1
|
Yang Z, Zhang N, Lv H, Ju X, Chen Y, Zhang Z, Tian Y, Zhao B. An aptamer sensor based on AgNPs@MOF for surface-enhanced Raman spectroscopy detection of sulfadimethoxine in food. Mikrochim Acta 2024; 192:29. [PMID: 39718634 DOI: 10.1007/s00604-024-06897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024]
Abstract
A highly sensitive aptamer sensor (aptasensor) is proposed based on metal-organic frameworks-silver nanoparticles (AgNPs@MOF) to detect sulfadimethoxine (SDM) by surface-enhanced Raman spectroscopy (SERS). AgNPs@MOF with SERS activity was successfully fabricated by synthesizing AgNPs in situ on the surface of MIL-101(Fe), and SDM aptamer and Raman reporter 4-aminophenthiophenol (4-ATP) were selected as specific recognition elements and signal probes, respectively. When SDM was absent, the SDM aptamers were effectively adsorbed on the surface of AgNPs@MOF, thus keeping AgNPs@MOF in a dispersed state, resulting in a weakened SERS signal of 4-ATP. In the presence of SDM, the combination of SDM and aptamer formed a rigid hairpin SDM-aptamer complex, which bound less to AgNPs@MOF. Therefore, fewer aptamers were adsorbed on AgNPs@MOF, which exposed more hot spots, resulting in an enhanced SERS signal of 4-ATP. The aptasensor had good selectivity and sensitivity towards SDM and a good linear relationship between SERS intensity and SDM concentration in the range 6.00-150.00 ng/mL, with the limit of detection as low as 2.73 ng/mL. Further application to honey and chicken samples spiked with SDM resulted in satisfactory recoveries, and the aptasensor showed good stability and reproducibility in real samples. The aptasensor based on AgNPs@MOF was proposed for the first time to detect trace SDM by SERS, which provided a favorable way to develop various sensing platforms for antibiotic detection in food safety.
Collapse
Affiliation(s)
- Zhanye Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Nan Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Haiyang Lv
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Xinge Ju
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanhua Chen
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Yuan Tian
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun, 130012, People's Republic of China.
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
2
|
Zhang L, Wu S, Liu J, Ping M, Yang W, Fu F. Isolation of aptamers with excellent cross-reactivity and specificity to sulfonamides towards a ratiometric fluorescent aptasensor for the detection of nine sulfonamides in seafood. Talanta 2024; 277:126380. [PMID: 38852344 DOI: 10.1016/j.talanta.2024.126380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2024] [Revised: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Sulfonamides (SAs) is a class of antibiotics that extensively used for treating infectious diseases in livestock industries and aquaculture. Thus, it is urgent need to obtain the bio-receptor, which has excellent cross-reactivity and specificity to SAs, for developing high-throughput methods for the determination of multiple SAs even all commonly-used SAs, to realize the quick screening/detection of total SAs in animal-derived foods. We herein isolated several SAs-specific cross-reactive aptamers by using a library-immobilized SELEX with multi-SAs parallel selection strategy. Two of the isolated aptamers (Sul-01 and Sul-04) can specifically recognize and bind seven SAs respectively with higher binding affinity and no interference of non-sulfonamide antibiotics, and thus can be applied as bio-receptors for developing high-throughput aptasensors for the quick screening/detection of multiple SAs. By using the mixture of Sul-01 and Sul-04 as bio-receptor, a ratiometric fluorescent aptasensor was created for the quick detection of nine SAs including sulfamethoxydiazine (SMD), sulfapyridine (SPD), sulfaquinoxaline (SQ), sulfathiazole (ST), sulfamonomethoxine (SMM), sulfamerazine (SMR), sulfaguanidine (SG), sulfamethazine (SMZ) and sulfadiazine (SD) with a detection limit (LOD) of 0.10-0.50 μM, or total of above nine SAs with a LOD of 0.20 μM. The fluorescent aptasensor was successfully applied to detect each or total of SMD, SPD, SQ, ST, SMM, SMR, SG, SMZ and SD in fish samples with a recovery of 83 %-92 % and a relative standard deviation (RSD, n = 5) < 5 %. This study not only provided several promising bio-receptors for the development of diverse high-throughput aptasensors to achieve the quick screening of multiple SAs residues, but also provided a simple, stable and sensitive method for the quick screening of SMD, SPD, SQ, ST, SMM, SMR, SG, SMZ and SD in seafood.
