1
|
Shi Y, Luo G, Fan J, Clark JH, Zhang S. Fundamental properties and phosphorus transformation mechanism of soybean straw during microwave hydrothermal conversion process. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:265-275. [PMID: 38232518 DOI: 10.1016/j.wasman.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/19/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Microwave hydrothermal (MHT) conversion is emerging as a promising technology for the disposal and reutilization of biowastes. This study investigated the fundamental properties and phosphorus transformation mechanism of soybean straw during the MHT conversion process. The oxygen-containing functional groups in soybean straw were stripped, and a trend of dehydration was observed as the temperature increased during the MHT process. Cellulose was identified as the major component of the MHT solid products at high temperature. Glucose and glucuronic acid in the MHT liquid products were gradually converted to formic acid and acetic acid with increasing temperature and holding time. The characteristics of the MHT products directly affected the changes in P speciation and transformation. Most of the P was distributed in liquid products and the impact of holding time was not significant on P distribution at low MHT temperature. With the increase in temperature and holding time, P gradually transferred into the solid products. The proportion of organic phosphorus and soluble inorganic phosphorus in soybean straw was high, and it decreased noticeably after the MHT process. The increase in MHT temperature promoted the conversion of OP and AP into IP and NAIP respectively. P K-edge X-ray absorption near edge structure analysis reveals that Ca5(PO4)3(OH) was the major component of soybean straw and more Ca5(PO4)3(OH) was formed at lower MHT temperature. This study provides fundamental knowledge on the property changes of soybean straw and the transformation of phosphorus during MHT conversion process, which is essential for its disposal and further utilization.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, P.R. China; Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Gang Luo
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, P.R. China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China
| | - Jiajun Fan
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK.
| | - James H Clark
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Shicheng Zhang
- Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, P.R. China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, P.R. China.
| |
Collapse
|
2
|
Cao JS, Wang SN, Xu RZ, Luo JY, Ni BJ, Fang F. Phosphorus recovery from synthetic anaerobic fermentation supernatant via vivianite crystallization: Coupling effects of various physicochemical process parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165416. [PMID: 37433337 DOI: 10.1016/j.scitotenv.2023.165416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Recovery of phosphorus (P) via vivianite crystallization is an effective strategy to recycle resources from the anaerobic fermentation supernatant. However, the presence of different components in the anaerobic fermentation supernatant (e.g., polysaccharides and proteins) might alter conditions for optimal growth of vivianite crystals, resulting in distinct vivianite characteristics. In the present study, the effect of different components on vivianite crystallization was explored. Then, the reaction parameters (pH, Fe/P, and stirring speed) for P recovery from synthetic anaerobic fermentation supernatant as vivianite were optimized using response surface methodology, and the relationship between crystal properties and supersaturation was elucidated using a thermodynamic equilibrium model. The optimized values for pH, Fe/P, and stirring speed were found to be 7.8, 1.74, and 500 rpm respectively, resulting in 90.54 % P recovery efficiency. Moreover, the variation of reaction parameters did not change the crystalline structure of the recovered vivianite but influenced its morphology, size, and purity. Thermodynamic analysis suggested the saturation index (SI) of vivianite increased with increasing pH and Fe/P ratio, leading to a facilitative effect on vivianite crystallization. However, when the SI was >11, homogenous nucleation occurred so that the nucleation rate was much higher than the crystal growth rate, causing a smaller crystal size. The findings presented herein will be highly valued for the future large-scale application of the vivianite crystallization process for wastewater treatment.
Collapse
Affiliation(s)
- Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW 2007, Australia
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
3
|
Kwapinska M, Pisano I, Leahy JJ. Hydrothermal carbonization of milk/dairy processing sludge: Fate of plant nutrients. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118931. [PMID: 37688960 DOI: 10.1016/j.jenvman.2023.118931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Dairy processing sludge (DPS) is a byproduct generated in wastewater treatment plants located in dairy (milk) processing companies (waste activated sludge). DPS presents challenges in terms of its management (as biosolids) due to its high moisture content, prolonged storage required, uncontrolled nutrient loss and accumulation of certain substances in soil in the proximity of dairy companies. This study investigates the potential of hydrothermal carbonization (HTC) for recovery of nutrients in the form of solid hydrochar (biochar) produced from DPS originating from four different dairy processing companies. The HTC tests were carried out at 160 °C, 180 °C, 200 °C and 220 °C, and a residence time of 1h. The elemental properties of hydrochars (biochars), the content of primary and secondary nutrients, as well as contaminants were examined. The transformation of phosphorus in DPS during HTC was investigated. The fraction of plant available phosphorus was determined. The properties of hydrochar (biochar) were compared against the European Union Fertilizing Products Regulation. The findings of this study demonstrate that the content of nutrient in hydrochars (biochars) meet the requirements for organo-mineral fertilizer with nitrogen and phosphorus as the declared nutrients (13.9-26.7%). Further research on plant growth and field tests are needed to fully assess the agronomic potential of HTC hydrochar (biochar).
