1
|
Yatheendran A, Rajan R, Sandhyarani N. Synergistic Effect of Oxygen Vacancy-Rich SnO 2 and AgCl in the Augmentation of Sustained Oxygen Reduction Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11708-11719. [PMID: 37439197 DOI: 10.1021/acs.langmuir.3c01311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Developing a stable and methanol-tolerant electrocatalyst for a sustained oxygen reduction reaction (ORR) is of great importance for advancing direct methanol fuel cell applications. The silver-based electrocatalysts are particularly interesting among the promising non-Pt-based electrocatalysts for ORR. Herein, we report a single-step synthesis of a composite of AgCl and SnO2 with oxygen vacancy (AgCl-SnO2(VO)), which exhibits sustained and selective catalytic activity for the ORR along with excellent durability. Hydrothermal synthesis generates oxygen vacancies within the material and facilitates a strong interaction between AgCl and SnO2(VO), which effectively augments the ORR activity and the long-term stability of the composite. The composite exhibits remarkable methanol tolerance, as evidenced by a meager shift of only 0.002 V in the half-wave potential. Furthermore, the composite demonstrates excellent durability, with no noticeable changes in onset and half-wave potential even after 2500 cycles. The cost-effectiveness, durability, and ORR selectivity of this composite hold great promise toward contributing to the advancement of clean energy technology.
Collapse
Affiliation(s)
- Anagha Yatheendran
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India 673601
| | - Rahul Rajan
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India 673601
| | - N Sandhyarani
- Nanoscience Research Laboratory, School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, Kerala, India 673601
| |
Collapse
|
2
|
PtCo-Based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
Sun Y, Zhang W, Wang Q, Han N, Núñez-Delgado A, Cao Y, Si W, Wang F, Liu S. Biomass-derived N,S co-doped 3D multichannel carbon supported Au@Pd@Pt catalysts for oxygen reduction. ENVIRONMENTAL RESEARCH 2021; 202:111684. [PMID: 34260960 DOI: 10.1016/j.envres.2021.111684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
A beancurd-derived mesoporous carbon (NSC) was prepared by an environmentally friendly procedure, and then it was investigated as Au@Pd@Pt core-shell catalysts support (Au@Pd@Pt-NSC) for oxygen reduction reaction (ORR). The Au@Pd@Pt-NSC (E1/2 = 0.91 V) has a marginally negative ORR half-wave potential compared with other materials, in particular Pt/C (E1/2 = 0.87 V) and Au@Pd@Pt-C (E1/2 = 0.81 V). The specific and mass activities of the Au@Pd@Pt-NSC were 5 and 13 times higher than the commercial a Pt/C catalyst. After 20000 cycles of rapid durability test, the Au@Pd@Pt-NSC sample showed a loss of just 4.9% compared with the initial ECSA area, which can be attributed to the favorable interaction between Au@Pd@Pt and NSC. These results can be considered of environmental relevance and high potential applicability.
Collapse
Affiliation(s)
- Yegeng Sun
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Qing Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium.
| | - Avelino Núñez-Delgado
- Dept. Soil Sci. and Agric. Chem., Engineering Polytech. School, Campus Univ. Lugo, Univ. Santiago de Compostela, Spain
| | - Yue Cao
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Weimeng Si
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Fagang Wang
- School of Material Science and Engineering, Shandong University of Technology, Zibo, 255000, China.