Collapse
Affiliation(s)
- Lin Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Siqi Wu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Junfeng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Meiling Ping
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
3
|
Sudewi S, Sai Sashank PV, Kamaraj R, Zulfajri M, Huang GG. Understanding Antibiotic Detection with Fluorescence Quantum Dots: A Review. J Fluoresc 2024:10.1007/s10895-024-03743-4. [PMID: 38771407 DOI: 10.1007/s10895-024-03743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
The utilization of fluorescent quantum dots (FL QDs) has gained significant traction in the realm of antibiotic detection, owing to their exceptional FL properties and versatility. Various types of QDs have been tailored to exhibit superior FL characteristics, employing diverse capping agents such as metals, surfactants, polymers, and biomass to protect and stabilize their surfaces. In their evolution, FL QDs have demonstrated both "turn-off" and "turn-on" mechanisms in response to the presence of analytes, offering promising avenues for biosensing applications. This review article provides a comprehensive overview of the recent advancements in antibiotic detection utilizing FL QDs as biosensors. It encompasses an extensive examination of different types of FL QDs, including carbon, metal, and core-shell QDs, deployed for the detection of antibiotics. Furthermore, the synthesis methods employed for the fabrication of various FL QDs are elucidated, shedding light on the diverse approaches adopted in their preparation. Moreover, this review delves into the intricate sensing mechanisms underlying FL QDs-based antibiotic detection. Various mechanisms, such as photoinduced electron transfer, electron transfer, charge transfer, Forster resonance energy transfer, static quenching, dynamic quenching, inner filter effect, hydrogen bonding, and aggregation-induced emission, are discussed in detail. These mechanisms provide a robust scientific rationale for the detection of antibiotics using FL QDs, showcasing their potential for sensitive and selective sensing applications. Finally, the review addresses current challenges and offers perspectives on the future improvement of FL QDs in sensing applications. Insights into overcoming existing limitations and harnessing emerging technologies are provided, charting a course for the continued advancement of FL QDs-based biosensing platforms in the field of antibiotic detection.
Collapse
Affiliation(s)
- Sri Sudewi
- Department of Pharmacy, Faculty of Mathematics and Natural Science, Universitas Sam Ratulangi, Manado, 95115, Indonesia
| | - Penki Venkata Sai Sashank
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Rajiv Kamaraj
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia.
| | - Genin Gary Huang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
4
|
Du M, Cheng X, Chen Q, Xu X. A novel and sensitive electrochemical aptasensor for sulfadimethoxine detection based on the triple helix/exonuclease I-assisted double-amplification strategy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1570-1578. [PMID: 38407003 DOI: 10.1039/d3ay02157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/27/2024]
Abstract
In this paper, a novel and sensitive electrochemical aptasensor for sulfadimethoxine (SDM) detection has been designed based on the triple helix structure/exonuclease I (Exo I)-assisted double signal amplification strategy. The aptamer probe (Apt) hybridizes with the signal transduction probe (STP) on the electrode to form a rigid double-stranded DNA (dsDNA) structure, so that the STP remains upright and methylene blue (MB) on the STP is far away from the electrode surface, resulting in a delicate current signal. In the presence of SDM, the SDM and Apt combine into a complex, leading to the transfer of the Apt and the exposure of the STP. Meanwhile, the added Exo I can digest the Apt to realize the cyclic amplification of SDM. After the addition of the signal probe (SP), a triple helix structure between the SP and STP is formed under acidic conditions, and MB on the STP and SP collide with the electrode surface to generate a strong electrochemical signal. The proposed aptasensor combines the features of the triple helix structure and Exo I to achieve double signal amplification for the sensitive detection of SDM with a wide linear range of 0.05-1000 ng mL-1 and a low detection limit of 0.02 ng mL-1. Furthermore, it has been successfully used to detect SDM in milk and lake water samples.