Collapse
Affiliation(s)
- Marzena Kwapinska
- Dairy Processing Technology Centre, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Italo Pisano
- Department of Chemical Sciences, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - James J Leahy
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| |
Collapse
|
4
|
Khalaf N, Shi W, Fenton O, Kwapinski W, Leahy J. Hydrothermal carbonization (HTC) of dairy waste: effect of temperature and initial acidity on the composition and quality of solid and liquid products. OPEN RESEARCH EUROPE 2023; 2:83. [PMID: 37645300 PMCID: PMC10445854 DOI: 10.12688/openreseurope.14863.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Background: Hydrothermal carbonization (HTC) of dairy processing waste was performed to investigate the effect of temperature and initial pH on the yield and composition of the solid (hydrochar) and liquor produced. All hydrochars met the EU requirements of organo-mineral solid fertilizers defined in the Fertilizing Products Regulation in terms of phosphorus (P) and mineral content. Methods: Laboratory scale HTC was performed using pressurized reactors, and the products (solid and liquid) were collected, stored and analyzed for elemental composition and nutrient content using Inductively coupled plasma optical emission spectroscopy (ICP-OES), ultraviolet-visible spectrophotometry (UV-Vis) and other analytic techniques. Results: Maximum hydrochar yield (60.67%) was observed at T=180℃ and pH=2.25, whereas the maximum P-recovery was 80.38% at T=220℃ and pH=4.6. The heavy metal content of the hydrochars was mostly compliant with EU limitations, except for Ni at T=220℃ and pH=8.32. Meanwhile, further study of Chromium (Cr) species is essential to assess the fertilizer quality of the hydrochars. For the liquid product, the increase in temperature beyond 200℃, coupled with an increase in initial acidity (pH=2.25) drove P into the liquor. Simultaneously, increasing HTC temperature and acidity increased the concentration of NO 3 - and NH 4 + in the liquid products to a maximum of 278 and 148 mg/L, respectively, at T=180℃ and pH=4.6. Furthermore, no direct relation between final pH of liquor and NH 4 + concentration was observed. Conclusions: HTC allows for the production of hydrochar as a potential fertilizer material that requires further processing. Adjusting HTC conditions enhanced P-recovery in the hydrochar, while retrieving higher nitrate concentrations in the liquid product. Optimizing HTC for the production of qualified hydrochars requires further treatment of Cr content, studying the availability of P in the products and enhancing the hydrochar yield for economic feasibility.
Collapse
Affiliation(s)
- Nidal Khalaf
- Chemical and Environmental Science Department, University of Limerick, Limerick, Limerick, V94 T9PX, Ireland
| | - Wenxuan Shi
- Teagasc, Environmental Research Centre, Johnstown Castle, Co, Wexford, Y35 TC97, Ireland
| | - Owen Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co, Wexford, Y35 TC97, Ireland
| | - Witold Kwapinski
- Chemical and Environmental Science Department, University of Limerick, Limerick, Limerick, V94 T9PX, Ireland
| | - J.J. Leahy
- Chemical and Environmental Science Department, University of Limerick, Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
5
|
Yin Z, Wang J, Wang M, Liu J, Chen Z, Yang B, Zhu L, Yuan R, Zhou B, Chen H. Application and improvement methods of sludge alkaline fermentation liquid as a carbon source for biological nutrient removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162341. [PMID: 36828064 DOI: 10.1016/j.scitotenv.2023.162341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Alkaline fermentation can reduce the amount of waste activated sludge and prepare sludge alkaline fermentation liquid (SAFL) rich in short-chain fatty acids (SCFAs), which can be used as a high-quality carbon source for the biological nutrient removal (BNR) process. This review compiles the production method of SAFL and the progress of its application as a BNR carbon source. Compared with traditional carbon sources, SAFL has the advantages of higher efficiency and economy, and different operating conditions can influence the yield and structure of SCFAs in SAFL. SAFL can significantly improve the nutrient removal efficiency of the BNR process. Taking SAFL as the internal carbon source of BNR can simultaneously solve the problem of carbon source shortage and sludge treatment difficulties in wastewater treatment plants, and further reduce the operating cost. However, the alkaline fermentation process results in many refractory organics, ammonia and phosphate in SAFL, which reduces the availability of SAFL as a carbon source. Purifying SCFAs by removing nitrogen and phosphorus, directly extracting SCFAs, or increasing the amount of SCFAs in SAFL by co-fermentation or combining with other pretreatment methods, etc., are effective measures to improve the availability of SAFL.
