1
|
Manakova E, Mikutenaite M, Golovenko D, Gražulis S, Tamulaitiene G. Crystal structure of restriction endonuclease Kpn2I of CCGG-family. Biochim Biophys Acta Gen Subj 2021; 1865:129926. [PMID: 33965438 DOI: 10.1016/j.bbagen.2021.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/30/2020] [Revised: 05/02/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Restriction endonucleases belong to prokaryotic restriction-modification systems, that protect host cells from invading DNA. Type II restriction endonucleases recognize short 4-8 bp sequences in the target DNA and cut both DNA strands producing double strand breaks. Type II restriction endonuclease Kpn2I cleaves 5'-T/CCGGA DNA sequence ("/" marks the cleavage position). Analysis of protein sequences suggested that Kpn2I belongs to the CCGG-family, which contains ten enzymes that recognize diverse nucleotides outside the conserved 5'-CCGG core and share similar motifs for the 5'-CCGG recognition and cleavage. METHODS We solved a crystal structure of Kpn2I in a DNA-free form at 2.88 Å resolution. From the crystal structure we predicted active center and DNA recognition residues and tested them by mutational analysis. We estimated oligomeric state of Kpn2I by SEC-MALS and performed plasmid DNA cleavage assay to elucidate DNA cleavage mechanism. RESULTS Structure comparison confirmed that Kpn2I shares a conserved active site and structural determinants for the 5'-CCGG tetranucleotide recognition with other restriction endonucleases of the CCGG-family. Guided by structural similarity between Kpn2I and the CCGG-family restriction endonucleases PfoI and AgeI, Kpn2I residues involved in the outer base pair recognition were proposed. CONCLUSIONS Kpn2I is an orthodox Type IIP restriction endonuclease, which acts as a dimer. Kpn2I shares structural similarity to the CCGG-family restriction endonucleases PfoI, AgeI and PspGI. GENERAL SIGNIFICANCE The Kpn2I structure concluded the studies of the CCGG-family, covering detailed structural and biochemical characterization of eleven restriction enzymes and their complexes with DNA.
Collapse
Affiliation(s)
- Elena Manakova
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Migle Mikutenaite
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dmitrij Golovenko
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Saulius Gražulis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
2
|
Tamulaitiene G, Manakova E, Jovaisaite V, Tamulaitis G, Grazulis S, Bochtler M, Siksnys V. Unique mechanism of target recognition by PfoI restriction endonuclease of the CCGG-family. Nucleic Acids Res 2019; 47:997-1010. [PMID: 30445642 PMCID: PMC6344858 DOI: 10.1093/nar/gky1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2018] [Accepted: 10/26/2018] [Indexed: 01/23/2023] Open
Abstract
Restriction endonucleases (REs) of the CCGG-family recognize a set of 4–8 bp target sequences that share a common CCGG or CCNGG core and possess PD…D/ExK nuclease fold. REs that interact with 5 bp sequence 5′-CCNGG flip the central N nucleotides and ‘compress’ the bound DNA to stack the inner base pairs to mimic the CCGG sequence. PfoI belongs to the CCGG-family and cleaves the 7 bp sequence 5′-T|CCNGGA ("|" designates cleavage position). We present here crystal structures of PfoI in free and DNA-bound forms that show unique active site arrangement and mechanism of sequence recognition. Structures and mutagenesis indicate that PfoI features a permuted E…ExD…K active site that differs from the consensus motif characteristic to other family members. Although PfoI also flips the central N nucleotides of the target sequence it does not ‘compress’ the bound DNA. Instead, PfoI induces a drastic change in DNA backbone conformation that shortens the distance between scissile phosphates to match that in the unperturbed CCGG sequence. Our data demonstrate the diversity and versatility of structural mechanisms employed by restriction enzymes for recognition of related DNA sequences.
