1
|
Klein M, Das A, Bera SC, Anderson TK, Kocincova D, Lee HW, Wang B, Papini FS, Marecki JC, Arnold JJ, Cameron CE, Raney KD, Artsimovitch I, Götte M, Kirchdoerfer RN, Depken M, Dulin D. A post-assembly conformational change makes the SARS-CoV-2 polymerase elongation-competent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632299. [PMID: 39829827 PMCID: PMC11741424 DOI: 10.1101/2025.01.10.632299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Coronaviruses (CoV) encode sixteen non-structural proteins (nsps), most of which form the replication-transcription complex (RTC). The RTC contains a core composed of one nsp12 RNA-dependent RNA polymerase (RdRp), two nsp8s and one nsp7. The core RTC recruits other nsps to synthesize all viral RNAs within the infected cell. While essential for viral replication, the mechanism by which the core RTC assembles into a processive polymerase remains poorly understood. We show that the core RTC preferentially assembles by first having nsp12-polymerase bind to the RNA template, followed by the subsequent association of nsp7 and nsp8. Once assembled on the RNA template, the core RTC requires hundreds of seconds to undergo a conformational change that enables processive elongation. In the absence of RNA, the (apo-)RTC requires several hours to adopt its elongation-competent conformation. We propose that this obligatory activation step facilitates the recruitment of additional nsp's essential for efficient viral RNA synthesis and may represent a promising target for therapeutic interventions.
Collapse
Affiliation(s)
- Misha Klein
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Arnab Das
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | - Subhas C. Bera
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Thomas K. Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Bing Wang
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Flavia S. Papini
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - John C. Marecki
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC 27599 USA
| | - Kevin D. Raney
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205 USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Mathias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Robert N. Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2024:e0012823. [PMID: 39714175 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Anoshchenko O, Abdelghany M, Lichtman A, Duan R, Chen H, Shaik NA, Peng CC, Yue Q, Subramanian R, Hyland RH, Davies S, Castellanos K, Mak L, Shen G, Xiao D, Caro L, Winter H, Llewellyn J, Humeniuk R. Pharmacokinetics, Mass Balance, Safety, and Tolerability of Obeldesivir in Healthy Participants. Clin Pharmacol Ther 2024; 116:1231-1239. [PMID: 38940465 DOI: 10.1002/cpt.3337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024]
Abstract
There is an unmet need for safe and efficacious oral therapies for COVID-19 with low potential for drug-drug interactions. Obeldesivir is an orally administered nucleoside prodrug that has shown antiviral potency in nonclinical studies against SARS-CoV-2 and its circulating variants. Obeldesivir is metabolized to the active nucleoside triphosphate (GS-443902), which acts as an inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase, thereby inhibiting viral RNA synthesis. Here, we report the safety, tolerability, and pharmacokinetics from a first-in-human, randomized, placebo-controlled, phase I study following oral administration of obeldesivir and a phase I, open-label absorption, distribution, metabolism, and excretion study following oral administration of [14C]-obeldesivir. Overall, obeldesivir was safe and well tolerated at single and multiple doses between 100 and 1,600 mg, with low potential for QT prolongation as assessed by QT-concentration analysis. The exposures to GS-441524 increased dose proportionally in the 100-900-mg dose range. GS-441524 accumulated by 35% after twice-daily and 12% after once-daily dosing for 5 days. Dose-proportional increases in the intracellular concentration of GS-443902 were also observed in peripheral blood mononuclar cells. Plasma exposure of GS-441524 was not significantly altered by food intake. Following oral administration of [14C]-obeldesivir (500 mg; 100 μCi), the mean cumulative [14C]-dose recovery was 90.7% with 58.5% in urine and 32.2% in feces. GS-441524 was the predominant plasma component (90% of 14C-area under the concentration-time curve) and was primarily eliminated via renal excretion. Collectively, data from these studies support selection of the obeldesivir 350 mg twice-daily dosing regimen for further evaluation in phase III studies for COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ran Duan
- Gilead Sciences, Inc., Foster City, California, USA
| | - Henry Chen
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Chi-Chi Peng
- Gilead Sciences, Inc., Foster City, California, USA
| | - Qin Yue
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | - Lily Mak
- Gilead Sciences, Inc., Foster City, California, USA
| | - Gong Shen
- Gilead Sciences, Inc., Foster City, California, USA
| | - Deqing Xiao
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Helen Winter
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | |
Collapse
|
4
|
Gordon CJ, Walker SM, Tchesnokov EP, Kocincova D, Pitts J, Siegel DS, Perry JK, Feng JY, Bilello JP, Götte M. Mechanism and spectrum of inhibition of a 4'-cyano modified nucleotide analog against diverse RNA polymerases of prototypic respiratory RNA viruses. J Biol Chem 2024; 300:107514. [PMID: 38945449 PMCID: PMC11345399 DOI: 10.1016/j.jbc.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
The development of safe and effective broad-spectrum antivirals that target the replication machinery of respiratory viruses is of high priority in pandemic preparedness programs. Here, we studied the mechanism of action of a newly discovered nucleotide analog against diverse RNA-dependent RNA polymerases (RdRps) of prototypic respiratory viruses. GS-646939 is the active 5'-triphosphate metabolite of a 4'-cyano modified C-adenosine analog phosphoramidate prodrug GS-7682. Enzyme kinetics show that the RdRps of human rhinovirus type 16 (HRV-16) and enterovirus 71 incorporate GS-646939 with unprecedented selectivity; GS-646939 is incorporated 20-50-fold more efficiently than its natural ATP counterpart. The RdRp complex of respiratory syncytial virus and human metapneumovirus incorporate GS-646939 and ATP with similar efficiency. In contrast, influenza B RdRp shows a clear preference for ATP and human mitochondrial RNA polymerase does not show significant incorporation of GS-646939. Once incorporated into the nascent RNA strand, GS-646939 acts as a chain terminator although higher NTP concentrations can partially overcome inhibition for some polymerases. Modeling and biochemical data suggest that the 4'-modification inhibits RdRp translocation. Comparative studies with GS-443902, the active triphosphate form of the 1'-cyano modified prodrugs remdesivir and obeldesivir, reveal not only different mechanisms of inhibition, but also differences in the spectrum of inhibition of viral polymerases. In conclusion, 1'-cyano and 4'-cyano modifications of nucleotide analogs provide complementary strategies to target the polymerase of several families of respiratory RNA viruses.