Collapse
Affiliation(s)
- Zehui Yin
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jihong Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingran Wang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol 165 00, Czech Republic
| | - Boyu Yang
- Nanjing Academy of Resources and Ecology Sciences, No. 606, Ningliu Road, Jiangbei New District, 210044 Nanjing, China
| | - Lixin Zhu
- Sinopec Nanjing Chemical Industries Co., Ltd., No. 189, Geguan Road, Liuhe District, Jiangsu 210048, Nanjing, China
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Wang L, Zhou J, Jia Q, Ma X, Zhao Y, Gong L, Zhang H. Anaerobic digestion of hydrothermally pretreated dewatered sewage sludge: effects of process conditions on methane production and the fate of phosphorus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66767-66780. [PMID: 37099108 DOI: 10.1007/s11356-023-26990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/09/2023] [Indexed: 05/25/2023]
Abstract
The hydrothermal pretreatment (HTP) characteristics and the fate of phosphorus (P) and anaerobic digestion (AD) performance of dewatered sewage sludge (DSS) were investigated at different hydrothermal conditions. The maximum methane yield reached 241 mL CH4/g COD when the hydrothermal conditions were 200 °C-2 h-10% (A4), and the yield was 78.28% higher than that without pretreatment (A0) and 29.62% higher than that of the initial hydrothermal conditions (A1, 140 °C-1 h-5%). Proteins, polysaccharides, and volatile fatty acids (VFAs) were the main hydrothermal products of DSS. 3D-EEM analysis revealed that tyrosine, tryptophan proteins, and fulvic acids decreased after HTP, but the content of humic acid-like substances increased, and this phenomenon was more noticeable after AD. Solid-organic P was converted into liquid-P during the hydrothermal process, and nonapatite inorganic P was converted into organic P during AD. All samples achieved positive energy balance, and the energy balance of A4 was 10.50 kJ/g VS. Microbial analysis showed that the composition of the anaerobic microbial degradation community changed as the sludge organic composition was altered. Results showed that the HTP improved the anaerobic digestion of DSS.
Collapse
Affiliation(s)
- Luyu Wang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Jun Zhou
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Qinwei Jia
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Xiaofan Ma
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Yuhang Zhao
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| | - Lei Gong
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China.
| | - Haonan Zhang
- School of Environmental Engineering, Faculty of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53, Zhengzhou Road, Qingdao, 266042, Shandong Province, China
| |
Collapse
|
7
|
Wu Y, Yue X, Zhou A, Song X, Su B, Cao F, Ding J. Simultaneous recovery of short-chain fatty acids and phosphorus during lipid-rich anaerobic fermentation with sodium hydroxide conditioning. CHEMOSPHERE 2023; 312:137227. [PMID: 36379433 DOI: 10.1016/j.chemosphere.2022.137227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic fermentation (AF) could achieve simultaneous recovery of short-chain fatty acids (SCFAs) and phosphorus (P) when waste activated sludge (WAS) and meat processing waste (MPW) act as co-substrate. However, long-chain fatty acids, the degradation intermediates of lipids, always inhibit anaerobic microbial activity. Therefore, sodium hydroxide (NaOH) conditioning was applied to improve the lipid-rich AF performance in this study. The results demonstrated that 96% WAS (v/v) with NaOH addition that remaining at pH 7.5 could achieve the maximum SCFAs yield (1180.05 mg/g VSfed) at 12 d, and ortho-P content in the AF liquor (AFL) was much more than that of without NaOH addition. Anaerovibrio and Aminobacterium, one kind of lipolytic and proteolytic bacteria, respectively, became the major genus in the lipid-rich AF system. 86% of P in the AFL from 96% WAS + pH 7.5 reactor was recovered through vivianite crystallization method, with 91% of SCFAs remaining in the post-AFL. Meanwhile, analysis results verified vivianite formation in the P precipitate products. Overall, this study provided a new idea to achieve SCFAs and P simultaneous recovery from WAS and MPW through AF with NaOH conditioning and vivianite crystallization.
