1
|
Zhukrovska K, Binda E, Fedorenko V, Marinelli F, Yushchuk O. The Impact of Heterologous Regulatory Genes from Lipodepsipeptide Biosynthetic Gene Clusters on the Production of Teicoplanin and A40926. Antibiotics (Basel) 2024; 13:115. [PMID: 38391501 PMCID: PMC10886168 DOI: 10.3390/antibiotics13020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
StrR-like pathway-specific transcriptional regulators (PSRs) function as activators in the biosynthesis of various antibiotics, including glycopeptides (GPAs), aminoglycosides, aminocoumarins, and ramoplanin-like lipodepsipeptides (LDPs). In particular, the roles of StrR-like PSRs have been previously investigated in the biosynthesis of streptomycin, novobiocin, GPAs like balhimycin, teicoplanin, and A40926, as well as LDP enduracidin. In the current study, we focused on StrR-like PSRs from the ramoplanin biosynthetic gene cluster (BGC) in Actinoplanes ramoplaninifer ATCC 33076 (Ramo5) and the chersinamycin BGC in Micromonospora chersina DSM 44151 (Chers28). Through the analysis of the amino acid sequences of Ramo5 and Chers28, we discovered that these proteins are phylogenetically distant from other experimentally investigated StrR PSRs, although all StrR-like PSRs found in BGCs for different antibiotics share a conserved secondary structure. To investigate whether Ramo5 and Chers28, given their phylogenetic positions, might influence the biosynthesis of other antibiotic pathways governed by StrR-like PSRs, the corresponding genes (ramo5 and chers28) were heterologously expressed in Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727, which produce the clinically-relevant GPAs teicoplanin and A40926, respectively. Recombinant strains of NRRL B-16726 and ATCC 39727 expressing chers28 exhibited improved antibiotic production, although the expression of ramo5 did not yield the same effect. These results demonstrate that some StrR-like PSRs can "cross-talk" between distant biosynthetic pathways and might be utilized as tools for the activation of silent BGCs regulated by StrR-like PSRs.
Collapse
Affiliation(s)
- Kseniia Zhukrovska
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
2
|
Andreo-Vidal A, Yushchuk O, Marinelli F, Binda E. Cross-Talking of Pathway-Specific Regulators in Glycopeptide Antibiotics (Teicoplanin and A40926) Production. Antibiotics (Basel) 2023; 12:antibiotics12040641. [PMID: 37107003 PMCID: PMC10135024 DOI: 10.3390/antibiotics12040641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Teicoplanin and A40926 (natural precursor of dalbavancin) are clinically relevant glycopeptide antibiotics (GPAs) produced by Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727. Their biosynthetic enzymes are coded within large biosynthetic gene clusters (BGCs), named tei for teicoplanin and dbv for A40926, whose expression is strictly regulated by pathway-specific transcriptional regulators (PSRs), coded by cluster-situated regulatory genes (CSRGs). Herein, we investigated the "cross-talk" between the CSRGs from tei and dbv, through the analysis of GPA production levels in A. teichomyceticus and N. gerenzanensis strains, with knockouts of CSRGs cross-complemented by the expression of heterologous CSRGs. We demonstrated that Tei15* and Dbv4 StrR-like PSRs, although orthologous, were not completely interchangeable: tei15* and dbv4 were only partially able or unable to cross-complement N. gerenzanensis knocked out in dbv4 and A. teichomyceticus knocked out in tei15*, implying that the DNA-binding properties of these PSRs are more different in vivo than it was believed before. At the same time, the unrelated LuxR-like PSRs Tei16* and Dbv3 were able to cross-complement corresponding N. gerenzanensis knocked out in dbv3 and A. teichomyceticus knocked out in tei16*. Moreover, the heterologous expression of dbv3 in A. teichomyceticus led to a significant increase in teicoplanin production. Although the molecular background of these events merits further investigations, our results contribute to a deeper understanding of GPA biosynthesis regulation and offer novel biotechnological tools to improve their production.