Collapse
Affiliation(s)
- Calvin J Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Simon M Walker
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Egor P Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dana Kocincova
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Pitts
- Gilead Sciences, Inc, Foster City, California, USA
| | | | | | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, California, USA
| | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Martinez DR, Moreira FR, Catanzaro NJ, Diefenbacher MV, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Nguyen C, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Feng JY, Cihlar T, Baric RS, Mackman RL, Bilello JP, Schäfer A, Sheahan TP. The oral nucleoside prodrug GS-5245 is efficacious against SARS-CoV-2 and other endemic, epidemic, and enzootic coronaviruses. Sci Transl Med 2024; 16:eadj4504. [PMID: 38776389 PMCID: PMC11333937 DOI: 10.1126/scitranslmed.adj4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Despite the wide availability of several safe and effective vaccines that prevent severe COVID-19, the persistent emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that can evade vaccine-elicited immunity remains a global health concern. In addition, the emergence of SARS-CoV-2 VOCs that can evade therapeutic monoclonal antibodies underscores the need for additional, variant-resistant treatment strategies. Here, we characterize the antiviral activity of GS-5245, obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved viral RNA-dependent RNA polymerase (RdRp). We show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, SARS-CoV, SARS-CoV-related bat-CoV RsSHC014, Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant. Moreover, in mouse models of SARS-CoV, SARS-CoV-2 (WA/1 and Omicron B1.1.529), MERS-CoV, and bat-CoV RsSHC014 pathogenesis, we observed a dose-dependent reduction in viral replication, body weight loss, acute lung injury, and pulmonary function with GS-5245 therapy. Last, we demonstrate that a combination of GS-5245 and main protease (Mpro) inhibitor nirmatrelvir improved outcomes in vivo against SARS-CoV-2 compared with the single agents. Together, our data support the clinical evaluation of GS-5245 against coronaviruses that cause or have the potential to cause human disease.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas J. Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Meghan V. Diefenbacher
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Cameron Nguyen
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Jason Perry
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Cox RM, Plemper RK. Design and Execution of In Vitro Polymerase Assays for Measles Virus and Related Mononegaviruses. Methods Mol Biol 2024; 2808:19-33. [PMID: 38743360 DOI: 10.1007/978-1-0716-3870-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Morbilliviruses such as measles virus (MeV) are responsible for major morbidity and mortality worldwide, despite the availability of an effective vaccine and global vaccination campaigns. MeV belongs to the mononegavirus order of viral pathogens that store their genetic information in non-segmented negative polarity RNA genomes. Genome replication and viral gene expression are carried out by a virus-encoded RNA-dependent RNA polymerase (RdRP) complex that has no immediate host cell analog. To better understand the organization and regulation of the viral RdRP and mechanistically characterize antiviral candidates, biochemical RdRP assays have been developed that employ purified recombinant polymerase complexes and synthetic RNA templates to monitor the initiation of RNA synthesis and RNA elongation in vitro. In this article, we will discuss strategies for the efficient expression and preparation of mononegavirus polymerase complexes, provide detailed protocols for the execution and optimization of RdRP assays, evaluate alternative options for the choice of template and detection system, and describe the application of the assay for the characterization of inhibitor candidates. Although MeV RdRP assays are the focus of this article, the general strategies and experimental approaches are readily transferable to related viruses in the mononegavirus order.
Collapse
Affiliation(s)
- Robert M Cox
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Richard K Plemper
- Center for Translational Antiviral Research, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Mackman RL, Kalla RV, Babusis D, Pitts J, Barrett KT, Chun K, Du Pont V, Rodriguez L, Moshiri J, Xu Y, Lee M, Lee G, Bleier B, Nguyen AQ, O'Keefe BM, Ambrosi A, Cook M, Yu J, Dempah KE, Bunyan E, Riola NC, Lu X, Liu R, Davie A, Hsiang TY, Dearing J, Vermillion M, Gale M, Niedziela-Majka A, Feng JY, Hedskog C, Bilello JP, Subramanian R, Cihlar T. Discovery of GS-5245 (Obeldesivir), an Oral Prodrug of Nucleoside GS-441524 That Exhibits Antiviral Efficacy in SARS-CoV-2-Infected African Green Monkeys. J Med Chem 2023; 66:11701-11717. [PMID: 37596939 PMCID: PMC11556372 DOI: 10.1021/acs.jmedchem.3c00750] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.