Collapse
Affiliation(s)
- Yuqi Wu
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China.
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Xiulan Song
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Bingqin Su
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, 209 Daxue Road, Jinzhong, 030600, PR China
| | - Jianzhi Ding
- Taiyuan Design Research Institute for Coal Industry, 18 Qingnian Road, Taiyuan, 030001, PR China
| |
Collapse
|
8
|
He M, Cao Y, Xu Z, You S, Ruan R, Gao B, Wong KH, Tsang DCW. Process water recirculation for catalytic hydrothermal carbonization of anaerobic digestate: Water-Energy-Nutrient Nexus. BIORESOURCE TECHNOLOGY 2022; 361:127694. [PMID: 35905882 DOI: 10.1016/j.biortech.2022.127694] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The process water (PW) from acid-catalyzed hydrothermal carbonization (HTC) is still an environmental burden due to the enriched organics, nutrients, and salts. This study proposed a novel strategy to valorize food waste digestate into multifunctional hydrochar by recirculating the PW in the HCl-catalyzed HTC process. The produced multifunctional hydrochar could be utilized as a high-quality solid fuel with HHV of 27.9 MJ kg-1 (hydrochar without PW recirculation) and a slow-release fertilizer by converting the complex Ca and P compounds from the food waste digestate into a Ca-P deposit (hydroxyapatite) with more than a 93 % P recovery rate (hydrochar with PW recirculation). Adding fresh HCl in the HTC PW recirculation system only displayed a marginal catalytic impact on the hydrochar properties after two cycles of recirculation. This study demonstrated the importance of inherent Ca in the feedstocks and the dual role of HCl in the HTC with PW recirculation.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zibo Xu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Siming You
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Roger Ruan
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville FL 32611, USA
| | - Ka-Hing Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Chen G, Wang J, Yu F, Wang X, Xiao H, Yan B, Cui X. A review on the production of P-enriched hydro/bio-char from solid waste: Transformation of P and applications of hydro/bio-char. CHEMOSPHERE 2022; 301:134646. [PMID: 35436456 DOI: 10.1016/j.chemosphere.2022.134646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Phosphorus (P) is a necessary element for plant growth and animal health. Most P utilized by anthropogenic activities is released within the generation of various solid wastes such as sewage sludge, animal manure, and wetland plant, which increase the risk of water contamination. (Hydro)thermal treatment could be employed for solid waste treatment with the production of value-added hydro/bio-char, and the behavior of P during the thermochemical treatment process is critical for the further utilization of hydro/bio-char. This study provides a systematic review of the migration and transformation mechanisms of P during thermochemical treatment of various solid wastes, and special emphasis is given to the potential applications of P-enriched hydro/bio-char. Future challenges and perspectives in the thermal treatment of P-enriched solid waste are presented as well. The distribution and speciation of P were affected by feedstock properties, thermal technique, and reaction conditions, correspondingly affecting hydro/bio-char applications. The derived P-enriched hydro/bio-char was mainly applied as an agricultural soil amendment, P recovery source, and heavy metal sorbent, which could be adjusted by varying treatment process parameters. Additionally, potentially toxic substances, such as heavy metals in the solid waste, should be addressed during the production and application of hydro/bio-char. Overall, the production of P-enriched hydro/bio-char from solid waste is a promising route to simultaneously achieve P reclamation and solid waste treatment.
Collapse
Affiliation(s)
- Guanyi Chen
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Junxia Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Fan Yu
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xutong Wang
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Hui Xiao
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Beibei Yan
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/ Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Shi Y, Chen Z, Zhu K, Fan J, Clark JH, Luo G, Zhang S. Speciation evolution and transformation mechanism of P during microwave hydrothermal process of sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152801. [PMID: 34986420 DOI: 10.1016/j.scitotenv.2021.152801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Due to the global shortage of phosphate ore, sewage sludge is an important resource for P recovery. This study aims to investigate how P was migrated and transformed during the microwave hydrothermal (MHT) process of sewage sludge. The effects of MHT and hydrothermal (HT) conversion were compared. The results reveals that there were no significant differences on the P distribution and speciation changes between the HT and MHT products, especially under high hydrothermal temperature. Ortho-P/Pyro-P was the dominant P form in the hydrothermal solid products, and high temperature promoted the transformation of C-O-P to Ortho-P/Pyro-P. The analysis of X-ray absorption near edge structure (XANES) shows that Ca5(PO4)3OH was formed after the hydrothermal processes. The relative abundance of Ca-P decreased first and then increased with increasing hydrothermal temperature. Moderate MHT temperature (170 °C) and holding time (30-60 min) promoted the transformation of P to the liquid products. Generally, the effect of MHT temperature was more significant than that of heating type and holding time on the variations of P distribution and speciations.