Collapse
Affiliation(s)
- Giedre Tamulaitiene
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Elena Manakova
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Virginija Jovaisaite
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Saulius Grazulis
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Matthias Bochtler
- Laboratory of Structural Biology, International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland.,Dept. of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Tutkus M, Sasnauskas G, Rutkauskas D. Probing the dynamics of restriction endonuclease NgoMIV-DNA interaction by single-molecule FRET. Biopolymers 2017; 107. [DOI: 10.1002/bip.23075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Marijonas Tutkus
- Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231; Vilnius 02300 Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7; Vilnius 10257 Lithuania
| | - Danielis Rutkauskas
- Institute of Physics, Center for Physical Sciences and Technology, Savanoriu 231; Vilnius 02300 Lithuania
| |
Collapse
|
4
|
Sasnauskas G, Tamulaitienė G, Tamulaitis G, Čalyševa J, Laime M, Rimšelienė R, Lubys A, Siksnys V. UbaLAI is a monomeric Type IIE restriction enzyme. Nucleic Acids Res 2017; 45:9583-9594. [PMID: 28934493 PMCID: PMC5766183 DOI: 10.1093/nar/gkx634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Type II restriction endonucleases (REases) form a large and highly diverse group of enzymes. Even REases specific for a common recognition site often vary in their oligomeric structure, domain organization and DNA cleavage mechanisms. Here we report biochemical and structural characterization of the monomeric restriction endonuclease UbaLAI, specific for the pseudosymmetric DNA sequence 5'-CC/WGG-3' (where W = A/T, and '/' marks the cleavage position). We present a 1.6 Å co-crystal structure of UbaLAI N-terminal domain (UbaLAI-N) and show that it resembles the B3-family domain of EcoRII specific for the 5'-CCWGG-3' sequence. We also find that UbaLAI C-terminal domain (UbaLAI-C) is closely related to the monomeric REase MvaI, another enzyme specific for the 5'-CCWGG-3' sequence. Kinetic studies of UbaLAI revealed that it requires two recognition sites for optimal activity, and, like other type IIE enzymes, uses one copy of a recognition site to stimulate cleavage of a second copy. We propose that during the reaction UbaLAI-N acts as a handle that tethers the monomeric UbaLAI-C domain to the DNA, thereby helping UbaLAI-C to perform two sequential DNA nicking reactions on the second recognition site during a single DNA-binding event. A similar reaction mechanism may be characteristic to other monomeric two-domain REases.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Jelena Čalyševa
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Miglė Laime
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Renata Rimšelienė
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Tamulaitis G, Rutkauskas M, Zaremba M, Grazulis S, Tamulaitiene G, Siksnys V. Functional significance of protein assemblies predicted by the crystal structure of the restriction endonuclease BsaWI. Nucleic Acids Res 2015; 43:8100-10. [PMID: 26240380 PMCID: PMC4652773 DOI: 10.1093/nar/gkv768] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2015] [Accepted: 07/17/2015] [Indexed: 02/03/2023] Open
Abstract
Type II restriction endonuclease BsaWI recognizes a degenerated sequence 5′-W/CCGGW-3′ (W stands for A or T, ‘/’ denotes the cleavage site). It belongs to a large family of restriction enzymes that contain a conserved CCGG tetranucleotide in their target sites. These enzymes are arranged as dimers or tetramers, and require binding of one, two or three DNA targets for their optimal catalytic activity. Here, we present a crystal structure and biochemical characterization of the restriction endonuclease BsaWI. BsaWI is arranged as an ‘open’ configuration dimer and binds a single DNA copy through a minor groove contacts. In the crystal primary BsaWI dimers form an indefinite linear chain via the C-terminal domain contacts implying possible higher order aggregates. We show that in solution BsaWI protein exists in a dimer-tetramer-oligomer equilibrium, but in the presence of specific DNA forms a tetramer bound to two target sites. Site-directed mutagenesis and kinetic experiments show that BsaWI is active as a tetramer and requires two target sites for optimal activity. We propose BsaWI mechanism that shares common features both with dimeric Ecl18kI/SgrAI and bona fide tetrameric NgoMIV/SfiI enzymes.
Collapse
Affiliation(s)
- Gintautas Tamulaitis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Marius Rutkauskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Saulius Grazulis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
6
|
Rutkauskas D, Petkelyte M, Naujalis P, Sasnauskas G, Tamulaitis G, Zaremba M, Siksnys V. Restriction Enzyme Ecl18kI-Induced DNA Looping Dynamics by Single-Molecule FRET. J Phys Chem B 2014; 118:8575-82. [DOI: 10.1021/jp504546v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Affiliation(s)
- Danielis Rutkauskas
- Institute
of Physics, Center for Physical Sciences and Technology, Savanoriu
231, LT-02300, Vilnius, Lithuania
| | - Milda Petkelyte
- Institute
of Physics, Center for Physical Sciences and Technology, Savanoriu
231, LT-02300, Vilnius, Lithuania
| | - Paulius Naujalis
- Institute
of Physics, Center for Physical Sciences and Technology, Savanoriu
231, LT-02300, Vilnius, Lithuania
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | - Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241, Vilnius, Lithuania
| |
Collapse
|
7
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
8
|
Smith RM, Pernstich C, Halford SE. TstI, a Type II restriction-modification protein with DNA recognition, cleavage and methylation functions in a single polypeptide. Nucleic Acids Res 2014; 42:5809-22. [PMID: 24634443 PMCID: PMC4027205 DOI: 10.1093/nar/gku187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Type II restriction–modification systems cleave and methylate DNA at specific sequences. However, the Type IIB systems look more like Type I than conventional Type II schemes as they employ the same protein for both restriction and modification and for DNA recognition. Several Type IIB proteins, including the archetype BcgI, are assemblies of two polypeptides: one with endonuclease and methyltransferase roles, another for DNA recognition. Conversely, some IIB proteins express all three functions from separate segments of a single polypeptide. This study analysed one such single-chain protein, TstI. Comparison with BcgI showed that the one- and the two-polypeptide systems differ markedly. Unlike the heterologous assembly of BcgI, TstI forms a homotetramer. The tetramer bridges two recognition sites before eventually cutting the DNA in both strands on both sides of the sites, but at each site the first double-strand break is made long before the second. In contrast, BcgI cuts all eight target bonds at two sites in a single step. TstI also differs from BcgI in either methylating or cleaving unmodified sites at similar rates. The site may thus be modified before TstI can make the second double-strand break. TstI MTase acts best at hemi-methylated sites.
