1
|
Wu EJ, Kandalkar AT, Ehrmann JF, Tong AB, Zhang J, Cong Q, Wu H. A structural atlas of death domain fold proteins reveals their versatile roles in biology and function. Proc Natl Acad Sci U S A 2025; 122:e2426986122. [PMID: 39977327 DOI: 10.1073/pnas.2426986122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/22/2025] Open
Abstract
Death domain fold (DDF) superfamily proteins are critically important players in pathways of cell death and inflammation. DDFs are often essential scaffolding domains in receptors, adaptors, or effectors of these pathways by mediating homo- and hetero-oligomerization including helical filament assembly. At the downstream ends of these pathways, effector oligomerization by DDFs brings the enzyme domains into proximity for their dimerization and activation. Hundreds of structures of these domains have been solved. However, a comprehensive understanding of DDFs is lacking. In this article, we report the curation of a DDF structural atlas as a public website (deathdomain.org) and deduce the common and distinct principles of DDF-mediated oligomerization among the four families (death domain or DD, death effector domain or DED, caspase recruitment domain or CARD, and pyrin domain or PYD). We further annotate DDFs genome-wide based on AlphaFold-predicted models and protein sequences. These studies reveal mechanistic rules for this widely distributed domain superfamily.
Collapse
Affiliation(s)
- Emily J Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Saratoga High School, Saratoga, CA 95070
| | - Ankita T Kandalkar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115
| | - Julian F Ehrmann
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Alexander B Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences, Chemistry Graduate Group, University of California, Berkeley, CA 94720
| | - Jing Zhang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Qian Cong
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Eugene McDermott Center for Human Growth and Development, University of Texas, Southwestern Medical Center, Dallas, TX 75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
- Department of Biology, College of Science, Northeastern University, Boston, MA 02115
| |
Collapse
|
2
|
Li Z, Xue Y, Duan Y, Yuan W, Chen C, Shi S, Su XC, Kisiswa L, Fan JS, Lin Z. Heterotypic interactions among members of the death domain superfamily with implications for p75 NTR-mediated co-signaling. Int J Biol Macromol 2025:140791. [PMID: 39924025 DOI: 10.1016/j.ijbiomac.2025.140791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
The death domain (DD) superfamily, a group of protein interaction modules, plays a crucial role in regulating downstream signaling pathways through the formation of specific complexes. However, the aggregation-prone behavior of many DD superfamily members in solution limits their interaction studies, and the structural mechanisms underlying oligomeric assembly involving different DD subfamilies are not fully understood. Here, we demonstrate that RIP2-CARD retains its native folding and protein function for interacting with the DD of p75 neurotrophin receptor (p75NTR) in pure water rather than under acidic conditions of pH 5.0 or lower. Leveraging this pure water system, we uncover the heterotypic interactions among p75NTR-DD, RIP2-CARD, and TRADD-DD, elucidate their ternary HADDOCK complex structure, and identify a new specific binding interface between RIP2-CARD and TRADD-DD. Using developing cortical neurons with endogenous p75NTR, we demonstrated that co-signaling of the p75NTR:TRADD:RIP2 tricomplex may shift the signaling balance towards survival by reducing the efficiency of death pathways. Our findings suggest a mechanism in which p75NTR serves as a molecular scaffold, assembling diverse signaling components to co-activate multiple signaling cascades at the receptor level.
Collapse
Affiliation(s)
- Zhen Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Ying Xue
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yajing Duan
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wensu Yuan
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Cheng Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shuo Shi
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Lilian Kisiswa
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Jing-Song Fan
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, USA.
| | - Zhi Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Fursa GA, Andretsova SS, Shishkina VS, Voronova AD, Karsuntseva EK, Chadin AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Use of Neurotrophic Factors as a Promising Strategy for the Treatment of Neurodegenerative Diseases (Review). Bull Exp Biol Med 2024:10.1007/s10517-024-06218-5. [PMID: 39266924 DOI: 10.1007/s10517-024-06218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 09/14/2024]
Abstract
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.
Collapse
Affiliation(s)
- G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
- Pirogov Russian National Research Medical University, Moscow, Russia.