Collapse
Affiliation(s)
- Andrés Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
3
|
Establishment of a visual gene knockout system based on CRISPR/Cas9 for the rare actinomycete Nonomuraea gerenzanensis. Biotechnol Lett 2023; 45:401-410. [PMID: 36650342 DOI: 10.1007/s10529-023-03347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To develop a modified CRISPR/Cas9 system with the β-glucuronidase (GusA) reporter and a dual sgRNA cassette for Nonomuraea gerenzanensis (N. gerenzanensis). RESULTS With the aid of a visual GusA reporter, the complicated and tedious process of cloning and gene identification could be abandoned entirely in the genetic editing of N. gerenzanensis. Moreover, introducing a dual sgRNA cassette into the CRISPR/Cas9 system significantly improved gene deletion efficiency compared to the single sgRNA element. Furthermore, the length of the homologous flanking sequences set to the lowest value of 500 bp in this system could still reach the relatively higher conjugation transfer frequency. CONCLUSIONS The enhanced CRISPR/Cas9 system could efficiently perform genetic manipulation on the rare actinomycete N. gerenzanensis.
Collapse
|
4
|
Heterologous Expression Reveals Ancient Properties of Tei3—A VanS Ortholog from the Teicoplanin Producer Actinoplanes teichomyceticus. Int J Mol Sci 2022; 23:ijms232415713. [PMID: 36555354 PMCID: PMC9779433 DOI: 10.3390/ijms232415713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Glycopeptide antibiotics (GPAs) are among the most clinically successful antimicrobials. GPAs inhibit cell-wall biosynthesis in Gram-positive bacteria via binding to lipid II. Natural GPAs are produced by various actinobacteria. Being themselves Gram-positives, the GPA producers evolved sophisticated mechanisms of self-resistance to avoid suicide during antibiotic production. These self-resistance genes are considered the primary source of GPA resistance genes actually spreading among pathogenic enterococci and staphylococci. The GPA-resistance mechanism in Actinoplanes teichomyceticus—the producer of the last-resort-drug teicoplanin—has been intensively studied in recent years, posing relevant questions about the role of Tei3 sensor histidine kinase. In the current work, the molecular properties of Tei3 were investigated. The setup of a GPA-responsive assay system in the model Streptomyces coelicolor allowed us to demonstrate that Tei3 functions as a non-inducible kinase, conferring high levels of GPA resistance in A. teichomyceticus. The expression of different truncated versions of tei3 in S. coelicolor indicated that both the transmembrane helices of Tei3 are crucial for proper functioning. Finally, a hybrid gene was constructed, coding for a chimera protein combining the Tei3 sensor domain with the kinase domain of VanS, with the latter being the inducible Tei3 ortholog from S. coelicolor. Surprisingly, such a chimera did not respond to teicoplanin, but indeed to the related GPA A40926. Coupling these experimental results with a further in silico analysis, a novel scenario on GPA-resistance and biosynthetic genes co-evolution in A. teichomyceticus was hereby proposed.
Collapse
|
5
|
Xu M, Wang W, Waglechner N, Culp EJ, Guitor AK, Wright GD. Phylogeny-Informed Synthetic Biology Reveals Unprecedented Structural Novelty in Type V Glycopeptide Antibiotics. ACS CENTRAL SCIENCE 2022; 8:615-626. [PMID: 35647273 PMCID: PMC9136965 DOI: 10.1021/acscentsci.1c01389] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 06/01/2023]
Abstract
The rise and dissemination of glycopeptide antibiotic (GPA)-resistant pathogens in healthcare settings fuel efforts to discover GPAs that can overcome resistance. Members of the type V subclass of GPAs can evade common GPA resistance mechanisms and offer promise as new drug leads. We characterize five new type V GPAs-rimomycin-A/B/C and misaugamycin-A/B-discovered through a phylogeny-guided genome mining strategy coupled with heterologous production using our GPAHex synthetic biology platform. Rimomycin is a heptapeptide similar to kistamicin but includes an N-methyl-tyrosine at amino acid 6 (AA6) and substitutes 4-hydroxyphenylglycine for tyrosine and 3,5-dihydroxyphenylglycine at positions AA1 and AA3. Misaugamycin is characterized by an unprecedented N-C cross-link between AA2 and AA4 and unique N-terminal acylation by malonyl (misaugamycin-A) or 2-sulfoacetyl (misaugamycin-B) groups. We demonstrate that rimomycin-A/B/C and misaugamycin-A/B are potent antibiotics with activity against GPA-resistant clinical isolates and that the mode of action is consistent with the inhibition of cell division by the evasion of autolysin activity. These discoveries expand the chemical diversity of the type V GPAs, offer new chemical scaffolds for drug development, and demonstrate the application of the GPAHex platform in mining GPA chemical "dark matter".
