1
|
A simple and reliable electroanalytical method employing a disposable commercial electrode for simultaneous determination of lead(II) and mercury(II) in beer. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Dash SR, Bag SS, Golder AK. Carbon Dots Derived from Waste Psidium Guajava Leaves for Electrocatalytic Sensing of Chlorpyrifos. ELECTROANAL 2022. [DOI: 10.1002/elan.202100344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Smruti Ranjan Dash
- Centre for the Environment Indian Institute of Technology Guwahati Assam 781039 INDIA
| | - Subhendu Sekhar Bag
- Centre for the Environment Indian Institute of Technology Guwahati Assam 781039 INDIA
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 INDIA
| | - Animes Kumar Golder
- Centre for the Environment Indian Institute of Technology Guwahati Assam 781039 INDIA
- Department of Chemical Engineering Indian Institute of Technology Guwahati Assam 781039 INDIA
| |
Collapse
|
3
|
Mutz YS, Rosario DD, Silva LR, Santos FD, Santos LP, Janegitz BC, Filgueiras PR, Romão W, de Q Ferreira R, Conte-Junior CA. Portable electronic tongue based on screen-printed electrodes coupled with chemometrics for rapid differentiation of Brazilian lager beer. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Silva LRG, Rodrigues JGA, Franco JP, Santos LP, D'Elia E, Romão W, Ferreira RDQ. Development of a portable electroanalytical method using nickel modified screen-printed carbon electrode for ethinylestradiol determination in organic fertilizers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111430. [PMID: 33065379 DOI: 10.1016/j.ecoenv.2020.111430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Urine and struvite are organic fertilizers that have all nutritional requirements for the growth of a plant. However, these fertilizers may contain some emerging organic contaminants, such as ethinylestradiol, which is one of the most common hormones found in aquatic environments and can cause several changes in living organisms. Thus, the present study developed a fast, sensitive, inexpensive, and portable method for determining ethinylestradiol in urine and struvite, using square wave voltammetry (SWV) and screen-printed carbon electrodes modified with electrodeposited nickel film (SPCE-Ni). The electrodeposition of the nickel film on the screen-printed electrode was performed by cyclic voltammetry and optimized using complete factorial design 23 and central composite design. The parameters optimized for SPCE-Ni were: number of cycles (1000); scan rate (5 V s-1) and Ni2+ concentration (9.4 mmol L-1). The operational parameters of the SWV for ethinylestradiol analysis were also optimized by experimental designs and obtained the following optimal values: step potential (10 mV), modulation amplitude (40 mV), and frequency (20 Hz). The method used 0.1 mol L-1 BR buffer (pH 8.0) as support electrolyte and presented a limit of detection of 0.052 µmol L-1 (R2 = 0.996). Ethinylestradiol recovery test in struvite, human urine, synthetic urine, and pharmaceutical tablets ranged from 93.9% to 107.5%, indicating that there is no matrix effect. Furthermore, an interference test was performed with several drugs did not show any significant changes in the ethinylestradiol analytical signal, guaranteeing a greater precision of the method. These results reinforce the possibility of applying the proposed method in loco with a practical and fast way, without the need to use significant amounts of sample.
Collapse
Affiliation(s)
- Luiz R G Silva
- Chemistry Department, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil
| | - José G A Rodrigues
- Chemistry Institute, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Juliana P Franco
- Chemistry Department, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil
| | - Layla P Santos
- Chemistry Department, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil
| | - Eliane D'Elia
- Chemistry Institute, Universidade Federal do Rio de Janeiro, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Wanderson Romão
- Chemistry Department, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil; Instituto Federal do Espírito Santo, 29106-010, Vila Velha, ES, Brazil
| | - Rafael de Q Ferreira
- Chemistry Department, Universidade Federal do Espírito Santo, 29075-910, Vitória, ES, Brazil.
| |
Collapse
|