Collapse
Affiliation(s)
- Meijuan Du
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Xin Cheng
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Qian Chen
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Xueqin Xu
- Key Laboratory for Analytical Science of Food Safety and Biology, MOE, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
5
|
Wu W, Ahmad W, Hassan MM, Wu J, Ouyang Q, Chen Q. An upconversion biosensor based on inner filter effect for dual-role recognition of sulfadimethoxine in aquatic samples. Food Chem 2023; 437:137832. [PMID: 39491291 DOI: 10.1016/j.foodchem.2023.137832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 10/01/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Sulfadimethoxine (SDM) as an extensively employed veterinary drug causes potential threats to human health. Herein, a dual recognition mode novel upconversion fluorescence biosensor was designed based on inner filter effect (IFE) to sensitively and rapidly detect SDM in aquatic samples. Aldehyde-functionalized magnetic nanoparticles (MNPs) were applied to recognize and capture SDM, followed by specifically bond with biotin-labeled aptamers. The upconversion nanoparticles and the colored products resulting from the enzyme-catalyzed oxidation of 3,3,5,5-tetramethylbenzidine exhibited an IFE quenching process. Under the optimal condition, the results displayed the fluorescence intensity was correlated with the concentration of SDM within the range of 0.5-1000 ng⋅mL-1 achieving a low limit of detection of 0.13 ng⋅mL-1. The SDM detection system was further employed in the spiked aquatic samples with good recoveries (88.41-96.78 %). Consequently, the constructed fluorescence biosensor provided broad prospects for accuracy and rapid detection of SDM.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Waqas Ahmad
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China
| | - Md Mehedi Hassan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jizhong Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qin Ouyang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China.
| |
Collapse
|
6
|
Singh H, Thakur B, Bhardwaj SK, Khatri M, Kim KH, Bhardwaj N. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review. Food Chem 2023; 426:136657. [PMID: 37393822 DOI: 10.1016/j.foodchem.2023.136657] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2022] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
Antibiotics are widely used as bacteriostatic or bactericidal agents against various microbial infections in humans and animals. The excessive use of antibiotics has led to an accumulation of their residues in food products, which ultimately poses a threat to human health. In light of the shortcomings of conventional methods for antibiotic detection (primarily cost, proficiency, and time-consuming procedures), the development of robust, accurate, on-site, and sensitive technologies for antibiotic detection in foodstuffs is important. Nanomaterials with amazing optical properties are promising materials for developing the next generation of fluorescent sensors. In this article, advances in detecting antibiotics in food products are discussed with respect to their sensing applications, with a focus on fluorescent nanomaterials such as metallic nanoparticles, upconversion nanoparticles, quantum dots, carbon-based nanomaterials, and metal-organic frameworks. Furthermore, their performance is evaluated to promote the continuation of technical advances.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Bandana Thakur
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Sanjeev K Bhardwaj
- Advanced Research & Material Solutions (ARMS), Technology Business Incubator, IISER Mohali, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Korea.
| | - Neha Bhardwaj
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Li J, Liu B, Liu L, Zhang N, Liao Y, Zhao C, Cao M, Zhong Y, Chai D, Chen X, Zhang D, Wang H, He Y, Li Z. Fluorescence-based aptasensors for small molecular food contaminants: From energy transfer to optical polarization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121872. [PMID: 36152504 DOI: 10.1016/j.saa.2022.121872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Small molecular food contaminants, such as mycotoxins, pesticide residues and antibiotics, are highly probable to be passively introduced in food at all stages of its processing, including planting, harvest, production, transportation and storage. Owing to the high risks caused by the unknowing intake and accumulation in human, there is an urgent need to develop rapid, sensitive and efficient methods to monitor them. Fluorescence-based aptasensors provide a promising platform for this area owing to its simple operation, high sensitivity, wide application range and economical practicability. In this paper, the common sorts of small molecular contaminants in foods, namely mycotoxins, pesticides, antibiotics, etc, are briefly introduced. Then, we make a comprehensive review, from fluorescence resonance energy transfer (in turn-on, turn-off, and ratiometric mode, as well as energy upconversion) to fluorescence polarization, of the fluorescence-based aptasensors for the determination of these food contaminants reported in the last five years. The principle of signal generation, the advances of each sort of fluorescent aptasensors, as well as their applications are introduced in detail. Additionally, we also discussed the challenges and perspectives of the fluorescent aptasensors for small molecular food contaminants. This work will offer systematic overview and inspiration for amateurs, researchers and developers of fluorescence-based aptasensors for the detection of small molecules.
