1
|
Reynolds SD, Hill CL, Alsudayri A, Stack JT, Shontz KM, Carraro G, Stripp BR, Chiang T. Factor 3 regulates airway engraftment by human bronchial basal cells. Stem Cells Transl Med 2025; 14:szae084. [PMID: 39485996 PMCID: PMC11825694 DOI: 10.1093/stcltm/szae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/01/2024] [Indexed: 11/03/2024] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) gene editing and transplantation of CFTR-gene corrected airway basal cells has the potential to cure CF lung disease. Although mouse studies established that cell transplantation was feasible, the engraftment rate was typically low and frequently less than the estimated therapeutic threshold. The purpose of this study was to identify genes and culture conditions that regulate the therapeutic potential of human bronchial basal cells. Factor 3 (F3, Tissue Factor 1) is a component of the extrinsic coagulation pathway and activates a cascade of proteases that convert fibrinogen to fibrin. Based on reports that F3 was necessary for human basal cell survival and adhesion in vitro, the present study evaluated F3 as a potential determinant of therapeutic fitness. The gene expression profile of F3 mRNA-positive human bronchial basal cells was evaluated by scRNAseq and the impact of the lung environment on F3 expression was modeled by varying in vitro culture conditions. F3 necessity for adhesion, proliferation, and differentiation was determined by CRISPR/Cas9 knockout (KO) of the F3 gene. Finally, the impact of F3 manipulation on engraftment was determined by orthotropic co-transplantation of wild-type and F3-KO cells into the airways of immunocompromised mice. In contrast with the hypothesis that F3 increases the therapeutic fitness of basal cells, F3 expression decreased engraftment. These studies guide the ongoing development of cellular therapies by showing that in vitro assessments may not predict therapeutic potential and that the lung milieu influences the functional properties of transplanted bronchial basal cells.
Collapse
Affiliation(s)
- Susan D Reynolds
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH 43215, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, United States
| | - Cynthia L Hill
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH 43215, United States
| | - Alfahdah Alsudayri
- Center for Perinatal Research, Nationwide Children’s Hospital, Columbus, OH 43215, United States
| | - Jacob T Stack
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, United States
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, United States
| | - Gianni Carraro
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Barry R Stripp
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Tendy Chiang
- Center for Regenerative Medicine, Nationwide Children’s Hospital, Columbus, OH 43215, United States
- Department of Otolaryngology, Nationwide Children’s Hospital, Columbus, OH 43215, United States
| |
Collapse
|
2
|
Bondeelle L, Clément S, Bergeron A, Tapparel C. Lung stem cells and respiratory epithelial chimerism in transplantation. Eur Respir Rev 2025; 34:240146. [PMID: 39971397 PMCID: PMC11836672 DOI: 10.1183/16000617.0146-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 02/21/2025] Open
Abstract
Stem cells are capable of self-renewal and differentiation into specialised types. They range from totipotent cells to multipotent or somatic stem cells and ultimately to unipotent cells. Some adult multipotent stem cells can have the potential to regenerate and colonise diverse tissues. The respiratory airways and lung mucosa, exposed to ambient air, perform vital roles for all human tissues and organs. They serve as barriers against airborne threats and are essential for tissue oxygenation. Despite low steady-state turnover, lungs are vulnerable to injuries and diseases from environmental exposure. Lung stem cells are crucial due to their regenerative potential and ability to replace damaged cells. Lung repair with extrapulmonary stem cells can occur, leading to the coexistence of respiratory cells with different genetic origins, a phenomenon known as airway epithelial chimerism. The impact of such chimerism in lung repair and disease is actively studied. This review explores different stem cell types, focusing on pulmonary stem cells. It discusses airway epithelium models derived from stem cells for studying lung diseases and examines lung chimerism, particularly in lung transplantation and haematopoietic stem cell transplantation, highlighting its significance in understanding tissue repair and chimerism-mediated repair processes in lung pathology.