Collapse
Affiliation(s)
- Min Xu
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Wenliang Wang
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Nicholas Waglechner
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Elizabeth J. Culp
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Allison K. Guitor
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic
Discovery, Michael G. DeGroote Institute for Infectious Disease Research,
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
6
|
Yushchuk O, Vior NM, Andreo-Vidal A, Berini F, Rückert C, Busche T, Binda E, Kalinowski J, Truman AW, Marinelli F. Genomic-Led Discovery of a Novel Glycopeptide Antibiotic by Nonomuraea coxensis DSM 45129. ACS Chem Biol 2021; 16:915-928. [PMID: 33913701 PMCID: PMC8291499 DOI: 10.1021/acschembio.1c00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Glycopeptide antibiotics
(GPAs) are last defense line drugs against
multidrug-resistant Gram-positive pathogens. Natural GPAs teicoplanin
and vancomycin, as well as semisynthetic oritavancin, telavancin,
and dalbavancin, are currently approved for clinical use. Although
these antibiotics remain efficient, emergence of novel GPA-resistant
pathogens is a question of time. Therefore, it is important to investigate
the natural variety of GPAs coming from so-called “rare”
actinobacteria. Herein we describe a novel GPA producer—Nonomuraea coxensis DSM 45129. Its de novo sequenced and completely assembled genome harbors a biosynthetic
gene cluster (BGC) similar to the dbv BGC of A40926,
the natural precursor to dalbavancin. The strain produces a novel
GPA, which we propose is an A40926 analogue lacking the carboxyl group
on the N-acylglucosamine moiety. This structural
difference correlates with the absence of dbv29—coding
for an enzyme responsible for the oxidation of the N-acylglucosamine moiety. Introduction of dbv29 into N. coxensis led to A40926 production in this strain.
Finally, we successfully applied dbv3 and dbv4 heterologous transcriptional regulators to trigger
and improve A50926 production in N. coxensis, making them prospective tools for screening other Nonomuraea spp. for GPA production. Our work highlights
genus Nonomuraea as a still untapped
source of novel GPAs.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Natalia M. Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Andres Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Christian Rückert
- Technology Platform Genomics, CeBiTec, Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Tobias Busche
- Technology Platform Genomics, CeBiTec, Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Sequenz 1, 33615 Bielefeld, Germany
| | - Andrew W. Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J. H. Dunant 3, 21100 Varese, Italy
| |
Collapse
|
7
|
Teicoplanin biosynthesis: unraveling the interplay of structural, regulatory, and resistance genes. Appl Microbiol Biotechnol 2020; 104:3279-3291. [PMID: 32076781 DOI: 10.1007/s00253-020-10436-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 01/10/2023]
Abstract
Teicoplanin (Tcp) is a clinically relevant glycopeptide antibiotic (GPA) that is produced by the actinobacterium Actinoplanes teichomyceticus. Tcp is a front-line therapy for treating severe infections caused by multidrug-resistant Gram-positive pathogens in adults and infants. In this review, we provide a detailed overview of how Tcp is produced by A. teichomyceticus by describing Tcp biosynthesis, regulation, and resistance. We summarize the knowledge gained from in vivo and in vitro studies to provide an integrated model of teicoplanin biosynthesis. Then, we discuss genetic and nutritional factors that contribute to the regulation of teicoplanin biosynthesis, focusing on those that have been successfully applied for improving teicoplanin production. A current view on teicoplanin self-resistance mechanisms in A. teichomyceticus is given, and we compare the Tcp biosynthetic gene cluster with other glycopeptide gene clusters from actinoplanetes and from unidentified isolates/metagenomics samples. Finally, we provide an outlook for further directions in studying Tcp biosynthesis and regulation.