Collapse
Affiliation(s)
- Yan Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Green Chemistry Center of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Keliang Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Jiajun Fan
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - James H Clark
- Green Chemistry Center of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
11
|
Coşgun S, Kara B, Kunt B, Hür C, Semerci N. Biological recovery of phosphorus from waste activated sludge via alkaline fermentation and struvite biomineralization by Brevibacterium antiquum. Biodegradation 2022; 33:195-206. [PMID: 35142960 DOI: 10.1007/s10532-022-09975-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
Struvite biomineralization is a promising method for phosphorus recovery from wastewater treatment plant streams, and the growth of responsible microorganisms in mixed cultures is one of the most critical points for applying this process in pilot and full-scale. This study aimed to investigate the growth and bio-struvite production of Brevibacterium antiquum in mixed sludge culture. Alkaline fermentation was applied at different pH conditions to enhance the phosphorus content of sludge for an efficient recovery, and pH 8 was determined as the most feasible considering the phosphorus release and sludge characteristics. Growth optimization studies showed that NaCl's presence decreases the growth rate of Brevibacterium antiquum and bio-struvite production. At the same time, pH in the range of 6.8-8.2 did not alter the growth significantly. In addition, studies showed the ability of Brevibacterium antiquum in unsterilized fermented sludge centrate to grow and recover the phosphorus as struvite. Thus, our results indicated the potential of struvite biomineralization in full-scale wastewater treatment plants.
Collapse
Affiliation(s)
- Sevil Coşgun
- Environmental Engineering Department, Institute of Pure and Applied Sciences, Marmara University, Kuyubaşı, Istanbul, Turkey.
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland.
| | - Büşra Kara
- Environmental Engineering Department, Institute of Pure and Applied Sciences, Marmara University, Kuyubaşı, Istanbul, Turkey
| | - Büşra Kunt
- Environmental Engineering Department, Institute of Pure and Applied Sciences, Marmara University, Kuyubaşı, Istanbul, Turkey
| | - Ceren Hür
- Environmental Engineering Department, Institute of Pure and Applied Sciences, Marmara University, Kuyubaşı, Istanbul, Turkey
| | - Neslihan Semerci
- Environmental Engineering Department, Faculty of Engineering, Marmara University, Kuyubaşı, Istanbul, Turkey
| |
Collapse
|
12
|
Wang Y, Zheng K, Guo H, Tong Y, Zhu T, Liu Y. Unveiling the mechanisms of how vivianite affects anaerobic digestion of waste activated sludge. BIORESOURCE TECHNOLOGY 2022; 343:126045. [PMID: 34592460 DOI: 10.1016/j.biortech.2021.126045] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 05/21/2023]
Abstract
Recently, phosphorus recovery as vivianite from sludge digestion system has attracted increasing attention because of its high recovery efficiency and economic value. However, the potential impact of vivianite on anaerobic digestion of waste activated sludge remains largely unknown. This study therefore aims to provide such support. Experimental results revealed that the maximal methane yield decreased from 103.55 to 76.55 mL/g volatile solids, with the vivianite level increasing from 0 to 500 mg P/L. Mechanism explorations showed that vivianite caused more substrates remaining in tightly-bound extracellular polymeric substances, and thus suppressed sludge solubilization. In addition, it was observed that hydrolysis, acidiogenesis, acetogenesis and methanogenesis bio-processes were all inhibited by vivianite. Microbial analysis revealed that vivianite significantly decreased the relative abundances of hydrolytic microbes, acidogens and methanogens. Further investigation showed that vivianite benefited sludge agglomeration and can enhance the mass transfer resistance of anaerobic digestion, further supporting the inhibitions on anaerobic digestion.
Collapse
Affiliation(s)
- Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Kaixin Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|