Collapse
Affiliation(s)
- Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Li Liu
- Library of Tianjin Medical University, Tianjin 300070, China
| | - Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yumeng Liao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunyu Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Manzhu Cao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuxuan Zhong
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Danni Chai
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoyu Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
8
|
Photoactivities regulating of inorganic semiconductors and their applications in photoelectrochemical sensors for antibiotics analysis: A systematic review. Biosens Bioelectron 2022; 216:114634. [DOI: 10.1016/j.bios.2022.114634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
|
9
|
Xu R, Yang C, Huang L, Lv W, Yang W, Wu Y, Fu F. Broad-Specificity Aptamer of Sulfonamides: Isolation and Its Application in Simultaneous Detection of Multiple Sulfonamides in Fish Sample. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11804-11812. [PMID: 36070569 DOI: 10.1021/acs.jafc.2c03423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Sulfonamide antibiotics (SAs) are widely used in animal husbandry and aquaculture, and the excess residues of SAs in animal-derived foods will harm the health of consumers. In reality, various SAs were alternately used in animal husbandry and aquaculture, and thus, it is urgent need to develop simple and high-throughput methods for simultaneously detecting multiple SAs or groups of SAs in order to realize rapid screening of total SAs residues in animal-derived foods. We herein isolated a broad-specificity aptamer for SAs by using a multi-SAs systematic evolution of ligands by exponential enrichment (SELEX) strategy. The isolated broad-specificity aptamer has a higher binding affinity to five different SAs including sulfaquinoxaline (SQ), sulfamethoxypyridazine (SMPZ), sulfametoxydiazine (SMD), sulfachloropyridazine (SCP), and sulfapyridine (SPD) and, thus, can be used as a bioreceptor for developing various high-throughput methods for the simultaneous detection or rapid screening of above five SAs. Based on the isolated broad-specificity aptamer and Cy7 (diethylthiatricarbocyanine) displacement strategy, a colorimetric aptasensor was developed for the simultaneous detection of SQ, SMPZ, SMD, SCP, and SPD with a visual detection limit of 2.0-5.0 μM and a spectrometry detection limit of 0.2-0.5 μM. The colorimetric aptasensor was successfully used to detect SQ, SMPZ, SMD, SCP, and SPD in fish muscle with a recovery of 82%-92% and a RSD (n = 5) < 7%. The success of this study provided a promising bioreceptor for developing various high-throughput methods for on-site rapid screening of multiple SAs residues, as well as a simple method for the rapid and cost-effective screening of total SQ, SMPZ, SMD, SCP, and SPD in seafood.
Collapse
Affiliation(s)
- Ruyi Xu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chen Yang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Lin Huang
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wenchao Lv
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
10
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/18/2022]
|
11
|
A fluorescence sensor probe based on porous carbon, molecularly imprinted polymer and graphene quantum dots for the detection of trace sulfadimethoxine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
12
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
13
|
Wang Y, Rink S, Baeumner AJ, Seidel M. Microfluidic flow-injection aptamer-based chemiluminescence platform for sulfadimethoxine detection. Mikrochim Acta 2022; 189:117. [PMID: 35195801 PMCID: PMC8866360 DOI: 10.1007/s00604-022-05216-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2021] [Accepted: 02/07/2022] [Indexed: 01/31/2023]
Abstract
Gold nanoparticle–catalyzed chemiluminescence (CL) of luminol is an attractive alternative to strategies relying on enzymes, as their aggregation leads to significantly enhanced CL signals. Consequently, analytes disturbing such aggregation will lead to an easy-to-quantify weakening of the signal. Based on this concept, a homogeneous aptamer-based assay for the detection of sulfadimethoxine (SDM) has been developed as a microfluidic CL flow-injection platform. Here, the efficient mixing of gold nanoparticles, aptamers, and analyte in short channel distances is of utmost importance, and two-dimensional (2D) and three-dimensional (3D) mixer designs made via Xurography were investigated. In the end, since 2D designs could not provide sufficient mixing, a laminated 3D 5-layer microfluidic mixer was developed and optimized with respect to mixing capability and observation by the charge-coupled device (CCD) camera. Furthermore, the performance of standard luminol and its more hydrophilic derivative m-carboxy luminol was studied identifying the hydrophilic derivative to provide tenfold more signal enhancement and reliable results. Finally, the novel detection platform was used for the specific detection of SDM via its aptamer and yielded a stunning dynamic range over 5 orders of magnitude (0.01–1000 ng/ml) and a limit of detection of 4 pg/ml. This new detection concept not only outperforms other methods for SDM detection, but can be suggested as a new flow-injection strategy for aptamer-based rapid and cost-efficient analysis in environmental monitoring and food safety.