Collapse
Affiliation(s)
- Richard L Mackman
- Medicinal Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Rao V Kalla
- Medicinal Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Darius Babusis
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Jared Pitts
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Kimberly T Barrett
- Formulation and Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Kwon Chun
- Medicinal Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Venice Du Pont
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Lauren Rodriguez
- Clinical Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Jasmine Moshiri
- Clinical Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Yili Xu
- Biochemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Michael Lee
- Biology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Gary Lee
- Biology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Blake Bleier
- Formulation and Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Anh-Quan Nguyen
- Formulation and Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - B Michael O'Keefe
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Andrea Ambrosi
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Meredith Cook
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Joy Yu
- Process Chemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Kassibla Elodie Dempah
- Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Elaine Bunyan
- Process Development, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Nicholas C Riola
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Xianghan Lu
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Renmeng Liu
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Ashley Davie
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Tien-Ying Hsiang
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington 98109 United States
| | - Justin Dearing
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, New Mexico 87108 United States
| | - Meghan Vermillion
- Lovelace Biomedical Research Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, New Mexico 87108 United States
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, School of Medicine, University of Washington, Seattle, Washington 98109 United States
| | - Anita Niedziela-Majka
- Biology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Joy Y Feng
- Biochemistry, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Charlotte Hedskog
- Clinical Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - John P Bilello
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Raju Subramanian
- Drug Metabolism, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| | - Tomas Cihlar
- Discovery Virology, Gilead Sciences Incorporated, 333 Lakeside Drive, Foster City, California 94404 United States
| |
Collapse
|
8
|
Xu T, Zhang L. Current understanding of nucleoside analogs inhibiting the SARS-CoV-2 RNA-dependent RNA polymerase. Comput Struct Biotechnol J 2023; 21:4385-4394. [PMID: 37711189 PMCID: PMC10498173 DOI: 10.1016/j.csbj.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
Since the outbreak of the COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) has become a main target for antiviral therapeutics due to its essential role in viral replication and transcription. Thus, nucleoside analogs structurally resemble the natural RdRp substrate and hold great potential as inhibitors. Until now, extensive experimental investigations have been performed to explore nucleoside analogs to inhibit the RdRp, and concerted efforts have been made to elucidate the underlying molecular mechanisms further. This review begins by discussing the nucleoside analogs that have demonstrated inhibition in the experiments. Second, we examine the current understanding of the molecular mechanisms underlying the action of nucleoside analogs on the SARS-CoV-2 RdRp. Recent findings in structural biology and computational research are presented through the classification of inhibitory mechanisms. This review summarizes previous experimental findings and mechanistic investigations of nucleoside analogs inhibiting SARS-CoV-2 RdRp. It would guide the rational design of antiviral medications and research into viral transcriptional mechanisms.
Collapse
Affiliation(s)
- Tiantian Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Fujian 361005, China
| |
Collapse
|
9
|
Grimes SL, Choi YJ, Banerjee A, Small G, Anderson-Daniels J, Gribble J, Pruijssers AJ, Agostini ML, Abu-Shmais A, Lu X, Darst SA, Campbell E, Denison MR. A mutation in the coronavirus nsp13-helicase impairs enzymatic activity and confers partial remdesivir resistance. mBio 2023; 14:e0106023. [PMID: 37338298 PMCID: PMC10470589 DOI: 10.1128/mbio.01060-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
Coronaviruses (CoVs) encode nonstructural proteins 1-16 (nsps 1-16) which form replicase complexes that mediate viral RNA synthesis. Remdesivir (RDV) is an adenosine nucleoside analog antiviral that inhibits CoV RNA synthesis. RDV resistance mutations have been reported only in the nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp). We here show that a substitution mutation in the nsp13-helicase (nsp13-HEL A335V) of the betacoronavirus murine hepatitis virus (MHV) that was selected during passage with the RDV parent compound confers partial RDV resistance independently and additively when expressed with co-selected RDV resistance mutations in the nsp12-RdRp. The MHV A335V substitution did not enhance replication or competitive fitness compared to WT MHV and remained sensitive to the active form of the cytidine nucleoside analog antiviral molnupiravir (MOV). Biochemical analysis of the SARS-CoV-2 helicase encoding the homologous substitution (A336V) demonstrates that the mutant protein retained the ability to associate with the core replication proteins nsps 7, 8, and 12 but had impaired helicase unwinding and ATPase activity. Together, these data identify a novel determinant of nsp13-HEL enzymatic activity, define a new genetic pathway for RDV resistance, and demonstrate the importance of surveillance for and testing of helicase mutations that arise in SARS-CoV-2 genomes. IMPORTANCE Despite the development of effective vaccines against COVID-19, the continued circulation and emergence of new variants support the need for antivirals such as RDV. Understanding pathways of antiviral resistance is essential for surveillance of emerging variants, development of combination therapies, and for identifying potential new targets for viral inhibition. We here show a novel RDV resistance mutation in the CoV helicase also impairs helicase functions, supporting the importance of studying the individual and cooperative functions of the replicase nonstructural proteins 7-16 during CoV RNA synthesis. The homologous nsp13-HEL mutation (A336V) has been reported in the GISAID database of SARS-CoV-2 genomes, highlighting the importance of surveillance of and genetic testing for nucleoside analog resistance in the helicase.
Collapse
Affiliation(s)
- Samantha L. Grimes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J. Choi
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Anoosha Banerjee
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
- Tri-Institutional Program in Chemical Biology, The Rockefeller University, New York, New York, USA
| | - Gabriel Small
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Jordan Anderson-Daniels
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer Gribble
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alexandra Abu-Shmais
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Elizabeth Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, New York, USA
| | - Mark R. Denison
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Kamzeeva PN, Aralov AV, Alferova VA, Korshun VA. Recent Advances in Molecular Mechanisms of Nucleoside Antivirals. Curr Issues Mol Biol 2023; 45:6851-6879. [PMID: 37623252 PMCID: PMC10453654 DOI: 10.3390/cimb45080433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.