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology of the Federal Medical and Biological Agency, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
4
|
Mo D, Tang X, Ma Y, Chen D, Xu W, Jiang N, Zheng J, Yan F. tRNA-derived fragment 3'tRF-AlaAGC modulates cell chemoresistance and M2 macrophage polarization via binding to TRADD in breast cancer. J Transl Med 2024; 22:706. [PMID: 39080676 PMCID: PMC11290069 DOI: 10.1186/s12967-024-05513-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Drug resistance, including Adriamycin-based therapeutic resistance, remains a challenge in breast cancer (BC) treatment. Studies have revealed that macrophages could play a pivotal role in mediating the chemoresistance of cancer cells. Accumulating evidence suggests that tRNA-Derived small RNAs (tDRs) are associated the physiological and pathological processes in multiple cancers. However, the underlying mechanisms of tDRs on chemoresistance of BC in tumor-associated macrophages remain largely unknown. METHODS The high-throughput sequencing technique was used to screen tDRs expression profile in BC cells. Gain- and loss-of-function experiments and xenograft models were performed to verify the biological function of 3'tRF-Ala-AGC in BC cells. The CIBERSORT algorithm was used to investigate immune cell infiltration in BC tissues. To explore the role of 3'tRF-Ala-AGC in macrophages, M2 macrophages transfected with 3'tRF-Ala-AGC mimic or inhibitor were co-cultured with BC cells. Effects on Nuclear factor-κb (NF-κb) pathway were investigated by NF-κb nuclear translocation assay and western blot analysis. RNA pull-down assay was performed to identify 3'tRF-Ala-AGC interacting proteins. RESULTS A 3'tRF fragment of 3'tRF-AlaAGC was screened, which is significantly overexpressed in BC specimens and Adriamycin-resistant cells. 3'tRF-AlaAGC could promote cell malignant activity and facilitate M2 polarization of macrophages in vitro and in vivo. Higher expression of M2 macrophages were more likely to have lymph node metastasis and deeper invasion in BC patients. Mechanistically, 3'tRF-AlaAGC binds Type 1-associated death domain protein (TRADD) in BC cells, and suppression of TRADD partially abolished the enhanced effect of 3'tRF-AlaAGC mimic on phenotype of M2. The NF-κb signaling pathway was activated in BC cells co-cultured with M2 macrophages transfected with 3'tRF-AlaAGC mimic. CONCLUSIONS 3'tRF-AlaAGC might modulate macrophage polarization via binding to TRADD and increase the effect of M2 on promoting the chemoresistance in BC cells through NF-κb signaling pathway.
Collapse
Affiliation(s)
- Dongping Mo
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Xun Tang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Yuyan Ma
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Dayu Chen
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Weiguo Xu
- Department of General Surgery, Naning Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Ning Jiang
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Junyu Zheng
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China
| | - Feng Yan
- Department of Clinical Laboratory, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Baizi Ting No.42, Nanjing, 210009, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Baizi Ting No.42, Nanjing, 210009, China.
| |
Collapse
|
5
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Saad HM, Batiha GES. The Molecular Pathway of p75 Neurotrophin Receptor (p75NTR) in Parkinson's Disease: The Way of New Inroads. Mol Neurobiol 2024; 61:2469-2480. [PMID: 37897634 DOI: 10.1007/s12035-023-03727-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease of the brain. PD is characterized by motor and non-motor symptoms. The p75 neurotrophin receptor (p75NTR) is a functional receptor for different growth factors including pro-brain derived neurotrophic factor (pro-BDNF), neurotrophin 3 (NT-3), and neurotrophin 4 (NT-4). Consequently, this review aimed to illustrate the detrimental and beneficial role of p75NTR in PD. Diverse studies showed that p75NTR and its downstream signaling are intricate in the pathogenesis of PD. Nevertheless, pro-apoptotic and pro-survival pathways mediated by p75NTR in PD were not fully clarified. Of note, p75NTR plays a critical role in the regulation of dopaminergic neuronal survival and apoptosis in the CNS. Particularly, p75NTR can induce selective apoptosis of dopaminergic neurons and progression of PD. In addition, p75NTR signaling inhibits the expression of transcription factors which are essential for the survival of dopaminergic neurons. Also, p75NTR expression is connected with the severity of dopaminergic neuronal injury. These verdicts implicate p75NTR signaling in the pathogenesis of PD, though the underlying mechanistic pathways remain not elucidated. Collectively, the p75NTR signaling pathway induces a double-sword effect either detrimental or beneficial depending on the ligands and status of PD neuropathology. Therefore, p75NTR signaling seems to be protective via phosphoinositide 3-kinase (PI3K)/AKT and Bcl-2 and harmful via activation of JNK, caspase 3, nuclear factor kappa B (NF-κB), and RhoA pathways.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Matrouh, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| |
Collapse
|
6
|
Turkistani A, Al-kuraishy HM, Al-Gareeb AI, Albuhadily AK, Elhussieny O, AL-Farga A, Aqlan F, Saad HM, Batiha GES. The functional and molecular roles of p75 neurotrophin receptor (p75 NTR) in epilepsy. J Cent Nerv Syst Dis 2024; 16:11795735241247810. [PMID: 38655152 PMCID: PMC11036928 DOI: 10.1177/11795735241247810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
Epilepsy is a chronic neurological disorder manifested by recurring unprovoked seizures resulting from an imbalance in the inhibitory and excitatory neurotransmitters in the brain. The process of epileptogenesis involves a complex interplay between the reduction of inhibitory gamma-aminobutyric acid (GABA) and the enhancement of excitatory glutamate. Pro-BDNF/p75NTR expression is augmented in both glial cells and neurons following epileptic seizures and status epileptics (SE). Over-expression of p75NTR is linked with the pathogenesis of epilepsy, and augmentation of pro-BDNF/p75NTR is implicated in the pathogenesis of epilepsy. However, the precise mechanistic function of p75NTR in epilepsy has not been completely elucidated. Therefore, this review aimed to revise the mechanistic pathway of p75NTR in epilepsy.