Collapse
|
8
|
Yushchuk O, Andreo-Vidal A, Marcone GL, Bibb M, Marinelli F, Binda E. New Molecular Tools for Regulation and Improvement of A40926 Glycopeptide Antibiotic Production in Nonomuraea gerenzanensis ATCC 39727. Front Microbiol 2020; 11:8. [PMID: 32038594 PMCID: PMC6985074 DOI: 10.3389/fmicb.2020.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
Genome sequencing has revealed that Nonomuraea spp. represent a still largely unexplored source of specialized metabolites. Nonomuraea gerenzanensis ATCC 39727 is the most studied representative species since it produces the glycopeptide antibiotic (GPA) A40926 – the precursor of the clinically relevant antibiotic dalbavancin, approved by the FDA in 2014 for the treatment of acute skin infections caused by multi-drug resistant Gram-positive pathogens. The clinical relevance of dalbavancin has prompted increased attention on A40926 biosynthesis and its regulation. In this paper, we investigated how to enhance the genetic toolkit for members of the Nonomuraea genus, which have proved quite recalcitrant to genetic manipulation. By constructing promoter-probe vectors, we tested the activity of 11 promoters (heterologous and native) using the GusA reporter system in N. gerenzanensis and in Nonomuraea coxensis; this latter species is phylogenetically distant from N. gerenzanesis and also possesses the genetic potential to produce A40926 or a very similar GPA. Finally, the strongest constitutive promoter analyzed in this study, aac(3)IVp, was used to overexpress the cluster-situated regulatory genes controlling A40926 biosynthesis (dbv3 and dbv4 from N. gerenzanensis and nocRI from N. coxensis) in N. gerenzanensis, and the growth and productivity of the best performing strains were assessed at bioreactor scale using an industrial production medium. Overexpression of positive pathway-specific regulatory genes resulted in a significant increase in the level of A40926 production in N. gerenzanensis, providing a new knowledge-based approach to strain improvement for this valuable glycopeptide antibiotic.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Andres Andreo-Vidal
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | | | - Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elisa Binda
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Yushchuk O, Homoniuk V, Ostash B, Marinelli F, Fedorenko V. Genetic insights into the mechanism of teicoplanin self-resistance in Actinoplanes teichomyceticus. J Antibiot (Tokyo) 2020; 73:255-259. [PMID: 31953525 DOI: 10.1038/s41429-019-0274-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/25/2019] [Accepted: 12/20/2019] [Indexed: 11/09/2022]
Abstract
Actinoplanes teichomyceticus NRRL B-16726 is the only known producer of the clinically important glycopeptide antibiotic teicoplanin. The producing strain is highly self-resistant to teicoplanin. Although the biosynthesis of teicoplanin has been investigated, much of our understanding of self-resistance in the producing strain is based on the extrapolation of existing data about glycopeptide resistance (mediated by the expression of vanRS-vanHAX genes) in other actinomycetes and cocci. The organization of the operons carrying putative van orthologues in A. teichomyceticus differs from known precedents, further adding up to the uncertainty about teicoplanin self-resistance mechanisms. Here, we determined operon structure of the teicoplanin resistance genes in A. teichomyceticus. Although Tei15* is necessary to activate teicoplanin biosynthetic genes, the expression of van orthologues was shown to be independent of Tei15*. We further showed that tei7 promoter driving the expression of vanHAX orthologues is dependent on Tei2 (VanR). Finally, we demonstrate the utility of the tei2 promoter as a new tool to achieve strong constitutive expression in A. teichomyceticus.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Vitalina Homoniuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant 3, 21100, Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st., Lviv, 79005, Ukraine.