Collapse
Affiliation(s)
- Rachel M Smith
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christian Pernstich
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Stephen E Halford
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
9
|
A sequence-specific nicking endonuclease from streptomyces: purification, physical and catalytic properties. ISRN BIOCHEMISTRY 2013; 2013:287158. [PMID: 25937959 PMCID: PMC4392989 DOI: 10.1155/2013/287158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/12/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022]
Abstract
A sequence-specific nicking endonuclease from Streptomyces designated as DC13 was purified to near homogeneity. Starting with 30 grams of wet cells, the enzyme was purified by ammonium sulfate fractionation, DEAE cellulose, and phenyl-Sepharose chromatography. The purified protein had a specific activity 1000 units/mg and migrated on SDS-PAGE gel with an estimated molecular weight of 71 kDa. Determination of subunit composition by gel filtration chromatography indicated that the native enzyme is a monomer. When incubated with different DNA substrates including pBluescript II KS, pUC118, pET-15b, and pET-26b, the enzyme converted these supercoiled plasmids to a mixture of open circular and linear DNA products, with the open circular DNA as the major cleavage product. Analysis of the kinetic of DNA cleavage showed that the enzyme appeared to cleave super-coiled plasmid in two distinct steps: a rapid cleavage of super-coiled plasmid to an open circular DNA followed a much slower step to linear DNA. The DNA cleavage reaction of the enzyme required Mg(2+) as a cofactor. Based on the monomeric nature of the enzyme, the kinetics of DNA cleavage exhibited by the enzyme, and cofactor requirement, it is suggested here that the purified enzyme is a sequence-specific nicking endonuclease that is similar to type IIS restriction endonuclease.
Collapse
|
10
|
Smith RM, Marshall JJT, Jacklin AJ, Retter SE, Halford SE, Sobott F. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA. Nucleic Acids Res 2012; 41:391-404. [PMID: 23147005 PMCID: PMC3592470 DOI: 10.1093/nar/gks1023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
Type IIB restriction-modification systems, such as BcgI, feature a single protein with
both endonuclease and methyltransferase activities. Type IIB nucleases require two
recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts
all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and
B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes
the DNA. We show here that BcgI is organized as A2B protomers, with B at its
centre, but that these protomers self-associate to assemblies containing several
A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its
site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can
alternatively be activated by excess A subunits, much like the activation of FokI by its
catalytic domain. Eight A subunits, each with one centre for nuclease activity, are
presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus
involve two A2B units, each bound to a recognition site, with two more
A2B units bridging the complexes by protein–protein interactions
between the nuclease domains.
Collapse
Affiliation(s)
- Rachel M Smith
- The DNA-proteins Interaction Unit, School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
11
|
Zaremba M, Sasnauskas G, Siksnys V. The link between restriction endonuclease fidelity and oligomeric state: a study with Bse634I. FEBS Lett 2012; 586:3324-9. [PMID: 22828280 DOI: 10.1016/j.febslet.2012.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 11/18/2022]
Abstract
Type II restriction endonucleases (REases) exist in multiple oligomeric forms. The tetrameric REases have two DNA binding interfaces and must synapse two recognition sites to achieve cleavage. It was hypothesised that binding of two recognition sites by tetrameric enzymes contributes to their fidelity. Here, we experimentally determined the fidelity for Bse634I REase in different oligomeric states. Surprisingly, we find that tetramerisation does not increase REase fidelity in comparison to the dimeric variant. Instead, an inherent ability to act concertedly at two sites provides tetrameric REase with a safety-catch to prevent host DNA cleavage if a single unmodified site becomes available.
