pharmacol Biochem Behav 2018; 169:59-66. [PMID: 29684396 DOI: 10.1016/j.pbb.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 12/26/2022]
Abstract
Nuclear factor-kappa B (NF-κB), which is reported to play an important role in the pathogenesis of depression, also has a central role in the genesis and progression of inflammation. Here, we have targeted the nuclear translocation of NF-κB using 4-methyl-N1-(3-phenyl-propyl)-benzene-1,2-diamine (JSH-23) to elucidate its role in depression. We investigated the antidepressant-like effects of JSH-23 in the chronic mild stress (CMS) mouse model, which is a valid, reasonably reliable, and useful model of depression. The antidepressant-like effects of JSH-23 were evaluated using the sucrose preference test (SPT) and the forced swimming test (FST). We also assessed inflammatory markers [interleukin (IL)-6 and tumor necrosis factor-α (TNF-α)] and components of antioxidant defense [superoxide dismutase (SOD) and nuclear factor erythroid-2-related factor 2 (Nrf 2)] in the hippocampus. Fluoxetine, a classical antidepressant, was used in this study as a positive control. Administration of JSH-23 significantly prevented the decreased sucrose preference in the SPT and prevented the increased immobility time in the FST caused by CMS, but had no effect on locomotor activity. Expression of NF-κB p65 protein in the hippocampus was decreased, and elevated levels of IL-6 and TNF-α were reduced, after JSH-23 administration. In addition to its anti-inflammatory effect, JSH-23 treatment increased the expression of SOD and Nrf 2 in the hippocampus, suggesting that it strengthens antioxidant defense. The current study demonstrated that inhibiting the NF-κB signaling cascade using JSH-23 prevented depressive-like behaviors by decreasing inflammation and improving antioxidant defense in the hippocampus. We concluded that NF-κB activation plays an important role in the pathophysiology of depression and that targeting NF-κB signaling may provide a novel and effective therapy for depression. Additional preclinical studies and clinical trials are, however, needed to further elucidate the effects of this therapeutic strategy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaomei Dong
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nannan Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yan Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaofeng Guan
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yiwei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Jiguang Kang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xia Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuchen Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Tianchao Xu
- Department of Medical Psychiatry, General Hospital of Shenyang Military Command, Shenyang, Liaoning Province, China.
| |
Collapse
|
38
|
Mirahmadi SMS, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 2018; 104:151-159. [PMID: 29102164 DOI: 10.1016/j.cyto.2017.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/04/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
Systemic inflammation during infectious disorders usually accompanies chronic complications including cognitive dysfunction. Neuroinflammation and cognitive deficit are also observed in some debilitating neurological disorders like Alzheimer's and Parkinson's diseases. Genistein is a soy isoflavone with multiple beneficial effects including anti-inflammatory, anti-oxidative, and protective properties. In this research study, the effect of genistein in prevention of lipopolysaccharide (LPS)-induced cognitive dysfunction was investigated. LPS was given i.p. (500 μg/kg/day) and genistein was orally given (10, 50, or 100 mg/kg) for one week. Findings showed that genistein could dose-dependently attenuate spatial recognition, discrimination, and memory deficits. Additionally, genistein treatment of LPS-challenged group lowered hippocampal level of malondialdehyde (MDA) and increased activity of superoxide dismutase (SOD) and catalase and glutathione (GSH) level. Furthermore, genistein ameliorated hippocampal acetylcholinesterase (AChE) activity in LPS-challenged rats. Furthermore, genistein administration to LPS-injected group lowered hippocampal level of interleukin 6 (IL-6), nuclear factor-kappaB (NF-κB) p65, toll-like receptor 4 (TLR4), tumor necrosis factor α (TNFα), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), glial fibrillary acidic protein (GFAP), and increased hippocampal level of antioxidant element nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In conclusion, genistein alleviated LPS-induced cognitive dysfunctions and neural inflammation attenuation of oxidative stress and AChE activity and appropriate modulation of Nrf2/NF-κB/IL-6/TNFα/COX2/iNOS/TLR4/GFAP.
Collapse
Affiliation(s)
| | | | | | | | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
39
|
Wu Y, Wang L, Hu K, Yu C, Zhu Y, Zhang S, Shao A. Mechanisms and Therapeutic Targets of Depression After Intracerebral Hemorrhage. Front Psychiatry 2018; 9:682. [PMID: 30618863 PMCID: PMC6304443 DOI: 10.3389/fpsyt.2018.00682] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022] Open
Abstract
The relationship between depression and intracerebral hemorrhage (ICH) is complicated. One of the most common neuropsychiatric comorbidities of hemorrhagic stroke is Post-ICH depression. Depression, as a neuropsychiatric symptom, also negatively impacts the outcome of ICH by enhancing morbidity, disability, and mortality. However, the ICH outcome can be improved by antidepressants such as the frequently-used selective serotonin reuptake inhibitors. This review therefore presents the mechanisms of post-ICH depression, we grouped the mechanisms according to inflammation, oxidative stress (OS), apoptosis and autophagy, and explained them through their several associated signaling pathways. Inflammation is mainly related to Toll-like receptors (TLRs), the NF-kB mediated signal pathway, the PPAR-γ-dependent pathway, as well as other signaling pathways. OS is associated to nuclear factor erythroid-2 related factor 2 (Nrf2), the PI3K/Akt pathway and the MAPK/P38 pathway. Moreover, autophagy is associated with the mTOR signaling cascade and the NF-kB mediated signal pathway, while apoptosis is correlated with the death receptor-mediated apoptosis pathway, mitochondrial apoptosis pathway, caspase-independent pathways and others. Furthermore, we found that neuroinflammation, oxidative stress, autophagy, and apoptosis experience interactions with one another. Additionally, it may provide several potential therapeutic targets for patients that might suffer from depression after ICH.