Collapse
Affiliation(s)
- Louise Bondeelle
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Sophie Clément
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, Geneva, Switzerland
- Co-last author
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Co-last author
| |
Collapse
|
3
|
Genden EM, Chen YW. Tracheal transplantation: lessons learned that may apply to lung transplantation. Curr Opin Organ Transplant 2024; 29:407-411. [PMID: 39422597 DOI: 10.1097/mot.0000000000001180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to explore the lessons learned from experimental and human tracheal transplantation to determine if this information may be applied to lung transplantation. RECENT FINDINGS Experimental work in animal models and the recent human tracheal transplantation suggests that a robust tracheal vascular supply prevents anastomotic complications. Further, this work demonstrates that tracheal allografts undergo a progressive chimerism as recipient epithelium repopulates the allograft. In contrast to most vascularized composite allografts such as hand and face transplantation that experience high rates of rejection, the tracheal allograft did not demonstrate rejection. This may suggest that tissue chimerism plays a role in evading immune-mediated allograft rejection. SUMMARY While anastomotic complications and chronic allograft rejection are the most common complications related to lung transplantation, the findings associated with tracheal transplantation may have implications for both reducing complications associated with lung transplantation.
Collapse
Affiliation(s)
- Eric M Genden
- Department of Otolaryngology-Head and Neck Surgery, Department of Neurosurgery, Department of Immunology and Immunotherapy, The Icahn School of Medicine at Mount Sinai
| | - Ya-Wen Chen
- Institute for Airway Sciences, Co-Scientific Director, Center for Epithelial and Airway Biology and Regeneration, Basic Science Research, Otolaryngology, Director, Developmental Origins of Health and Disease, Department of Otolaryngology, Department of Cell, Developmental and Regenerative Biology, Department of Pathology, Molecular and Cell Based Medicine, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
4
|
Milesi J, Gras D, Chanez P, Coiffard B. Airway epithelium in lung transplantation: a potential actor for post-transplant complications? Eur Respir Rev 2024; 33:240093. [PMID: 39603662 PMCID: PMC11600126 DOI: 10.1183/16000617.0093-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/20/2024] [Indexed: 11/29/2024] Open
Abstract
Lung transplantation, a critical intervention for end-stage lung diseases, is frequently challenged by post-transplant complications. Indeed, primary graft dysfunction, anastomotic complications, infections and acute and chronic rejections pose significant hurdles in lung transplantation. While evidence regarding the role of airway epithelium after lung transplantation is still emerging, its importance is becoming increasingly recognised. This review looks at the complex involvement of airway epithelium in various post-transplant complications, while emphasising the utility of airway epithelial culture as a research model. In summary, by elucidating the involvement of airway epithelium in each post-transplant complication and explaining these intricate processes, the review aims to guide specific future research efforts and therapeutic strategies aimed at improving lung transplant outcomes and enhancing patient care.
Collapse
Affiliation(s)
- Jules Milesi
- Aix-Marseille University, APHM, Department of Respiratory Medicine and Lung Transplantation, Marseille, France
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Delphine Gras
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Pascal Chanez
- Aix-Marseille University, APHM, Department of Respiratory Medicine and Lung Transplantation, Marseille, France
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| | - Benjamin Coiffard
- Aix-Marseille University, APHM, Department of Respiratory Medicine and Lung Transplantation, Marseille, France
- Aix-Marseille University, INSERM, INRAE, C2VN, Marseille, France
| |
Collapse
|
5
|
Zhang Y, Wei S, Li M, Lv G. Revolutionizing tracheal reconstruction: innovations in vascularized composite allograft transplantation. Front Bioeng Biotechnol 2024; 12:1452780. [PMID: 39234265 PMCID: PMC11371696 DOI: 10.3389/fbioe.2024.1452780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/12/2024] [Indexed: 09/06/2024] Open
Abstract