Collapse
Affiliation(s)
| | | | | | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (P.N.K.); (A.V.A.); (V.A.A.)
| |
Collapse
|
11
|
Binderup A, Galli A, Fossat N, Fernandez-Antunez C, Mikkelsen LS, Rivera-Rangel LR, Scheel TKH, Fahnøe U, Bukh J, Ramirez S. Differential activity of nucleotide analogs against tick-borne encephalitis and yellow fever viruses in human cell lines. Virology 2023; 585:179-185. [PMID: 37356253 DOI: 10.1016/j.virol.2023.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
With no approved antiviral therapies, the continuous emergence and re-emergence of tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV) is a rising concern. We performed head-to-head comparisons of the antiviral activity of available nucleos(t)ide analogs (nucs) using relevant human cell lines. Eight existing nucs inhibited TBEV and/or YFV with differential activity between cell lines and viruses. Remdesivir, uprifosbuvir and sofosbuvir were the most potent drugs against TBEV and YFV in liver cells, but they had reduced activity in neural cells, whereas galidesivir retained uniform activity across cell lines and viruses. Ribavirin, valopicitabine, molnupiravir and GS-6620 exhibited only moderate antiviral activity. We found antiviral activity for drugs previously reported as inactive, demonstrating the importance of using human cell lines and comparative experimental assays when screening the activity of nucs. The relatively high antiviral activity of remdesivir, sofosbuvir and uprifosbuvir against TBEV and YFV merits further investigation in clinical studies.
Collapse
Affiliation(s)
- Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Galli
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lizandro René Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Martinez DR, Moreira FR, Zweigart MR, Gully KL, De la Cruz G, Brown AJ, Adams LE, Catanzaro N, Yount B, Baric TJ, Mallory ML, Conrad H, May SR, Dong S, Scobey DT, Montgomery SA, Perry J, Babusis D, Barrett KT, Nguyen AH, Nguyen AQ, Kalla R, Bannister R, Bilello JP, Feng JY, Cihlar T, Baric RS, Mackman RL, Schäfer A, Sheahan TP. Efficacy of the oral nucleoside prodrug GS-5245 (Obeldesivir) against SARS-CoV-2 and coronaviruses with pandemic potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546784. [PMID: 37425890 PMCID: PMC10327034 DOI: 10.1101/2023.06.27.546784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.
Collapse
Affiliation(s)
- David R. Martinez
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Fernando R. Moreira
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark R. Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L. Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gabriela De la Cruz
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ariane J. Brown
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lily E. Adams
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Boyd Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas J. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael L. Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Helen Conrad
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samantha R. May
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie Dong
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - D. Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A. Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | | | | | | | | | | | - Rao Kalla
- Gilead Sciences, Inc, Foster City, CA, USA
| | | | | | | | | | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Rapidly Emerging Antiviral Drug Development Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
13
|
Carlin A, Beadle JR, Clark AE, Gully KL, Moreira FR, Baric RS, Graham RL, Valiaeva N, Leibel SL, Bray W, McMillan RE, Freshman JE, Garretson AF, McVicar RN, Rana T, Zhang XQ, Murphy JA, Schooley RT, Hostetler KY. 1- O-Octadecyl-2- O-benzyl- sn-glyceryl-3- phospho-GS-441524 (V2043). Evaluation of Oral V2043 in a Mouse Model of SARS-CoV-2 Infection and Synthesis and Antiviral Evaluation of Additional Phospholipid Esters with Enhanced Anti-SARS-CoV-2 Activity. J Med Chem 2023; 66:5802-5819. [PMID: 37040439 PMCID: PMC10108740 DOI: 10.1021/acs.jmedchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/13/2023]
Abstract
Early antiviral treatments, including intravenous remdesivir (RDV), reduce hospitalization and severe disease caused by COVID-19. An orally bioavailable RDV analog may facilitate earlier treatment of non-hospitalized COVID-19 patients. Here we describe the synthesis and evaluation of alkyl glyceryl ether phosphodiesters of GS-441524 (RVn), lysophospholipid analogs which allow for oral bioavailability and stability in plasma. Oral treatment of SARS-CoV-2-infected BALB/c mice with 1-O-octadecyl-2-O-benzyl-sn-glyceryl-3-phospho-RVn (60 mg/kg orally, once daily for 5 days starting 12h after infection) reduced lung viral load by 1.5 log10 units versus vehicle at day 2 and to below the limit of detection at day 5. Structure/activity evaluation of additional analogs that have hydrophobic ethers at the sn-2 of glycerol revealed improved in vitro antiviral activity by introduction of a 3-fluoro-4-methoxy-substituted benzyl or a 3- or 4-cyano-substituted benzyl. Collectively, our data support the development of RVn phospholipid prodrugs as oral antiviral agents for prevention and treatment of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Aaron
F. Carlin
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
- Department
of Pathology, University of California,
San Diego, La Jolla, California 92093, United States
| | - James R. Beadle
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Alex E. Clark
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Kendra L. Gully
- Department
of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fernando R. Moreira
- Department
of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ralph S. Baric
- Department
of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel L. Graham
- Department
of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nadejda Valiaeva
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Sandra L. Leibel
- Department
of Pediatrics, University of California,
San Diego, La Jolla, California 92093, United States
| | - William Bray
- Department
of Pediatrics, University of California,
San Diego, La Jolla, California 92093, United States
| | - Rachel E. McMillan
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
- Department
of Pathology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jonathan E. Freshman
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
- Department
of Pathology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Aaron F. Garretson
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
- Department
of Pathology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Rachael N. McVicar
- Sanford
Burnham Prebys Discovery Institute, La Jolla, California 92037, United States
| | - Tariq Rana
- Department
of Pediatrics, University of California,
San Diego, La Jolla, California 92093, United States
| | - Xing-Quan Zhang
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Joyce A. Murphy
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Robert T. Schooley
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| | - Karl Y. Hostetler
- Department
of Medicine, University of California, San
Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Sparrow K, Shrestha R, Wood JM, Clinch K, Hurst BL, Wang H, Gowen BB, Julander JG, Tarbet EB, McSweeney AM, Ward VK, Evans GB, Harris LD. An Isomer of Galidesivir That Potently Inhibits Influenza Viruses and Members of the Bunyavirales Order. ACS Med Chem Lett 2023; 14:506-513. [PMID: 37077387 PMCID: PMC10108398 DOI: 10.1021/acsmedchemlett.3c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
We report for the first time the antiviral activities of two iminovirs (antiviral imino-C-nucleosides) 1 and 2, structurally related to galidesivir (Immucillin A, BCX4430). An iminovir containing the 4-aminopyrrolo[2,1-f][1,2,4-triazine] nucleobase found in remdesivir exhibited submicromolar inhibition of multiple strains of influenza A and B viruses, as well as members of the Bunyavirales order. We also report the first syntheses of ProTide prodrugs of iminovir monophosphates, which unexpectedly displayed poorer viral inhibition than their parent nucleosides in vitro. An efficient synthesis of the 4-aminopyrrolo[2,1-f][1,2,4-triazine]-containing iminovir 2 was developed to enable preliminary in vivo studies, wherein it displayed significant toxicity in BALB/c mice and limited protection against influenza. Further modification of this anti-influenza iminovir will therefore be required to improve its therapeutic value.
