A Background-Free SERS Strategy for Sensitive Detection of Hydrogen Peroxide.
Molecules 2022;
27:molecules27227918. [PMID:
36432018 PMCID:
PMC9695938 DOI:
10.3390/molecules27227918]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The accurate and sensitive detection of biomolecules by surface-enhanced Raman spectroscopy (SERS) is possible, but remains challenging due to the interference from biomolecules in complex samples. Herein, a new SERS sensor is developed for background-free detection of hydrogen peroxide (H2O2) with an ultralow detection limit (1 × 10-10 mol/L), using a Raman-silent strategy. The Au microparticles (Au-RSMPs) resembling rose-stones are devised as SERS substrates with a high enhancement effect, and 4-mercaptophenylboronic acid (4-MPBA) is selected as an H2O2-responsive Raman reporter. Upon the reaction with H2O2, the phenylboronic group of 4-MPBA was converted to a phenol group, which subsequently reacted with 4-diazonium-phenylalkyne (4-DP), an alkyne-carrying molecule via the azo reaction. The formed product exhibits an intense and sharp SERS signal in the Raman-silent region, avoiding interference of impurities and biomolecules. As a proof-of-concept demonstration, we show that this SERS sensor possesses significant merits towards the determination of H2O2 in terms of broad linear range, low limit of detection, and high selectivity, showing promise for the quantitative analysis of H2O2 in complicated biological samples.
Collapse