Collapse
|
12
|
Manakova E, Grazulis S, Zaremba M, Tamulaitiene G, Golovenko D, Siksnys V. Structural mechanisms of the degenerate sequence recognition by Bse634I restriction endonuclease. Nucleic Acids Res 2012; 40:6741-51. [PMID: 22495930 PMCID: PMC3413111 DOI: 10.1093/nar/gks300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
Abstract
Restriction endonuclease Bse634I recognizes and cleaves the degenerate DNA sequence 5′-R/CCGGY-3′ (R stands for A or G; Y for T or C, ‘/’ indicates a cleavage position). Here, we report the crystal structures of the Bse634I R226A mutant complexed with cognate oligoduplexes containing ACCGGT and GCCGGC sites, respectively. In the crystal, all potential H-bond donor and acceptor atoms on the base edges of the conserved CCGG core are engaged in the interactions with Bse634I amino acid residues located on the α6 helix. In contrast, direct contacts between the protein and outer base pairs are limited to van der Waals contact between the purine nucleobase and Pro203 residue in the major groove and a single H-bond between the O2 atom of the outer pyrimidine and the side chain of the Asn73 residue in the minor groove. Structural data coupled with biochemical experiments suggest that both van der Waals interactions and indirect readout contribute to the discrimination of the degenerate base pair by Bse634I. Structure comparison between related enzymes Bse634I (R/CCGGY), NgoMIV (G/CCGGC) and SgrAI (CR/CCGGYG) reveals how different specificities are achieved within a conserved structural core.
Collapse
Affiliation(s)
- Elena Manakova
- Department of Protein-DNA Interactions, Institute of Biotechnology Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
13
|
Silanskas A, Zaremba M, Sasnauskas G, Siksnys V. Catalytic activity control of restriction endonuclease--triplex forming oligonucleotide conjugates. Bioconjug Chem 2012; 23:203-11. [PMID: 22236287 DOI: 10.1021/bc200480m] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Targeting of individual genes in complex genomes requires endonucleases of extremely high specificity. To direct cleavage at the unique site(s) in the genome, both naturally occurring and artificial enzymes have been developed. These include homing endonucleases, zinc-finger nucleases, transcription activator-like effector nucleases, and restriction or chemical nucleases coupled to a triple-helix forming oligonucleotide (TFO). The desired cleavage has been demonstrated both in vivo and in vitro for several model systems. However, to limit cleavage strictly to unique sites and avoid undesired reactions, endonucleases with controlled activity are highly desirable. In this study we present a proof-of-concept demonstration of two strategies to generate restriction endonuclease-TFO conjugates with controllable activity. First, we combined the restriction endonuclease caging and TFO coupling procedures to produce a caged MunI-TFO conjugate, which can be activated by UV-light upon formation of a triple helix. Second, we coupled TFO to a subunit interface mutant of restriction endonuclease Bse634I which shows no activity due to impaired dimerization but is assembled into an active dimer when two Bse634I monomers are brought into close proximity by triple helix formation at the targeted site. Our results push the restriction endonuclease-TFO conjugate technology one step closer to potential in vivo applications.
Collapse
Affiliation(s)
- Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
14
|
|
15
|
Sasnauskas G, Kostiuk G, Tamulaitis G, Siksnys V. Target site cleavage by the monomeric restriction enzyme BcnI requires translocation to a random DNA sequence and a switch in enzyme orientation. Nucleic Acids Res 2011; 39:8844-56. [PMID: 21771860 PMCID: PMC3203586 DOI: 10.1093/nar/gkr588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5′-CCSGG-3′ (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
16
|
Marshall JJT, Smith RM, Ganguly S, Halford SE. Concerted action at eight phosphodiester bonds by the BcgI restriction endonuclease. Nucleic Acids Res 2011; 39:7630-40. [PMID: 21653548 PMCID: PMC3177199 DOI: 10.1093/nar/gkr453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
The BcgI endonuclease exemplifies a subset of restriction enzymes, the Type IIB class, which make two double-strand breaks (DSBs) at each copy of their recognition sequence, one either side of the site, to excise the sequence from the remainder of the DNA. In this study, we show that BcgI is essentially inactive when bound to a single site and that to cleave a DNA with one copy of its recognition sequence, it has to act in trans, bridging two separate DNA molecules. We also show that BcgI makes the two DSBs at an individual site in a highly concerted manner. Intermediates cut on one side of the site do not accumulate during the course of the reaction: instead, the DNA is converted straight to the final products cut on both sides. On DNA with two sites, BcgI bridges the sites in cis and then generally proceeds to cut both strands on both sides of both sites without leaving the DNA. The BcgI restriction enzyme can thus excise two DNA segments together, by cleaving eight phosphodiester bonds within a single-DNA binding event.