Collapse
Affiliation(s)
- Kevin
J. Sparrow
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Rinu Shrestha
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - James M. Wood
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Keith Clinch
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Brett L. Hurst
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States
| | - Hong Wang
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States
| | - Brian B. Gowen
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States
| | - Justin G. Julander
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States
| | - E. Bart Tarbet
- Institute
for Antiviral Research, Utah State University, Logan, Utah 84322-5600, United States
| | - Alice M. McSweeney
- Department
of Microbiology & Immunology, University
of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Vernon K. Ward
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
- Department
of Microbiology & Immunology, University
of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Gary B. Evans
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| | - Lawrence. D. Harris
- Ferrier
Research Institute, Victoria University
of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand
- The
Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
15
|
Pozzi C, Vanet A, Francesconi V, Tagliazucchi L, Tassone G, Venturelli A, Spyrakis F, Mazzorana M, Costi MP, Tonelli M. Antitarget, Anti-SARS-CoV-2 Leads, Drugs, and the Drug Discovery-Genetics Alliance Perspective. J Med Chem 2023; 66:3664-3702. [PMID: 36857133 PMCID: PMC10005815 DOI: 10.1021/acs.jmedchem.2c01229] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena. Herein, we will explore how the study of observed and predicted mutations may offer valuable suggestions for the application of the so-called "synthetic lethal" strategy to SARS-CoV-2 Main protease and Spike protein. The synergy between genetics evidence and drug discovery may prioritize the development of novel long-lasting antiviral agents.
Collapse
Affiliation(s)
- Cecilia Pozzi
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Anne Vanet
- Université Paris Cité,
CNRS, Institut Jacques Monod, F-75013 Paris,
France
| | - Valeria Francesconi
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Lorenzo Tagliazucchi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
- Doctorate School in Clinical and Experimental Medicine
(CEM), University of Modena and Reggio Emilia, Via Campi 287,
41125 Modena, Italy
| | - Giusy Tassone
- Department of Biotechnology, Chemistry and Pharmacy,
University of Siena, via Aldo Moro 2, 53100 Siena,
Italy
| | - Alberto Venturelli
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology,
University of Turin, Via Giuria 9, 10125 Turin,
Italy
| | - Marco Mazzorana
- Diamond Light Source, Harwell Science and
Innovation Campus, Didcot, Oxfordshire OX11 0DE,
U.K.
| | - Maria P. Costi
- Department of Life Science, University of
Modena and Reggio Emilia, via Campi 103, 41125 Modena,
Italy
| | - Michele Tonelli
- Department of Pharmacy, University of
Genoa, viale Benedetto XV n.3, 16132 Genoa, Italy
| |
Collapse
|
16
|
Miropolskaya N, Kozlov M, Petushkov I, Prostova M, Pupov D, Esyunina D, Kochetkov S, Kulbachinskiy A. Effects of natural polymorphisms in SARS-CoV-2 RNA-dependent RNA polymerase on its activity and sensitivity to inhibitors in vitro. Biochimie 2023; 206:81-88. [PMID: 36252889 PMCID: PMC9568283 DOI: 10.1016/j.biochi.2022.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/02/2022]
Abstract
SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is the key enzyme required for viral replication and mRNA synthesis. RdRp is one of the most conserved viral proteins and a promising target for antiviral drugs and inhibitors. At the same time, analysis of public databases reveals multiple variants of SARS-CoV-2 genomes with substitutions in the catalytic RdRp subunit nsp12. Structural mapping of these mutations suggests that some of them may affect the interactions of nsp12 with its cofactors nsp7/nsp8 as well as with RNA substrates. We have obtained several mutations of these types and demonstrated that some of them decrease specific activity of RdRp in vitro, possibly by changing RdRp assembly and/or its interactions with RNA. Therefore, natural polymorphisms in RdRp may potentially affect viral replication. Furthermore, we have synthesized a series of polyphenol and diketoacid derivatives based on previously studied inhibitors of hepatitis C virus RdRp and found that several of them can inhibit SARS-CoV-2 RdRp. Tested mutations in RdRp do not have strong effects on the efficiency of inhibition. Further development of more efficient non-nucleoside inhibitors of SARS-CoV-2 RdRp should take into account the existence of multiple polymorphic variants of RdRp.