Collapse
Affiliation(s)
- Areej Turkistani
- Department of pharmacology and toxicology, Collage of Medicine, Taif University, Taif, Kingdom of Saudi
| | - Hayder M. Al-kuraishy
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K. Albuhadily
- Professor in department of clinical pharmacology and medicine, college of medicine, Mustansiriyah University, Baghdad, Iraq
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, Egypt
| | - Ammar AL-Farga
- Biochemistry Department, College of Sciences, University of Jeddah, Jeddah, Saudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of Sciences, Ibb University, Ibb Governorate, Yemen
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
7
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
8
|
Terracina S, Ferraguti G, Tarani L, Fanfarillo F, Tirassa P, Ralli M, Iannella G, Polimeni A, Lucarelli M, Greco A, Fiore M. Nerve Growth Factor and Autoimmune Diseases. Curr Issues Mol Biol 2023; 45:8950-8973. [PMID: 37998739 PMCID: PMC10670231 DOI: 10.3390/cimb45110562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
NGF plays a crucial immunomodulatory role and increased levels are found in numerous tissues during autoimmune states. NGF directly modulates innate and adaptive immune responses of B and T cells and causes the release of neuropeptides and neurotransmitters controlling the immune system activation in inflamed tissues. Evidence suggests that NGF is involved in the pathogenesis of numerous immune diseases including autoimmune thyroiditis, chronic arthritis, multiple sclerosis, systemic lupus erythematosus, mastocytosis, and chronic granulomatous disease. Furthermore, as NGF levels have been linked to disease severity, it could be considered an optimal early biomarker to identify therapeutic approach efficacy. In conclusion, by gaining insights into how these molecules function and which cells they interact with, future studies can devise targeted therapies to address various neurological, immunological, and other disorders more effectively. This knowledge may pave the way for innovative treatments based on NGF manipulation aimed at improving the quality of life for individuals affected by diseases involving neurotrophins.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Giannicola Iannella
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
9
|
Li Z, Duan Y, Mao W, Chen C, Yuan W, Jin X, Shi S, Su XC, Ibáñez CF, Lin Z. Equilibrium between monomers and dimers of the death domain of the p75 neurotrophin receptor in solution. Int J Biol Macromol 2023; 246:125710. [PMID: 37414319 DOI: 10.1016/j.ijbiomac.2023.125710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
p75 neurotrophin receptor (p75NTR) contains a C-terminal globular protein module known as the death domain (DD), which plays a central role in apoptotic and inflammatory signaling through the formation of oligomeric protein complexes. A monomeric state of the p75NTR-DD also exists depending on its chemical environment in vitro. However, studies on the oligomeric states of the p75NTR-DD have produced conflicting findings and sparked great controversy. Here we present new evidence from biophysical and biochemical studies to demonstrate the coexistence of symmetric and asymmetric dimers of the p75NTR-DD, which may equilibrate with the monomeric form in solution and in the absence of any other protein. The reversible close-open solution behavior may be important for the p75NTR-DD to serve as an intracellular signaling hub. This result supports an intrinsic ability of the p75NTR-DD to self-associate, in congruence with the oligomerization properties of all members of the DD superfamily.
Collapse
Affiliation(s)
- Zhen Li
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yajing Duan
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wenhui Mao
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Cheng Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Wensu Yuan
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Xinghua Jin
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuo Shi
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin 300071, China
| | - Carlos F Ibáñez
- Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University School of Life Sciences and Chinese Institute for Brain Research, Beijing 100871, China; Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden.
| | - Zhi Lin
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
10
|
Chen Y, Gu Y, Xiong X, Zheng Y, Liu X, Wang W, Meng G. Roles of the adaptor protein tumor necrosis factor receptor type 1-associated death domain protein (TRADD) in human diseases. Biomed Pharmacother 2022; 153:113467. [DOI: 10.1016/j.biopha.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
11
|
Ren X, Lin Z, Yuan W. A Structural and Functional Perspective of Death Receptor 6. Front Pharmacol 2022; 13:836614. [PMID: 35401228 PMCID: PMC8987162 DOI: 10.3389/fphar.2022.836614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a member of the tumor necrosis factor receptor superfamily (TNFRSF), death receptor 6 (DR6) has a similar structural architecture to other family members. The extracellular region of DR6 contains four cysteine-rich domains, followed by a single-pass transmembrane domain and an intracellular region. Since its discovery, DR6 has become an orphan receptor ubiquitously expressed to transduce unique signaling pathways. Although the free ectodomains of β-amyloid precursor protein (APP) can bind to DR6 to induce apoptotic signals, the natural ligands of DR6 still remain largely unknown. In this review, we focus on recent research progress of structural and functional studies on DR6 for better understanding DR6-mediated signaling and the treatment of DR6-related diseases.
Collapse
Affiliation(s)
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
| |
Collapse
|