Collapse
|
17
|
Silanskas A, Foss M, Wende W, Urbanke C, Lagunavicius A, Pingoud A, Siksnys V. Photocaged variants of the MunI and PvuII restriction enzymes. Biochemistry 2011; 50:2800-7. [PMID: 21410225 DOI: 10.1021/bi2000609] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Abstract
Regulation of proteins by light is a new and promising strategy for the external control of biological processes. In this study, we demonstrate the ability to regulate the catalytic activity of the MunI and PvuII restriction endonucleases with light. We used two different approaches to attach a photoremovable caging compound, 2-nitrobenzyl bromide (NBB), to functionally important regions of the two enzymes. First, we covalently attached a caging molecule at the dimer interface of MunI to generate an inactive monomer. Second, we attached NBB at the DNA binding site of the single-chain variant of PvuII (scPvuII) to prevent binding and cleavage of the DNA substrate. Upon removal of the caging group by UV irradiation, nearly 50% of the catalytic activity of MunI and 80% of the catalytic activity of PvuII could be restored.
Collapse
Affiliation(s)
- Arunas Silanskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
18
|
Park CK, Joshi HK, Agrawal A, Ghare MI, Little EJ, Dunten PW, Bitinaite J, Horton NC. Domain swapping in allosteric modulation of DNA specificity. PLoS Biol 2010; 8:e1000554. [PMID: 21151881 PMCID: PMC2998434 DOI: 10.1371/journal.pbio.1000554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
SgrAI is a type IIF restriction endonuclease that cuts an unusually long recognition sequence and exhibits allosteric self-modulation of cleavage activity and sequence specificity. Previous studies have shown that DNA bound dimers of SgrAI oligomerize into an activated form with higher DNA cleavage rates, although previously determined crystal structures of SgrAI bound to DNA show only the DNA bound dimer. A new crystal structure of the type II restriction endonuclease SgrAI bound to DNA and Ca(2+) is now presented, which shows the close association of two DNA bound SgrAI dimers. This tetrameric form is unlike those of the homologous enzymes Cfr10I and NgoMIV and is formed by the swapping of the amino-terminal 24 amino acid residues. Two mutations predicted to destabilize the swapped form of SgrAI, P27W and P27G, have been made and shown to eliminate both the oligomerization of the DNA bound SgrAI dimers as well as the allosteric stimulation of DNA cleavage by SgrAI. A mechanism involving domain swapping is proposed to explain the unusual allosteric properties of SgrAI via association of the domain swapped tetramer of SgrAI bound to DNA into higher order oligomers.
Collapse
Affiliation(s)
- Chad K. Park
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Hemant K. Joshi
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Alka Agrawal
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - M. Imran Ghare
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Elizabeth J. Little
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| | - Pete W. Dunten
- Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, California, United States of America
| | - Jurate Bitinaite
- New England Biolabs Inc., Ipswich, Massachusetts, United States of America
| | - Nancy C. Horton
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
19
|
Zaremba M, Owsicka A, Tamulaitis G, Sasnauskas G, Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL, Laurens N, van den Broek B, Wuite GJL, Siksnys V. DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme. Nucleic Acids Res 2010; 38:7142-54. [PMID: 20571089 PMCID: PMC2978343 DOI: 10.1093/nar/gkq560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lagerbäck P, Andersson E, Malmberg C, Carlson K. Bacteriophage T4 endonuclease II, a promiscuous GIY-YIG nuclease, binds as a tetramer to two DNA substrates. Nucleic Acids Res 2009; 37:6174-83. [PMID: 19666720 PMCID: PMC2764454 DOI: 10.1093/nar/gkp652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The oligomerization state and mode of binding to DNA of the GIY-YIG endonuclease II (EndoII) from bacteriophage T4 was studied using gel filtration and electrophoretic mobility shift assays with a set of mutants previously found to have altered enzyme activity. At low enzyme/DNA ratios all mutants except one bound to DNA only as tetramers to two DNA substrates. The putatively catalytic E118 residue actually interfered with DNA binding (possibly due to steric hindrance or repulsion between the glutamate side chain and DNA), as shown by the ability of E118A to bind stably also as monomer or dimer to a single substrate. The tetrameric structure of EndoII in the DNA-protein complex is surprising considering the asymmetry of the recognized sequence and the predominantly single-stranded nicking. Combining the results obtained here with those from our previous in vivo studies and the recently obtained crystal structure of EndoII E118A, we suggest a model where EndoII translocates DNA between two adjacent binding sites and either nicks one strand of one or both substrates bound by the tetramer, or nicks both strands of one substrate. Thus, only one or two of the four active sites in the tetramer is catalytically active at any time.