Tracheal defects, particularly those extending over long segments, present substantial challenges in reconstructive surgery due to complications in vascularization and integration with host tissues. Traditional methods, such as extended tracheostomies and alloplastic stents, often result in significant morbidity due to mucus plugging and mechanical erosion. Recent advances in vascularized composite allograft (VCA) transplantation have opened new avenues for effective tracheal reconstruction. This article reviews the evolution of tracheal reconstruction techniques, focusing on the shift from non-vascularized approaches to innovative revascularization methods that enhance graft integration and functionality. Key advancements include indirect revascularization techniques and the integration of regenerative medicine, which have shown promise in overcoming historical barriers to successful tracheal transplantation. Clinical case studies are presented to illustrate the complexities and outcomes of recent tracheal transplantation procedures, highlighting the potential for long-term success through the integration of advanced vascular engineering and immune modulation strategies. Furthermore, the role of chimerism in reducing graft rejection and the implications for future tracheal transplantation and tissue engineering efforts are discussed. This review underscores the transformative potential of VCA in tracheal reconstruction, paving the way for more reliable and effective treatments for extensive tracheal defects.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shixiong Wei
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Zhang L, Kelly N, Shontz KM, Hill CL, Stack JT, Calyeca J, Matrka L, Miller A, Reynolds SD, Chiang T. Airway disease decreases the therapeutic potential of epithelial stem cells. Respir Res 2024; 25:28. [PMID: 38217012 PMCID: PMC10787461 DOI: 10.1186/s12931-024-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
BACKGORUND Tissue-engineered tracheal grafts (TETG) can be recellularized by the host or pre-seeded with host-derived cells. However, the impact of airway disease on the recellularization process is unknown. METHODS In this study, we determined if airway disease alters the regenerative potential of the human tracheobronchial epithelium (hTBE) obtained by brushing the tracheal mucosa during clinically-indicated bronchoscopy from 48 pediatric and six adult patients. RESULTS Our findings revealed that basal cell recovery and frequency did not vary by age or region. At passage 1, all samples produced enough cells to cellularize a 3.5 by 0.5 cm2 graft scaffold at low cell density (~ 7000 cells/cm2), and 43.75% could cellularize a scaffold at high cell density (~ 100,000 cells/cm2). At passage 2, all samples produced the number of cells required for both recellularization models. Further evaluation revealed that six pediatric samples (11%) and three (50%) adult samples contained basal cells with a squamous basal phenotype. These cells did not form a polarized epithelium or produce differentiated secretory or ciliated cells. In the pediatric population, the squamous basal cell phenotype was associated with degree of prematurity (< 28 weeks, 64% vs. 13%, p = 0.02), significant pulmonary history (83% vs. 34%, p = 0.02), specifically with bronchopulmonary dysplasia (67% vs. 19%, p = 0.01), and patients who underwent previous tracheostomy (67% vs. 23%, p = 0.03). CONCLUSIONS In summary, screening high-risk pediatric or adult population based on clinical risk factors and laboratory findings could define appropriate candidates for airway reconstruction with tracheal scaffolds. LEVEL OF EVIDENCE Level III Cohort study.
Collapse
Affiliation(s)
- Lisa Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Natalie Kelly
- Department of Otolaryngology, Nationwide Children's Hospital, 555 S. 18th St, Suite 2A, Columbus, OH, 43205, USA
| | - Kimberly M Shontz
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Cynthia L Hill
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jacob T Stack
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jazmin Calyeca
- Department of Otolaryngology, Nationwide Children's Hospital, 555 S. 18th St, Suite 2A, Columbus, OH, 43205, USA
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Laura Matrka
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Audrey Miller
- Comprehensive Center for Bronchopulmonary Dysplasia, Department of Pediatrics, Division of Neonatology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Department of Otolaryngology-Head and Neck Surgery, The Ohio State Wexner Medical Center, Columbus, OH, USA.
- The Ohio State University College of Medicine, Columbus, OH, USA.
- Department of Otolaryngology, Nationwide Children's Hospital, 555 S. 18th St, Suite 2A, Columbus, OH, 43205, USA.