| |
Collapse
|
10
|
Yushchuk O, Homoniuk V, Datsiuk Y, Ostash B, Marinelli F, Fedorenko V. Development of a gene expression system for the uncommon actinomycete Actinoplanes rectilineatus NRRL B-16090. J Appl Genet 2020; 61:141-149. [PMID: 31912451 DOI: 10.1007/s13353-019-00534-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
Abstract
The urgent need for discovering new bioactive metabolites prompts exploring novel actinobacterial taxa by developing appropriate tools for their genome mining and rational genetic engineering. One promising source of new bioactive natural products is the genus Actinoplanes, a home to filamentous sporangia-forming actinobacteria producing many important specialized metabolites such as teicoplanin, ramoplanin, and acarbose. Here we describe the development of a gene expression system for a new Actinoplanes species, A. rectilineatus (NRRL B-16090), which is a potential producer of moenomycin-like antibiotics. We have determined the optimal conditions for spore formation in A. rectilineatus and a plasmid transfer procedure for its engineering via intergeneric E. coli-A. rectilineatus conjugation. The φC31- and pSG5-based vectors were successfully transferred into A. rectilineatus, but φBT1- and VWB-based vectors were not transferable. Finally, using the glucuronidase reporter system, we assessed the strength of several heterologous promoters for gene expression in A. rectilineatus.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Vitalina Homoniuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Yurij Datsiuk
- Department of Physics of Earth, Ivan Franko National University of Lviv, 4 Hrushevskoho st, Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100, Varese, Italy
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St, Lviv, 79005, Ukraine.
| |
Collapse
|
11
|
Schaffert L, März C, Burkhardt L, Droste J, Brandt D, Busche T, Rosen W, Schneiker-Bekel S, Persicke M, Pühler A, Kalinowski J. Evaluation of vector systems and promoters for overexpression of the acarbose biosynthesis gene acbC in Actinoplanes sp. SE50/110. Microb Cell Fact 2019; 18:114. [PMID: 31253141 PMCID: PMC6599336 DOI: 10.1186/s12934-019-1162-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
Background Actinoplanes sp. SE50/110 is a natural producer of acarbose. It has been extensively studied in the last decades, which has led to the comprehensive analysis of the whole genome, transcriptome and proteome. First genetic and microbial techniques have been successfully established allowing targeted genome editing by CRISPR/Cas9 and conjugal transfer. Still, a suitable system for the overexpression of singular genes does not exist for Actinoplanes sp. SE50/110. Here, we discuss, test and analyze different strategies by the example of the acarbose biosynthesis gene acbC. Results The integrative φC31-based vector pSET152 was chosen for the development of an expression system, as for the replicative pSG5-based vector pKC1139 unwanted vector integration by homologous recombination was observed. Since simple gene duplication by pSET152 integration under control of native promoters appeared to be insufficient for overexpression, a promoter screening experiment was carried out. We analyzed promoter strengths of five native and seven heterologous promoters using transcriptional fusion with the gusA gene and glucuronidase assays as well as reverse transcription quantitative PCR (RT-qPCR). Additionally, we mapped transcription starts and identified the promoter sequence motifs by 5′-RNAseq experiments. Promoters with medium to strong expression were included into the pSET152-system, leading to an overexpression of the acbC gene. AcbC catalyzes the first step of acarbose biosynthesis and connects primary to secondary metabolism. By overexpression, the acarbose formation was not enhanced, but slightly reduced in case of strongest overexpression. We assume either disturbance of substrate channeling or a negative feed-back inhibition by one of the intermediates, which accumulates in the acbC-overexpression mutant. According to LC–MS-analysis, we conclude, that this intermediate is valienol-7P. This points to a bottleneck in later steps of acarbose biosynthesis. Conclusion Development of an overexpression system for Actinoplanes sp. SE50/110 is an important step for future metabolic engineering. This system will help altering transcript amounts of singular genes, that can be used to unclench metabolic bottlenecks and to redirect metabolic resources. Furthermore, an essential tool is provided, that can be transferred to other subspecies of Actinoplanes and industrially relevant derivatives. Electronic supplementary material The online version of this article (10.1186/s12934-019-1162-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Camilla März