Collapse
Affiliation(s)
- Pernilla Lagerbäck
- Department of Cell and Molecular Biology, University of Uppsala and Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | |
Collapse
|
21
|
Szczepek M, Mackeldanz P, Möncke-Buchner E, Alves J, Krüger DH, Reuter M. Molecular analysis of restriction endonuclease EcoRII from Escherichia coli reveals precise regulation of its enzymatic activity by autoinhibition. Mol Microbiol 2009; 72:1011-21. [PMID: 19400796 DOI: 10.1111/j.1365-2958.2009.06702.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Bacterial restriction endonuclease EcoRII requires two recognition sites to cleave DNA. Proteolysis of EcoRII revealed the existence of two stable domains, EcoRII-N and EcoRII-C. Reduction of the enzyme to its C-terminal domain, EcoRII-C, unleashed the enzyme activity; this truncated form no longer needed two recognition sites and cleaved DNA much more efficiently than EcoRII wild-type. The crystal structure of EcoRII showed that probably the N-terminal domain sterically occludes the catalytic site, thus apparently controlling the cleavage activity. Based on these data, EcoRII was the first restriction endonuclease for which an autoinhibition mechanism as regulatory strategy was proposed. In this study, we probed this assumption and searched for the inhibitory element that mediates autoinhibition. Here we show that repression of EcoRII-C is achieved by addition of the inhibitory domain EcoRII-N or by single soluble peptides thereof in trans. Moreover, we perturbed contacts between the N- and the C-terminal domain of EcoRII by site-directed mutagenesis and proved that beta-strand B1 and alpha-helix H2 are essential for autoinhibition; deletion of either secondary structural element completely relieved EcoRII autoinhibition. This potent regulation principle that keeps EcoRII enzyme activity controlled might protect bacteria against suicidal restriction of rare unmodified recognition sites in the cellular genome.
Collapse
Affiliation(s)
- Michal Szczepek
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Sanders KL, Catto LE, Bellamy SRW, Halford SE. Targeting individual subunits of the FokI restriction endonuclease to specific DNA strands. Nucleic Acids Res 2009; 37:2105-15. [PMID: 19223323 PMCID: PMC2673415 DOI: 10.1093/nar/gkp046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
Many restriction endonucleases are dimers that act symmetrically at palindromic DNA sequences, with each active site cutting one strand. In contrast, FokI acts asymmetrically at a non-palindromic sequence, cutting ‘top’ and ‘bottom’ strands 9 and 13 nucleotides downstream of the site. FokI is a monomeric protein with one active site and a single monomer covers the entire recognition sequence. To cut both strands, the monomer at the site recruits a second monomer from solution, but it is not yet known which DNA strand is cut by the monomer bound to the site and which by the recruited monomer. In this work, mutants of FokI were used to show that the monomer bound to the site made the distal cut in the bottom strand, whilst the recruited monomer made in parallel the proximal cut in the top strand. Procedures were also established to direct FokI activity, either preferentially to the bottom strand or exclusively to the top strand. The latter extends the range of enzymes for nicking specified strands at specific sequences, and may facilitate further applications of FokI in gene targeting.
Collapse
Affiliation(s)
- Kelly L Sanders
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|
23
|
Ibryashkina EM, Sasnauskas G, Solonin AS, Zakharova MV, Siksnys V. Oligomeric structure diversity within the GIY-YIG nuclease family. J Mol Biol 2009; 387:10-6. [PMID: 19361436 DOI: 10.1016/j.jmb.2009.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2008] [Revised: 12/30/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
The GIY-YIG nuclease domain has been identified in homing endonucleases, DNA repair and recombination enzymes, and restriction endonucleases. The Type II restriction enzyme Eco29kI belongs to the GIY-YIG nuclease superfamily and, like most of other family members, including the homing endonuclease I-TevI, is a monomer. It recognizes the palindromic sequence 5'-CCGC/GG-3' ("/" marks the cleavage position) and cuts it to generate 3'-staggered ends. The Eco29kI monomer, which contains a single active site, either has to nick sequentially individual DNA strands or has to form dimers or even higher-order oligomers upon DNA binding to make a double-strand break at its target site. Here, we provide experimental evidence that Eco29kI monomers dimerize on a single cognate DNA molecule forming the catalytically active complex. The mechanism described here for Eco29kI differs from that of Cfr42I isoschisomer, which also belongs to the GIY-YIG family but is functional as a tetramer. This novel mechanism may have implications for the function of homing endonucleases and other enzymes of the GIY-YIG family.