- Center for Regenerative Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
7
|
Abstract
Long-segment tracheal airway defects may be congenital or result from burns, trauma, iatrogenic intubation damage, or tumor invasion. Although airway defects <6 cm in length may be reconstructed using existing end-to-end reconstructive techniques, defects >6 cm continue to challenge surgeons worldwide. The reconstruction of long-segment tracheal defects has long been a reconstructive dilemma, and these defects are associated with significant morbidity and mortality. Many of these defects are not compatible with life or require a permanent extended-length tracheostomy that is fraught with complications including mucus plugging and tracheoesophageal fistula. Extensive circumferential tracheal defects require a reconstructive technique that provides a rigid structure able to withstand the inspiratory pressures, a structure that will biologically integrate, and contain functional ciliated epithelium to allow for normal mucociliary clearance. Tracheal transplantation has been considered the reconstructive "Holy Grail;" however, there has been a long-held scientific dogma that revascularization of the trachea was not possible. This dogma stifled research to achieve single-staged vascularized tracheal transplantation and prompted the introduction of many creative and inventive alternatives. Throughout history, alloplastic material, nonvascularized allografts, and homografts have been used to address this dilemma. However, these techniques have largely been unsuccessful. The recent introduction of a technique for single-staged vascularized tracheal transplantation may offer a solution to this dilemma and potentially a solution to management of the fatal tracheoesophageal fistula.
Collapse
Affiliation(s)
- Eric M Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
8
|
Tan ZH, Dharmadhikari S, Liu L, Yu J, Shontz KM, Stack JT, Breuer CK, Reynolds SD, Chiang T. Regeneration of tracheal neotissue in partially decellularized scaffolds. NPJ Regen Med 2023; 8:35. [PMID: 37438368 PMCID: PMC10338482 DOI: 10.1038/s41536-023-00312-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023] Open
Abstract
Extensive tracheal injury or disease can be life-threatening but there is currently no standard of care. Regenerative medicine offers a potential solution to long-segment tracheal defects through the creation of scaffolds that support the generation of healthy neotissue. We developed decellularized tracheal grafts (PDTG) by removing the cells of the epithelium and lamina propria while preserving donor cartilage. We previously demonstrated that PDTG support regeneration of host-derived neotissue. Here, we use a combination of microsurgical, immunofluorescent, and transcriptomic approaches to compare PDTG neotissue with the native airway and surgical controls. We report that PDTG neotissue is composed of native tracheal cell types and that the neoepithelium and microvasculature persisted for at least 6 months. Vascular perfusion of PDTG was established within 2 weeks and the graft recruited multipotential airway stem cells that exhibit normal proliferation and differentiation. Hence, PDTG neotissue recapitulates the structure and function of the host trachea and has the potential to regenerate.
Collapse
Affiliation(s)
- Zheng Hong Tan
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sayali Dharmadhikari
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Lumei Liu
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jane Yu
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kimberly M Shontz
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jacob T Stack
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Christopher K Breuer
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan D Reynolds
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH, USA
| | - Tendy Chiang
- Center of Regenerative Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA.
- Department of Pediatric Otolaryngology, Nationwide Children's Hospital, Columbus, OH, USA.
| |
Collapse
|
9
|
Kelly NA, Shontz KM, Bergman M, Manning AM, Reynolds SD, Chiang T. Biobanked tracheal basal cells retain the capacity to differentiate. Laryngoscope Investig Otolaryngol 2022; 7:2119-2125. [PMID: 36544928 PMCID: PMC9764751 DOI: 10.1002/lio2.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/19/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Objective While airway epithelial biorepositories have established roles in the study of bronchial progenitor stem (basal) cells, the utility of a bank of tracheal basal cells from pediatric patients, who have or are suspected of having an airway disease, has not been established. In vitro study of these cells can enhance options for tracheal restoration, graft design, and disease modeling. Development of a functional epithelium in these settings is a key measure. The aim of this study was the creation a tracheal basal cell biorepository and assessment of recovered cells. Methods Pediatric patients undergoing bronchoscopy were identified and endotracheal brush (N = 29) biopsies were collected. Cells were cultured using the modified conditional reprogramming culture (mCRC) method. Samples producing colonies by day 14 were passaged and cryopreserved. To explore differentiation potential, cells were thawed and differentiated using the air-liquid interface (ALI) method. Results No adverse events were associated with biopsy collection. Of 29 brush biopsies, 16 (55%) were successfully cultured to passage 1/cryopreserved. Samples with higher initial cell yields were more likely to achieve this benchmark. Ten unique donors were then thawed for analysis of differentiation. The average age was 2.2 ± 2.2 years with five donors (50%) having laryngotracheal pathology. Nine donors (90%) demonstrated differentiation capacity at 21 days of culture, as indicated by detection of ciliated cells (ACT+) and mucous cells (MUC5B+). Conclusion Pediatric tracheal basal cells can be successfully collected and cryopreserved. Recovered cells retain the ability to differentiate into epithelial cell types in vitro. Level of Evidence Level 3.