Collapse
Affiliation(s)
- Yanwei Wang
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Simone Rink
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Michael Seidel
- Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
14
|
Liu A, Xing X, Cai H, Zeng Y, Guo J, Li H, Yan W, Zhou F, Song J, Qu J. Cd-free InP/ZnSeS quantum dots for ultrahigh-resolution imaging of stimulated emission depletion. JOURNAL OF BIOPHOTONICS 2021; 14:e202100230. [PMID: 34523799 DOI: 10.1002/jbio.202100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Stimulated emission depletion (STED) nanoscopy is a promising super-resolution imaging technique for microstructure imaging; however, the performance of super-resolution techniques critically depends on the properties of the fluorophores (photostable fluorophores) used. In this study, a suitable probe for improving the resolution of STED nanoscopy was investigated. Quantum dots (QDs) typically exhibit good photobleaching resistance characteristics. In comparison with CdSe@ZnS QDs and CsPbBr3 QDs, Cd-free InP/ZnSeS QDs have a smaller size and exhibit an improved photobleaching resistance. Through imaging using InP/ZnSeS QDs, we achieved an ultrahigh resolution of 26.1 nm. Furthermore, we achieved a 31 nm resolution in cell experiments involving InP/ZnSeS QDs. These results indicate that Cd-free InP/ZnSeS QDs have significant potential for application in fluorescent probes for STED nanoscopy.
Collapse
Affiliation(s)
- Aikun Liu
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Xiuquan Xing
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Haojie Cai
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Yutian Zeng
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Jiaqing Guo
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Hao Li
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Wei Yan
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Feifan Zhou
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) and College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen, People's Republic of China
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russian Federation
| |
Collapse
|
15
|
Wang Q, Xu C, He H, Zhang X, Lin L, Wang G. Salt-resistant nanosensor for fast sulfadimethoxine tracing based on oxygen-doped g-C 3N 4 nanoplates. Mikrochim Acta 2021; 188:153. [PMID: 33821319 DOI: 10.1007/s00604-021-04800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2020] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
A novel oxygen-doped g-C3N4 nanoplate (OCNP) structure that can serve as an efficient sulfadimethoxine (SDM) sensing platform has been developed. Taking advantage of its inherent oxygen-containing functional groups and 2D layered structure with π-conjugated system, OCNP exhibits effective radiative recombination of surface-confined electron-hole pairs and efficient π-π interaction with SDM. This causes rapid fluorescence response and thus ensures the fast and continuous monitoring of SDM. Based on the fluorescence experiments and band structure calculation, the mechanism of the SDM-induced quenching phenomenon was mainly elucidated as the photoinduced electron transfer process under a dynamic quenching mode. Under optimized conditions, the as-proposed nanosensor, which emitted strong fluorescence at 375 nm with an excitation wavelength at 255 nm, presents an excellent analytical performance toward SDM with a wide linear range from 3 to 60 μmol L-1 and a detection limit of 0.85 μmol L-1 (S/N = 3). In addition, this strategy exhibits satisfactory recovery varied from 94 to 103% with relative standard derivations (RSD) in the range 0.9 to 6.8% in real water samples. It also shows marked tolerability to a series of high concentrations of metals and inorganic salts. This strategy not only broadens the application of oxygen-doped g-C3N4 nanomaterial in antibiotic sensing field but also presents a promising potential for on-line contaminant tracing in complex environments.
Collapse
Affiliation(s)
- Qiusu Wang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Chenmin Xu
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Lei Lin
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|