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Lisa Burkhardt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - David Brandt
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Winfried Rosen
- Product Supply, Bayer AG, Friedrich Ebert Str. 217-475, 42117, Wuppertal, Germany
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.,Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
12
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
13
|
Regulation of teicoplanin biosynthesis: refining the roles of tei cluster-situated regulatory genes. Appl Microbiol Biotechnol 2019; 103:4089-4102. [PMID: 30937499 DOI: 10.1007/s00253-019-09789-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
Teicoplanin is a frontline glycopeptide antibiotic produced by Actinoplanes teichomyceticus. It is used to treat complicated cases of infection, including pediatric ones, caused by Gram-positive pathogens. There is a steady interest in elucidating the genetic mechanisms determining teicoplanin production, as they would help overproduce known teicoplanins and discover novel glycopeptides. Herein, we investigate the transcriptional organization of the tei biosynthetic gene cluster and the roles of the cluster-situated regulatory genes in controlling teicoplanin production and self-resistance in A. teichomyceticus. We demonstrate that the tei cluster is organized into nine polygenic and nine monogenic transcriptional units. Most of tei biosynthetic genes are subjected to StrR-like Tei15* control, which, in turn, appears to be regulated by LuxR-type Tei16*. Expression of the genes conferring teicoplanin self-resistance in A. teichomyceticus is not co-regulated with antibiotic production. The gene tei31*, coding for a putative DNA binding protein, is not expressed under teicoplanin producing conditions and is dispensable for antibiotic production. Finally, phylogenesis reconstruction of the glycopeptide cluster-encoded regulators reveals two main clades of StrR-like regulators. Tei15* and close orthologues form one of these clades; the second clade is composed by orthologues of Bbr and Dbv4, governing the biosynthesis of balhimycin and teicoplanin-like A40926, respectively. In addition, the LuxR-type Tei16* appears unrelated to the LuxR-like Dbv3, which is controlling A40926 biosynthesis. Our results shed new light on teicoplanin biosynthesis regulation and on the evolution of novel and old glycopeptide biosynthetic gene clusters.
Collapse
|
14
|
Old and new glycopeptide antibiotics: From product to gene and back in the post-genomic era. Biotechnol Adv 2018; 36:534-554. [PMID: 29454983 DOI: 10.1016/j.biotechadv.2018.02.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/22/2018] [Accepted: 02/14/2018] [Indexed: 02/05/2023]
Abstract
Glycopeptide antibiotics are drugs of last resort for treating severe infections caused by multi-drug resistant Gram-positive pathogens. First-generation glycopeptides (vancomycin and teicoplanin) are produced by soil-dwelling actinomycetes. Second-generation glycopeptides (dalbavancin, oritavancin, and telavancin) are semi-synthetic derivatives of the progenitor natural products. Herein, we cover past and present biotechnological approaches for searching for and producing old and new glycopeptide antibiotics. We review the strategies adopted to increase microbial production (from classical strain improvement to rational genetic engineering), and the recent progress in genome mining, chemoenzymatic derivatization, and combinatorial biosynthesis for expanding glycopeptide chemical diversity and tackling the never-ceasing evolution of antibiotic resistance.
Collapse
|
15
|
Application of β-glucuronidase (GusA) as an effective reporter for extremely acidophilic Acidithiobacillus ferrooxidans. Appl Microbiol Biotechnol 2017; 101:3283-3294. [DOI: 10.1007/s00253-017-8116-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
16
|