Collapse
Affiliation(s)
- Nataliya Miropolskaya
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Maxim Kozlov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Maria Prostova
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”, Moscow, 123182, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center "Kurchatov Institute", Moscow, 123182, Russia.
| |
Collapse
|
17
|
Expanded profiling of Remdesivir as a broad-spectrum antiviral and low potential for interaction with other medications in vitro. Sci Rep 2023; 13:3131. [PMID: 36823196 PMCID: PMC9950143 DOI: 10.1038/s41598-023-29517-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Remdesivir (GS-5734; VEKLURY) is a single diastereomer monophosphoramidate prodrug of an adenosine analog (GS-441524). Remdesivir is taken up by target cells and metabolized in multiple steps to form the active nucleoside triphosphate (GS-443902), which acts as a potent inhibitor of viral RNA-dependent RNA polymerases. Remdesivir and GS-441524 have antiviral activity against multiple RNA viruses. Here, we expand the evaluation of remdesivir's antiviral activity to members of the families Flaviviridae, Picornaviridae, Filoviridae, Orthomyxoviridae, and Hepadnaviridae. Using cell-based assays, we show that remdesivir can inhibit infection of flaviviruses (such as dengue 1-4, West Nile, yellow fever, Zika viruses), picornaviruses (such as enterovirus and rhinovirus), and filoviruses (such as various Ebola, Marburg, and Sudan virus isolates, including novel geographic isolates), but is ineffective or is significantly less effective against orthomyxoviruses (influenza A and B viruses), or hepadnaviruses B, D, and E. In addition, remdesivir shows no antagonistic effect when combined with favipiravir, another broadly acting antiviral nucleoside analog, and has minimal interaction with a panel of concomitant medications. Our data further support remdesivir as a broad-spectrum antiviral agent that has the potential to address multiple unmet medical needs, including those related to antiviral pandemic preparedness.
Collapse
|
18
|
Chinthapatla R, Sotoudegan M, Srivastava P, Anderson TK, Moustafa I, Passow K, Kennelly S, Moorthy R, Dulin D, Feng J, Harki D, Kirchdoerfer R, Cameron C, Arnold J. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. Nucleic Acids Res 2023; 51:315-336. [PMID: 36546762 PMCID: PMC9841423 DOI: 10.1093/nar/gkac1177] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/11/2022] [Accepted: 11/27/2022] [Indexed: 12/24/2022] Open
Abstract
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Collapse
Affiliation(s)
- Rukesh Chinthapatla
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Mohamad Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Pankaj Srivastava
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas K Anderson
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kellan T Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha A Kennelly
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Joy Y Feng
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert N Kirchdoerfer
- Department of Biochemistry and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jamie J Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Petushkov I, Esyunina D, Kulbachinskiy A. Effects of natural RNA modifications on the activity of SARS-CoV-2 RNA-dependent RNA polymerase. FEBS J 2023; 290:80-92. [PMID: 35916766 PMCID: PMC9538676 DOI: 10.1111/febs.16587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/17/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023]
Abstract
RNA-dependent RNA polymerase (RdRp) plays a key role in the replication of RNA viruses, including SARS-CoV-2. Processive RNA synthesis by RdRp is crucial for successful genome replication and expression, especially in the case of very long coronaviral genomes. Here, we analysed the activity of SARS-CoV-2 RdRp (the nsp12-nsp7-nsp8 complex) on synthetic primer-templates of various structures, including substrates with mismatched primers or template RNA modifications. It has been shown that RdRp cannot efficiently extend RNA primers containing mismatches and has no intrinsic RNA cleavage activity to remove the primer 3'-end, thus necessitating the action of exoribonuclease for proofreading. Similar to DNA-dependent RNA polymerases, RdRp can perform processive pyrophosphorolysis of the nascent RNA product but this reaction is also blocked in the presence of mismatches. Furthermore, we have demonstrated that several natural post-transcriptional modifications in the RNA template, which do not prevent complementary interactions (N6-methyladenosine, 5-methylcytosine, inosine and pseudouridine), do not change RdRp processivity. At the same time, certain modifications of RNA bases and ribose residues strongly block RNA synthesis, either prior to nucleotide incorporation (3-methyluridine and 1-methylguanosine) or immediately after it (2'-O-methylation). The results demonstrate that the activity of SARS-CoV-2 RdRp can be strongly inhibited by common modifications of the RNA template suggesting a way to design novel antiviral compounds.
Collapse
Affiliation(s)
- Ivan Petushkov
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| | - Daria Esyunina
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, National Research Center “Kurchatov Institute”MoscowRussia
| |
Collapse
|
20
|
Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Viruses 2022; 14:2200. [PMID: 36298755 PMCID: PMC9612308 DOI: 10.3390/v14102200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
Abstract
RNA-dependent RNA polymerases (RdRPs) represent a distinctive yet versatile class of nucleic acid polymerases encoded by RNA viruses for the replication and transcription of their genome. The structure of the RdRP is comparable to that of a cupped right hand consisting of fingers, palm, and thumb subdomains. Despite the presence of a common structural core, the RdRPs differ significantly in the mechanistic details of RNA binding and polymerization. The present review aims at exploring these incongruities in light of recent structural studies of RdRP complexes with diverse cofactors, RNA moieties, analogs, and inhibitors.