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Xiao Y, Liu W, Zhang Z, Liu J. Controllable synthesis for highly dispersed ruthenium clusters confined in nitrogen doped carbon for efficient hydrogen evolution. J Colloid Interface Sci 2020; 571:205-212. [DOI: 10.1016/j.jcis.2020.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/22/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
5
|
Yi S, Jiang H, Bao X, Zou S, Liao J, Zhang Z. Recent progress of Pt-based catalysts for oxygen reduction reaction in preparation strategies and catalytic mechanism. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113279] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Zhang L, Zhang XF, Chen XL, Wang AJ, Han DM, Wang ZG, Feng JJ. Facile solvothermal synthesis of Pt 71Co 29 lamellar nanoflowers as an efficient catalyst for oxygen reduction and methanol oxidation reactions. J Colloid Interface Sci 2018; 536:556-562. [PMID: 30390581 DOI: 10.1016/j.jcis.2018.10.080] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 10/28/2022]
Abstract
The research for highly efficient and stable electrocatalysts in fuel cells has attracted substantial interest. Herein, bimetallic alloyed Pt71Co29 lamellar nanoflowers (LNFs) with abundant active sites were obtained by a one-pot solvothermal method, where cetyltrimethylammonium chloride (CTAC) and 1-nitroso-2-naphthol (1-N-2-N) served as co-structure-directors, while oleylamine (OAm) as the solvent and reducing agent. The fabricated Pt71Co29 LNFs exhibited the higher mass activity (MA, 128.29 mA mg-1) for oxygen reduction reaction (ORR) than those of home-made Pt48Co52 nanodendrites (NDs), Pt79Co21 NDs and commercial Pt black with the values of 39.46, 49.42 and 22.91 mA mg-1, respectively. Meanwhile, the MA (666.23 mA mg-1) and specific activity (SA, 2.51 mA cm-2) of the constructed Pt71Co29 LNFs for methanol oxidation reaction (MOR) are superior than those of Pt48Co52 NDs (213.91 mA mg-1, 1.99 mA cm-2), Pt79Co21 NDs (210.09 mA mg-1, 1.12 mA cm-2) and Pt black (57.03 mA mg-1, 0.25 mA cm-2). Also, the Pt71Co29 LNFs catalyst exhibited the best durable ability relative to the references. This work demonstrates that the developed strategy provides a facile platform for synthesis of high-performance, low-cost and robust catalysts in practical catalysis, energy storage and conversion.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xiao-Fang Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - De-Man Han
- Department of Chemistry, Taizhou University, Jiaojiang 318000, PR China
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| |
Collapse
|
7
|
Facile solvothermal fabrication of Pt47Ni53 nanopolyhedrons for greatly boosting electrocatalytic performances for oxygen reduction and hydrogen evolution. J Colloid Interface Sci 2018; 525:260-268. [DOI: 10.1016/j.jcis.2018.04.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 11/24/2022]
|
8
|
Yu ZN, Zhang Z, Lv ZS, Liu MT, Zhang L, Wang AJ, Jiang LY, Feng JJ. Platinum69-cobalt31 alloyed nanosheet nanoassemblies as advanced bifunctional electrocatalysts for boosting ethylene glycol oxidation and oxygen reduction. J Colloid Interface Sci 2018; 525:216-224. [DOI: 10.1016/j.jcis.2018.04.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 11/26/2022]
|
9
|
Shao FQ, Zhu XY, Wang AJ, Fang KM, Yuan J, Feng JJ. One-pot synthesis of hollow AgPt alloyed nanocrystals with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. J Colloid Interface Sci 2017; 505:307-314. [DOI: 10.1016/j.jcis.2017.05.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/13/2023]
|
10
|
Holade Y, Servat K, Tingry S, Napporn TW, Remita H, Cornu D, Kokoh KB. Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules. Chemphyschem 2017; 18:2573-2605. [DOI: 10.1002/cphc.201700447] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Yaovi Holade
- Institut Européen des Membranes, IEM UMR 5635, CNRS-UM-ENSCM Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Karine Servat
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, rue Michel Brunet B-27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Sophie Tingry
- Institut Européen des Membranes, IEM UMR 5635, CNRS-UM-ENSCM Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - Teko W. Napporn
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, rue Michel Brunet B-27, TSA 51106 86073 Poitiers Cedex 09 France