Collapse
Affiliation(s)
- Yinan Wu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Kaimin Hu
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chengcheng Yu
- Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhan Zhu
- Department of Neurosurgery, Rongjun Hospital, Jiaxing, China
| | - Suzhan Zhang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Talmon M, Rossi S, Pastore A, Cattaneo CI, Brunelleschi S, Fresu LG. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages. Br J Pharmacol 2018; 175:113-124. [PMID: 29057467 PMCID: PMC5740236 DOI: 10.1111/bph.14074] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE A crosstalk between the immune system and depression has been postulated, with monocytes/macrophages and cytokines having a key role in this interaction. In this study, we examined whether vortioxetine, a multimodal anti-depressive drug, was endowed with anti-inflammatory and antioxidative activity, leading to immunomodulatory effects on human monocytes and macrophages. EXPERIMENTAL APPROACH Human monocytes were isolated from buffy coats and used as such or differentiated into M1 and M2 macrophages. Cells were treated with vortioxetine before or after differentiation, and their responsiveness was evaluated. This included oxy-radical and TNFα production, TNFα and PPARγ gene expression and NF-κB translocation. KEY RESULTS Vortioxetine significantly reduced the PMA-induced oxidative burst in monocytes and in macrophages (M1 and M2), causing a concomitant shift of macrophages from the M1 to the M2 phenotype, demonstrated by a significant decrease in the expression of the surface marker CD86 and an increase in CD206. Moreover, treatment of monocytes with vortioxetine rendered macrophages derived from this population less sensitive to PMA, as it reduced the oxidative burst, NF-kB translocation, TNFα release and expression while inducing PPARγ gene expression. FACS analysis showed a significant decrease in the CD14+ /CD16+ /CD86+ M1 population. CONCLUSIONS AND IMPLICATIONS These results demonstrate that in human monocytes/macrophages, vortioxetine has antioxidant activity and anti-inflammatory effects driving the polarization of macrophages towards their alternative phenotype. These findings suggest that vortioxetine, alongside its antidepressive effect, may have immunomodulatory properties.
Collapse
Affiliation(s)
- Maria Talmon
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Silvia Rossi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Anna Pastore
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Carlo Ignazio Cattaneo
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
- Department of Mental Health, ASL NOCentre of Mental HealthNovaraItaly
| | - Sandra Brunelleschi
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Luigia Grazia Fresu
- Department of Health Sciences, School of MedicineUniversity of Piemonte OrientaleNovaraItaly
| |
Collapse
|
41
|
Zhao Z, Zhang L, Guo XD, Cao LL, Xue TF, Zhao XJ, Yang DD, Yang J, Ji J, Huang JY, Sun XL. Rosiglitazone Exerts an Anti-depressive Effect in Unpredictable Chronic Mild-Stress-Induced Depressive Mice by Maintaining Essential Neuron Autophagy and Inhibiting Excessive Astrocytic Apoptosis. Front Mol Neurosci 2017; 10:293. [PMID: 28959186 PMCID: PMC5603714 DOI: 10.3389/fnmol.2017.00293] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/31/2017] [Indexed: 12/28/2022] Open
Abstract
There is increasing interest in the association between depression and the development of metabolic diseases. Rosiglitazone, a therapeutic drug used to treat type 2 diabetes mellitus, has shown neuroprotective effects in patients with stroke and Alzheimer's disease. The present study was performed to evaluate the possible roles of rosiglitazone in in vivo (unpredictable chronic mild stress-induced depressive mouse model) and in vitro (corticosterone-induced cellular model) depressive models. The results showed that rosiglitazone reversed depressive behaviors in mice, as indicated by the forced swimming test and open field test. Rosiglitazone was also found to inhibit the inflammatory response, decrease corticosterone levels, and promote astrocyte proliferation and neuronal axon plasticity in the prefrontal cortex of mice. This series of in vivo and in vitro experiments showed that autophagy among neurons was inhibited in depressive models and that rosiglitazone promoted autophagy by upregulating LKB1, which exerted neuroprotective effects. Rosiglitazone was also found to activate the Akt/CREB pathway by increasing IGF-1R expression and IGF-1 protein levels, thereby playing an anti-apoptotic role in astrocytes. Rosiglitazone's autophagy promotion and neuroprotective effects were found to be reversed by the PPARγ antagonist T0070907 in primary neurons and by PPARγ knockdown in an N2a cell line. In conclusion, we found that rosiglitazone protects both neurons and astrocytes in in vivo and in vitro depressive models, thereby playing an anti-depressive role. These findings suggest that PPARγ could be a new target in the development of anti-depressive drugs.
Collapse
Affiliation(s)
- Zhan Zhao
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Ling Zhang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xu-Dong Guo
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Lu-Lu Cao
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Teng-Fei Xue
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xiao-Jie Zhao
- Neuroprotective Drug Discovery Key Laboratory, Department of Forensic Medicine, Nanjing Medical UniversityNanjing, China
| | - Dan-Dan Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Ji-Ye Huang
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical UniversityNanjing, China
| |
Collapse
|