Collapse
Affiliation(s)
- Natalie A. Kelly
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
| | - Kimberly M. Shontz
- Center for Regenerative MedicineAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Maxwell Bergman
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State Wexner Medical CenterColumbusOhioUSA
| | - Amy M. Manning
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State Wexner Medical CenterColumbusOhioUSA
| | - Susan D. Reynolds
- Center for Perinatal MedicineAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Center for Regenerative MedicineAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology‐Head and Neck SurgeryThe Ohio State Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
10
|
Greenland JR, Tullius SG, Schaenman J. Editorial: Immune Aging: Implications for Transplantation. Front Immunol 2022; 13:953185. [PMID: 35812424 PMCID: PMC9258625 DOI: 10.3389/fimmu.2022.953185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- John R. Greenland
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Division of Transplant Surgery, Department of Surgery, San Francisco Veterans Affairs (VA) Health Care System, San Francisco, CA, United States
- *Correspondence: John R. Greenland,
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joanna Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
11
|
Naeimi Kararoudi M, Alsudayri A, Hill CL, Elmas E, Sezgin Y, Thakkar A, Hester ME, Malleske DT, Lee DA, Neal ML, Perry MR, Harvilchuck JA, Reynolds SD. Assessment of Beta-2 Microglobulin Gene Edited Airway Epithelial Stem Cells as a treatment for Sulfur Mustard Inhalation. Front Genome Ed 2022; 4:781531. [PMID: 35199100 PMCID: PMC8859869 DOI: 10.3389/fgeed.2022.781531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Respiratory system damage is the primary cause of mortality in individuals who are exposed to vesicating agents including sulfur mustard (SM). Despite these devastating health complications, there are no fielded therapeutics that are specific for such injuries. Previous studies reported that SM inhalation depleted the tracheobronchial airway epithelial stem cell (TSC) pool and supported the hypothesis, TSC replacement will restore airway epithelial integrity and improve health outcomes for SM-exposed individuals. TSC express Major Histocompatibility Complex (MHC-I) transplantation antigens which increases the chance that allogeneic TSC will be rejected by the patient’s immune system. However, previous studies reported that Beta-2 microglobulin (B2M) knockout cells lacked cell surface MHC-I and suggested that B2M knockout TSC would be tolerated as an allogeneic graft. This study used a Cas9 ribonucleoprotein (RNP) to generate B2M-knockout TSC, which are termed Universal Donor Stem Cells (UDSC). Whole genome sequencing identified few off-target modifications and demonstrated the specificity of the RNP approach. Functional assays demonstrated that UDSC retained their ability to self-renew and undergo multilineage differentiation. A preclinical model of SM inhalation was used to test UDSC efficacy and identify any treatment-associated adverse events. Adult male Sprague-Dawley rats were administered an inhaled dose of 0.8 mg/kg SM vapor which is the inhaled LD50 on day 28 post-challenge. On recovery day 2, vehicle or allogeneic Fisher rat UDSC were delivered intravenously (n = 30/group). Clinical parameters were recorded daily, and planned euthanasia occurred on post-challenge days 7, 14, and 28. The vehicle and UDSC treatment groups exhibited similar outcomes including survival and a lack of adverse events. These studies establish a baseline which can be used to further develop UDSC as a treatment for SM-induced airway disease.
Collapse
Affiliation(s)
| | | | | | - Ezgi Elmas
- Nationwide Children’s Hospital, Columbus, OH, United States
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Yasemin Sezgin
- Nationwide Children’s Hospital, Columbus, OH, United States
| | - Aarohi Thakkar
- Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mark E. Hester
- Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Dean A. Lee
- Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Mark R. Perry
- Battelle Memorial Institute, Columbus, OH, United States
| | | | - Susan D. Reynolds
- Nationwide Children’s Hospital, Columbus, OH, United States
- *Correspondence: Susan D. Reynolds,
| |
Collapse
|