Yushchuk O, Ostash B, Pham TH, Luzhetskyy A, Fedorenko V, Truman AW, Horbal L. Characterization of the Post-Assembly Line Tailoring Processes in Teicoplanin Biosynthesis. ACS Chem Biol 2016; 11:2254-64. [PMID: 27285718 DOI: 10.1021/acschembio.6b00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinoplanes teichomyceticus produces teicoplanin (Tcp), a "last resort" lipoglycopeptide antibiotic used to treat severe multidrug resistant infections such as methicillin-resistant Staphylococcus aureus (MRSA). A number of studies have addressed various steps of Tcp biosynthesis using in vitro assays, although the exact sequence of Tcp peptide core tailoring reactions remained speculative. Here, we describe the generation and analysis of a set of A. teichomyceticus mutant strains that have been used to elucidate the sequence of reactions from the Tcp aglycone to mature Tcp. By combining these results with previously published data, we propose an updated order of post-assembly line tailoring processes in Tcp biosynthesis. We also demonstrate that the acyl-CoA-synthetase Tei13* and the type II thioesterase Tei30* are dispensable for Tcp production. Five Tcp derivatives featuring hitherto undescribed combinations of glycosylation and acylation patterns are described. The generation of strains that produce novel Tcp analogues now provides a platform for the production of additional Tcp-like molecules via combinatorial biosynthesis or chemical derivatization.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Bohdan Ostash
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Thu H. Pham
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Andriy Luzhetskyy
- Department
of Pharmaceutical Biotechnology, Saarland University, Campus, Saarbrucken, Germany
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Center for Infectious Research (HZI), Saarbrucken, Germany
| | - Victor Fedorenko
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Andrew W. Truman
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich, United Kingdom
| | - Liliya Horbal
- Department
of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
- Department
of Pharmaceutical Biotechnology, Saarland University, Campus, Saarbrucken, Germany
| |
Collapse
|
17
|
Gren T, Ortseifen V, Wibberg D, Schneiker-Bekel S, Bednarz H, Niehaus K, Zemke T, Persicke M, Pühler A, Kalinowski J. Genetic engineering in Actinoplanes sp. SE50/110 − development of an intergeneric conjugation system for the introduction of actinophage-based integrative vectors. J Biotechnol 2016; 232:79-88. [DOI: 10.1016/j.jbiotec.2016.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 01/10/2023]
|
18
|
A gene cluster for the biosynthesis of moenomycin family antibiotics in the genome of teicoplanin producer Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 2016; 100:7629-38. [DOI: 10.1007/s00253-016-7685-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/22/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
|
19
|
Tsypik O, Yushchuk O, Zaburannyi N, Flärdh K, Walker S, Fedorenko V, Ostash B. Transcriptional regulators of GntR family in Streptomyces coelicolor A3(2): analysis in silico and in vivo of YtrA subfamily. Folia Microbiol (Praha) 2015; 61:209-20. [PMID: 26433722 DOI: 10.1007/s12223-015-0426-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/27/2015] [Indexed: 01/27/2023]
Abstract
Transcriptional factors of the GntR family regulate numerous physiological and morphological processes in response to the nutrient state of bacterial cells. The number of GntR transcriptional factors in genomes of soil-dwelling actinomycetes is one of the highest among bacteria, reflecting both the large size of their chromosomes and the complex ecological niche that they occupy. However, very little is known about the roles of GntRs in actinomycete biology. Here, we analyzed the genome of model actinomycete, Streptomyces coelicolor A3(2), in an attempt to gain new insights into the function of GntR family. All 56 GntR proteins of M145 strain were classified into FadR, HutC, MocR, YtrA, and DevA subfamilies according to their secondary structure. We then checked for the presence of GntR orthologs in six other sequenced Streptomyces and one Kitasatospora genomes, revealing that 12 GntRs were conserved in all analyzed strains. Genomic analysis of the less studied YtrA type regulators revealed 160 sequences present in 88 members of Coriobacteridae, Rubrobacteridae, and Actinobacteridae subclasses. These proteins form seven dense clusters on the consensus phylogenetic tree and their genes are usually co-located with the genes for transport proteins. Probable operator sites were identified for orthologous groups of Sco0823 and Sco3812 proteins. All S. coelicolor YtrA-like regulatory genes (SCO0823, SCO1728, SCO3812) were analyzed at transcriptional level, knocked out, and introduced on moderate copy number plasmid in M145 strain. Also, gene SCO0824, a part of putative SCO0823 operon, was studied. Results of these experiments are discussed here.