Collapse
Affiliation(s)
- Kavitha Ramaswamy
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Mariya Rashid
- Taiwan International Graduate Program, Molecular Cell Biology (National Defense Medical Center and Academia Sinica), Taipei 115, Taiwan;
| | - Selvarajan Ramasamy
- National Research Center for Banana, Somarasempettai−Thogaimalai Rd, Podavur, Tamil Nadu 639103, India;
| | - Tamilselvan Jayavelu
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, Sardar Patel Road, Guindy, Chennai 600025, India; (K.R.); (T.J.)
| |
Collapse
|
21
|
Chinthapatla R, Sotoudegan M, Anderson T, Moustafa IM, Passow KT, Kennelly SA, Moorthy R, Dulin D, Feng JY, Harki DA, Kirchdoerfer R, Cameron CE, Arnold JJ. Interfering with nucleotide excision by the coronavirus 3'-to-5' exoribonuclease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.08.11.503614. [PMID: 35982684 PMCID: PMC9387131 DOI: 10.1101/2022.08.11.503614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Some of the most efficacious antiviral therapeutics are ribonucleos(t)ide analogs. The presence of a 3'-to-5' proofreading exoribonuclease (ExoN) in coronaviruses diminishes the potency of many ribonucleotide analogs. The ability to interfere with ExoN activity will create new possibilities for control of SARS-CoV-2 infection. ExoN is formed by a 1:1 complex of nsp14 and nsp10 proteins. We have purified and characterized ExoN using a robust, quantitative system that reveals determinants of specificity and efficiency of hydrolysis. Double-stranded RNA is preferred over single-stranded RNA. Nucleotide excision is distributive, with only one or two nucleotides hydrolyzed in a single binding event. The composition of the terminal basepair modulates excision. A stalled SARS-CoV-2 replicase in complex with either correctly or incorrectly terminated products prevents excision, suggesting that a mispaired end is insufficient to displace the replicase. Finally, we have discovered several modifications to the 3'-RNA terminus that interfere with or block ExoN-catalyzed excision. While a 3'-OH facilitates hydrolysis of a nucleotide with a normal ribose configuration, this substituent is not required for a nucleotide with a planar ribose configuration such as that present in the antiviral nucleotide produced by viperin. Design of ExoN-resistant, antiviral ribonucleotides should be feasible.
Collapse
Affiliation(s)
- Rukesh Chinthapatla
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Mohamad Sotoudegan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Thomas Anderson
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ibrahim M. Moustafa
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kellan T. Passow
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samantha A. Kennelly
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ramkumar Moorthy
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - David Dulin
- Department of Physics and Astronomy, and LaserLaB Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Junior Research Group 2, Interdisciplinary Center for Clinical Research, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058 Erlangen, Germany
| | - Joy Y. Feng
- Gilead Sciences, Inc, Foster City, CA 94404, USA
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert Kirchdoerfer
- Department of Biochemistry and Institute of Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Craig E. Cameron
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Luo X, Wang X, Yao Y, Gao X, Zhang L. Unveiling the "Template-Dependent" Inhibition on the Viral Transcription of SARS-CoV-2. J Phys Chem Lett 2022; 13:7197-7205. [PMID: 35912566 PMCID: PMC9363016 DOI: 10.1021/acs.jpclett.2c01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Remdesivir is one nucleotide analogue prodrug capable to terminate RNA synthesis in SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) by two distinct mechanisms. Although the "delayed chain termination" mechanism has been extensively investigated, the "template-dependent" inhibitory mechanism remains elusive. In this study, we have demonstrated that remdesivir embedded in the template strand seldom directly disrupted the complementary NTP incorporation at the active site. Instead, the translocation of remdesivir from the +2 to the +1 site was hindered due to the steric clash with V557. Moreover, we have elucidated the molecular mechanism characterizing the drug resistance upon V557L mutation. Overall, our studies have provided valuable insight into the "template-dependent" inhibitory mechanism exerted by remdesivir on SARS-CoV-2 RdRp and paved venues for an alternative antiviral strategy for the COVID-19 pandemic. As the "template-dependent" inhibition occurs across diverse viral RdRps, our findings may also shed light on a common acting mechanism of inhibitors.
Collapse
Affiliation(s)
- Xueying Luo
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiaowei Wang
- Department
of Chemical and Biological Engineering, Department of Mathematics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Yuan Yao
- Department
of Mathematics, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Xin Gao
- Computer
Science Program, Computer, Electrical and Mathematical Sciences and
Engineering (CEMSE) Division, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- KAUST
Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zhang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, 350002 Fuzhou, Fujian, China
- University
of Chinese Academy of Sciences, 100049 Beijing, China
- Fujian Provincial
Key Laboratory of Theoretical and Computational Chemistry, 361005 Fujian, China
| |
Collapse
|
23
|
Stevens LJ, Pruijssers AJ, Lee HW, Gordon CJ, Tchesnokov EP, Gribble J, George AS, Hughes TM, Lu X, Li J, Perry JK, Porter DP, Cihlar T, Sheahan TP, Baric RS, Götte M, Denison MR. Mutations in the SARS-CoV-2 RNA-dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med 2022; 14:eabo0718. [PMID: 35482820 PMCID: PMC9097878 DOI: 10.1126/scitranslmed.abo0718] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 12/19/2022]
Abstract
The nucleoside analog remdesivir (RDV) is a Food and Drug Administration-approved antiviral for treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Thus, it is critical to understand factors that promote or prevent RDV resistance. We passaged SARS-CoV-2 in the presence of increasing concentrations of GS-441524, the parent nucleoside of RDV. After 13 passages, we isolated three viral lineages with phenotypic resistance as defined by increases in half-maximal effective concentration from 2.7- to 10.4-fold. Sequence analysis identified nonsynonymous mutations in nonstructural protein 12 RNA-dependent RNA polymerase (nsp12-RdRp): V166A, N198S, S759A, V792I, and C799F/R. Two lineages encoded the S759A substitution at the RdRp Ser759-Asp-Asp active motif. In one lineage, the V792I substitution emerged first and then combined with S759A. Introduction of S759A and V792I substitutions at homologous nsp12 positions in murine hepatitis virus demonstrated transferability across betacoronaviruses; introduction of these substitutions resulted in up to 38-fold RDV resistance and a replication defect. Biochemical analysis of SARS-CoV-2 RdRp encoding S759A demonstrated a roughly 10-fold decreased preference for RDV-triphosphate (RDV-TP) as a substrate, whereas nsp12-V792I diminished the uridine triphosphate concentration needed to overcome template-dependent inhibition associated with RDV. The in vitro-selected substitutions identified in this study were rare or not detected in the greater than 6 million publicly available nsp12-RdRp consensus sequences in the absence of RDV selection. The results define genetic and biochemical pathways to RDV resistance and emphasize the need for additional studies to define the potential for emergence of these or other RDV resistance mutations in clinical settings.