Collapse
Affiliation(s)
- Elena M Ibryashkina
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
24
|
Bellamy SRW, Mina P, Retter SE, Halford SE. Fidelity of DNA sequence recognition by the SfiI restriction endonuclease is determined by communications between its two DNA-binding sites. J Mol Biol 2008; 384:557-63. [PMID: 18848951 DOI: 10.1016/j.jmb.2008.09.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
Abstract
The SfiI restriction endonuclease is a tetramer in which two subunits form a dimeric unit that contains one DNA binding cleft and the other two subunits contain a second cleft on the opposite side of the protein. Full activity requires both clefts to be filled with its recognition sequence: SfiI has low activity when bound to one site. The ability of SfiI to cleave non-cognate sites, one base pair different from the true site, was initially tested on substrates that lacked specific sites but which contained either one or multiple non-cognate sites. No cleavage of the DNA with one non-cognate site was detected, while a small fraction of the DNA with multiple sites was nicked. The alternative sequences were, however, cleaved in both strands, albeit at low levels, when the DNA also carried either a recognition site for SfiI or the termini generated by SfiI. Further tests employed a mutant of SfiI, altered at the dimer interface, which was known to be more active than wild-type SfiI when bound to a single site. This mutant similarly failed to cleave DNA with one non-cognate site, but cleaved the substrates with multiple non-cognate sites more readily than did the native enzyme. To cleave additional sites, SfiI thus needs to interact concurrently with either two non-cognate sites or one non-cognate and one cognate site (or the termini thereof), yet this arrangement is still restrained from cleaving the alternative site unless the communication pathway between the two DNA-binding clefts is disrupted.
Collapse
Affiliation(s)
- Stuart R W Bellamy
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
25
|
Jakubauskas A, Sasnauskas G, Giedriene J, Janulaitis A. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I. Biochemistry 2008; 47:8546-56. [PMID: 18642930 DOI: 10.1021/bi800660u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.
Collapse
|
26
|
Chen M, Cai L, Fang Z, Tian H, Gao X, Yao W. Site-specific incorporation of unnatural amino acids into urate oxidase in Escherichia coli. Protein Sci 2008; 17:1827-33. [PMID: 18596202 DOI: 10.1110/ps.034587.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Abstract
Urate oxidase catalyzes the oxidation of uric acid with poor solubility to produce 5-hydroxyisourate and allantoin. Since allantoin is excreted in vivo, urate oxidase has the potential to be a therapeutic target for the treatment of gout. However, its severe immunogenicity limits its clinical application. Furthermore, studies on the structure-function relationships of urate oxidase have proven difficult. We developed a method for genetically incorporating p-azido-L-phenylalanine into target protein in Escherichia coli in a site-specific manner utilizing a tyrosyl suppressor tRNA/aminoacyl-tRNA synthetase system. We substituted p-azido-L-phenylalanine for Phe(170) or Phe(281) in urate oxidase. The products were purified and their enzyme activities were analyzed. In addition, we optimized the system by adding a "Shine-Dalgarno (SD) sequence" and tandem suppressor tRNA. This method has the benefit of site-specifically modifying urate oxidase with homogeneous glycosyl and PEG derivates, which can provide new insights into structure-function relationships and improve pharmacological properties of urate oxidase.
Collapse
Affiliation(s)
- Mingjie Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Griffin MD, Dobson RC, Pearce FG, Antonio L, Whitten AE, Liew CK, Mackay JP, Trewhella J, Jameson GB, Perugini MA, Gerrard JA. Evolution of Quaternary Structure in a Homotetrameric Enzyme. J Mol Biol 2008; 380:691-703. [DOI: 10.1016/j.jmb.2008.05.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2008] [Revised: 05/08/2008] [Accepted: 05/14/2008] [Indexed: 10/22/2022]
|
28
|
ZHOU RY, JIANG W, ZHANG LN, WANG L, LIU CL. Extra Copper-mediated Enhancement of the DNA Cleavage Activity Supported with Wild-type Cu, Zn Superoxide Dismutase. CHINESE J CHEM 2008. [DOI: 10.1002/cjoc.200890106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
29
|
Catto LE, Bellamy SRW, Retter SE, Halford SE. Dynamics and consequences of DNA looping by the FokI restriction endonuclease. Nucleic Acids Res 2008; 36:2073-81. [PMID: 18276642 PMCID: PMC2346600 DOI: 10.1093/nar/gkn051] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022] Open
Abstract
Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reaction pathway for FokI on a supercoiled DNA with two sites was dissected by fast kinetics to reveal, in turn: the initial binding of a protein monomer to each site; the protein–protein association to form the dimer, trapping the loop; the subsequent phosphodiester hydrolysis step. The DNA motion that juxtaposes the sites ought on the basis of Brownian dynamics to take ∼2 ms, but loop capture by FokI took 230 ms. Hence, DNA looping by FokI is rate limited by protein association rather than DNA dynamics. The FokI endonuclease also illustrated activation by looping: it cut looped DNA 400 times faster than unlooped DNA.