Collapse
Affiliation(s)
- O Tsypik
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - O Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - N Zaburannyi
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - K Flärdh
- Department of Biology, Lund University, Lund, 22362, Sweden
| | - S Walker
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - V Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine
| | - B Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho st. 4, Lviv, 79005, Ukraine. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Fedorenko V, Genilloud O, Horbal L, Marcone GL, Marinelli F, Paitan Y, Ron EZ. Antibacterial Discovery and Development: From Gene to Product and Back. BIOMED RESEARCH INTERNATIONAL 2015; 2015:591349. [PMID: 26339625 PMCID: PMC4538407 DOI: 10.1155/2015/591349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/30/2014] [Accepted: 01/13/2015] [Indexed: 12/23/2022]
Abstract
Concern over the reports of antibiotic-resistant bacterial infections in hospitals and in the community has been publicized in the media, accompanied by comments on the risk that we may soon run out of antibiotics as a way to control infectious disease. Infections caused by Enterococcus faecium, Staphylococcus aureus, Klebsiella species, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, and other Enterobacteriaceae species represent a major public health burden. Despite the pharmaceutical sector's lack of interest in the topic in the last decade, microbial natural products continue to represent one of the most interesting sources for discovering and developing novel antibacterials. Research in microbial natural product screening and development is currently benefiting from progress that has been made in other related fields (microbial ecology, analytical chemistry, genomics, molecular biology, and synthetic biology). In this paper, we review how novel and classical approaches can be integrated in the current processes for microbial product screening, fermentation, and strain improvement.
Collapse
Affiliation(s)
- Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences Technology Park, 18016 Granada, Spain
| | - Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv 79005, Ukraine
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano, and University of Insubria, 21100 Varese, Italy
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- The Protein Factory, Interuniversity Centre Politecnico di Milano, ICRM CNR Milano, and University of Insubria, 21100 Varese, Italy
| | - Yossi Paitan
- Clinical Microbiology Laboratory, Meir Medical Center, 44281 Kfar Saba, Israel
| | - Eliora Z. Ron
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, 6997801 Tel Aviv, Israel
- Galilee Research Institute (MIGAL), 11016 Kiryat Shmona, Israel
| |
Collapse
|
21
|
Ostash B, Yushchuk O, Tistechok S, Mutenko H, Horbal L, Muryn A, Dacyuk Y, Kalinowski J, Luzhetskyy A, Fedorenko V. The adpA-like regulatory gene from Actinoplanes teichomyceticus: in silico analysis and heterologous expression. World J Microbiol Biotechnol 2015; 31:1297-301. [DOI: 10.1007/s11274-015-1882-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 11/29/2022]
|
22
|
Horbal L, Kobylyanskyy A, Truman AW, Zaburranyi N, Ostash B, Luzhetskyy A, Marinelli F, Fedorenko V. The pathway-specific regulatory genes, tei15* and tei16*, are the master switches of teicoplanin production in Actinoplanes teichomyceticus. Appl Microbiol Biotechnol 2014; 98:9295-309. [PMID: 25104028 DOI: 10.1007/s00253-014-5969-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 12/01/2022]
Abstract
Pathogenic antibiotic-resistant bacteria are an unprecedented threat to health care worldwide. The range of antibiotics active against these bacteria is narrow; it includes teicoplanin, a "last resort" drug, which is produced by the filamentous actinomycete Actinoplanes teichomyceticus. In this report, we determine the functions of tei15* and tei16*, pathway-specific regulatory genes that code for StrR- and LuxR-type transcriptional factors, respectively. The products of these genes are master switches of teicoplanin biosynthesis, since their inactivation completely abolished antibiotic production. We show that Tei15* positively regulates the transcription of at least 17 genes in the cluster, whereas the targets of Tei16* still remain unknown. Integration of tei15* or tei16* under the control of the aminoglycoside resistance gene aac(3)IV promoter into attBϕC31 site of the A. teichomyceticus chromosome increased teicoplanin productivity to nearly 1 g/L in TM1 industrial medium. The expression of these genes from the moderate copy number episomal vector pKC1139 led to 3-4 g/L teicoplanin, while under the same conditions, wild type produced approximately 100 mg/L. This shows that a significant increase in teicoplanin production can be achieved by a single step of genetic manipulation of the wild-type strain by increasing the expression of the tei regulatory genes. This confirms that natural product yields can be increased using rational engineering once suitable genetic tools have been developed. We propose that this new technology for teicoplanin overproduction might now be transferred to industrial mutants of A. teichomyceticus.
Collapse
Affiliation(s)
- Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 2014; 98:8641-55. [DOI: 10.1007/s00253-014-5918-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023]
|