Collapse
Affiliation(s)
- Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Hery W. Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Calvin J. Gordon
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Egor P. Tchesnokov
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Amelia S. George
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Tia M. Hughes
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jiani Li
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | | | | | - Tomas Cihlar
- Gilead Sciences, Inc, Foster City, CA, 94404, USA
| | - Timothy P. Sheahan
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2T9, CA
| | - Mark R. Denison
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
24
|
The Nucleoside/Nucleotide Analogs Tenofovir and Emtricitabine Are Inactive against SARS-CoV-2. Molecules 2022; 27:molecules27134212. [PMID: 35807457 PMCID: PMC9267940 DOI: 10.3390/molecules27134212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
The urgent response to the COVID-19 pandemic required accelerated evaluation of many approved drugs as potential antiviral agents against the causative pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Using cell-based, biochemical, and modeling approaches, we studied the approved HIV-1 nucleoside/tide reverse transcriptase inhibitors (NRTIs) tenofovir (TFV) and emtricitabine (FTC), as well as prodrugs tenofovir alafenamide (TAF) and tenofovir disoproxilfumarate (TDF) for their antiviral effect against SARS-CoV-2. A comprehensive set of in vitro data indicates that TFV, TAF, TDF, and FTC are inactive against SARS-CoV-2. None of the NRTIs showed antiviral activity in SARS-CoV-2 infected A549-hACE2 cells or in primary normal human lung bronchial epithelial (NHBE) cells at concentrations up to 50 µM TAF, TDF, FTC, or 500 µM TFV. These results are corroborated by the low incorporation efficiency of respective NTP analogs by the SARS-CoV-2 RNA-dependent-RNA polymerase (RdRp), and lack of the RdRp inhibition. Structural modeling further demonstrated poor fitting of these NRTI active metabolites at the SARS-CoV-2 RdRp active site. Our data indicate that the HIV-1 NRTIs are unlikely direct-antivirals against SARS-CoV-2, and clinicians and researchers should exercise caution when exploring ideas of using these and other NRTIs to treat or prevent COVID-19.
Collapse
|
25
|
In Vitro Selection of Remdesivir-Resistant SARS-CoV-2 Demonstrates High Barrier to Resistance. Antimicrob Agents Chemother 2022; 66:e0019822. [PMID: 35708323 PMCID: PMC9295571 DOI: 10.1128/aac.00198-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In vitro selection of remdesivir-resistant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) revealed the emergence of a V166L substitution, located outside of the polymerase active site of the Nsp12 protein, after 9 passages of a single lineage. V166L remained the only Nsp12 substitution after 17 passages (10 μM remdesivir), conferring a 2.3-fold increase in 50% effective concentration (EC50). When V166L was introduced into a recombinant SARS-CoV-2 virus, a 1.5-fold increase in EC50 was observed, indicating a high in vitro barrier to remdesivir resistance.
Collapse
|
26
|
Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants. Antimicrob Agents Chemother 2022; 66:e0022222. [PMID: 35532238 PMCID: PMC9211395 DOI: 10.1128/aac.00222-22] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Genetic variation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern/variants of interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV [VEKLURY]) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here, we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein enzyme-linked immunosorbent assay (ELISA) and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with 50% effective concentration (EC50) values 0.30- to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.13- to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants, with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.
Collapse
|
27
|
Repurposing Probenecid to Inhibit SARS-CoV-2, Influenza Virus, and Respiratory Syncytial Virus (RSV) Replication. Viruses 2022; 14:v14030612. [PMID: 35337018 PMCID: PMC8955960 DOI: 10.3390/v14030612] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 12/02/2022] Open
Abstract
Viral replication and transmissibility are the principal causes of endemic and pandemic disease threats. There remains a need for broad-spectrum antiviral agents. The most common respiratory viruses are endemic agents such as coronaviruses, respiratory syncytial viruses, and influenza viruses. Although vaccines are available for SARS-CoV-2 and some influenza viruses, there is a paucity of effective antiviral drugs, while for RSV there is no vaccine available, and therapeutic treatments are very limited. We have previously shown that probenecid is safe and effective in limiting influenza A virus replication and SARS-CoV-2 replication, along with strong evidence showing inhibition of RSV replication in vitro and in vivo. This review article will describe the antiviral activity profile of probenecid against these three viruses.
Collapse
|