| | - Hynd Remita
- Université Paris-Sud, Université Paris SaclayLaboratoire de Chimie Physique, UMR 8000-CNRS, Bât. 349 91405 Orsay France
- CNRSLaboratoire de Chimie Physique, UMR 8000 91405 Orsay France
| | - David Cornu
- Institut Européen des Membranes, IEM UMR 5635, CNRS-UM-ENSCM Place Eugène Bataillon 34095 Montpellier Cedex 5 France
| | - K. Boniface Kokoh
- Université de Poitiers, IC2MP UMR 7285 CNRS 4, rue Michel Brunet B-27, TSA 51106 86073 Poitiers Cedex 09 France
| |
Collapse
|
11
|
Jiang LY, Wang AJ, Li XS, Yuan J, Feng JJ. Facile Solvothermal Synthesis of Pt4
Co Multi-dendrites: An Effective Electrocatalyst for Oxygen Reduction and Glycerol Oxidation. ChemElectroChem 2017. [DOI: 10.1002/celc.201700640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Liu-Ying Jiang
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Ai-Jun Wang
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Xin-Sheng Li
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Junhua Yuan
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| | - Jiu-Ju Feng
- College of Chemistry and Life Science, College of Geography and Environmental Science; Zhejiang Normal University; Jinhua 321004 P.R. China
| |
Collapse
|
12
|
Lin XX, Zhang XF, Wang AJ, Fang KM, Yuan J, Feng JJ. Simple one-pot aqueous synthesis of AuPd alloy nanocrystals/reduced graphene oxide as highly efficient and stable electrocatalyst for oxygen reduction and hydrogen evolution reactions. J Colloid Interface Sci 2017; 499:128-137. [DOI: 10.1016/j.jcis.2017.03.087] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
13
|
Jiang LY, Lin XX, Wang AJ, Yuan J, Feng JJ, Li XS. Facile solvothermal synthesis of monodisperse Pt 2.6 Co 1 nanoflowers with enhanced electrocatalytic activity towards oxygen reduction and hydrogen evolution reactions. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2016.12.123] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
One-step solution-phase synthesis of bimetallic PtCo nanodendrites with high electrocatalytic activity for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2015.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Wang X, Zhang L, Gong H, Zhu Y, Zhao H, Fu Y. Dealloyed PtAuCu electrocatalyst to improve the activity and stability towards both oxygen reduction and methanol oxidation reactions. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.07.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Lohrasbi E, Javanbakht M, Mozaffari SA. Synthesis of Graphene-Supported PtCoFe Alloy with Different Thermal Treatment Procedures as Highly Active Oxygen Reduction Reaction Electrocatalysts for Proton Exchange Membrane Fuel Cells. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Elaheh Lohrasbi
- Department
of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mehran Javanbakht
- Department
of Chemistry, Amirkabir University of Technology, Tehran, Iran
- Fuel
and Solar Cell Lab, Renewable Energy Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Sayed Ahmad Mozaffari
- Department
of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|
17
|
Shao M, Chang Q, Dodelet JP, Chenitz R. Recent Advances in Electrocatalysts for Oxygen Reduction Reaction. Chem Rev 2016; 116:3594-657. [DOI: 10.1021/acs.chemrev.5b00462] [Citation(s) in RCA: 2698] [Impact Index Per Article: 299.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Minhua Shao
- Department
of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Qiaowan Chang
- Department
of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jean-Pol Dodelet
- INRS-Énergie, Matériaux et Télécommunications, 1650, boulevard Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Regis Chenitz
- INRS-Énergie, Matériaux et Télécommunications, 1650, boulevard Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| |
Collapse
|
18
|
Chen LX, Jiang LY, Wang AJ, Chen QY, Feng JJ. Simple synthesis of bimetallic AuPd dendritic alloyed nanocrystals with enhanced electrocatalytic performance for hydrazine oxidation reaction. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2015.12.151] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Dai Y, Sun K, Li Y. Mo@Pt core–shell nanoparticles as an efficient electrocatalyst for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells. Catalysts 2015. [DOI: 10.3390/catal5010310] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|