Collapse
Affiliation(s)
- Lucy E Catto
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
30
|
Gasiunas G, Sasnauskas G, Tamulaitis G, Urbanke C, Razaniene D, Siksnys V. Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family. Nucleic Acids Res 2007; 36:938-49. [PMID: 18086711 PMCID: PMC2241918 DOI: 10.1093/nar/gkm1090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5′-CCGC/GG-3′ (‘/’ indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.
Collapse
Affiliation(s)
- Giedrius Gasiunas
- Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
31
|
Bellamy SRW, Milsom SE, Kovacheva YS, Sessions RB, Halford SE. A switch in the mechanism of communication between the two DNA-binding sites in the SfiI restriction endonuclease. J Mol Biol 2007; 373:1169-83. [PMID: 17870087 PMCID: PMC2082129 DOI: 10.1016/j.jmb.2007.08.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 11/29/2022]
Abstract
While many Type II restriction enzymes are dimers with a single DNA-binding cleft between the subunits, SfiI is a tetramer of identical subunits. Two of its subunits (a dimeric unit) create one DNA-binding cleft, and the other two create a second cleft on the opposite side of the protein. The two clefts bind specific DNA cooperatively to give a complex of SfiI with two recognition sites. This complex is responsible for essentially all of the DNA-cleavage reactions by SfiI: virtually none is due to the complex with one site. The communication between the DNA-binding clefts was examined by disrupting one of the very few polar interactions in the otherwise hydrophobic interface between the dimeric units: a tyrosine hydroxyl was removed by mutation to phenylalanine. The mutant protein remained tetrameric in solution and could bind two DNA sites. But instead of being activated by binding two sites, like wild-type SfiI, it showed maximal activity when bound to a single site and had a lower activity when bound to two sites. This interaction across the dimer interface thus enforces in wild-type SfiI a cooperative transition between inactive and active states in both dimers, but without this interaction as in the mutant protein, a single dimer can undergo the transition to give a stable intermediate with one inactive dimer and one active dimer.
Collapse
Affiliation(s)
- Stuart R W Bellamy
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | |
Collapse
|
32
|
Jiang W, Han Y, Pan Q, Shen T, Liu C. Roles of exogenous divalent metals in the nucleolytic activity of Cu,Zn superoxide dismutase. J Inorg Biochem 2007; 101:667-77. [PMID: 17292965 DOI: 10.1016/j.jinorgbio.2006.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2006] [Revised: 11/25/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
It is well known that the wild type Cu,Zn superoxide dismutase (holo SOD) catalyzes the conversion of superoxide anion to peroxide hydrogen and dioxygen. However, a new function of holo SOD, i.e., nucleolytic activity has been found [W. Jiang, T. Shen, Y. Han, Q. Pan, C. Liu, J. Biol. Inorg. Chem. 11 (2006) 835-848], which is linked to the incorporation of exogenous divalent metals into the enzyme-DNA complex. In this study, the roles of exogenous divalent metals in the nucleolytic activity were explored in detail by a series of biochemical experiments. Based on a non-equivalent multi-site binding model, affinity of a divalent metal for the enzyme-DNA complex was determined by absorption titration, indicating that the complex can provide at least a high and a low affinity site for the metal ion. These mean that the holo SOD may use a "two exogenous metal ion pathway" as a mechanism in which both metal ions are directly involved in the catalytic process of DNA cleavage. In addition, the pH versus DNA cleavage rate profiles can be fitted to two ionizing-group models, indicating the presence of a general acid and a general base in catalysis. A model that requires histidine residues, metal-bound water molecules and two hydrated metal ions to operate in concert could be used to interpret the catalysis of DNA hydrolysis, supported by the dependences of loss of the nucleolytic activity on time and on the concentration of the specific chemical modifier to the histidine residues on the enzyme.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | |
Collapse
|
33
|
Zaremba M, Sasnauskas G, Urbanke C, Siksnys V. Allosteric communication network in the tetrameric restriction endonuclease Bse634I. J Mol Biol 2006; 363:800-12. [PMID: 16987525 DOI: 10.1016/j.jmb.2006.08.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/03/2006] [Revised: 08/03/2006] [Accepted: 08/17/2006] [Indexed: 11/20/2022]
Abstract
Restriction endonuclease Bse634I is a homotetramer arranged as a dimer of two primary dimers. Bse634I displays its maximum catalytic efficiency upon binding of two copies of cognate DNA, one per each primary dimer. The catalytic activity of Bse634I on a single DNA copy is down-regulated due to the cross-talking interactions between the primary dimers. The mechanism of signal propagation between the individual active sites of Bse634I remains unclear. To identify communication pathways involved in the catalytic activity regulation of Bse634I tetramer we mutated a selected set of amino acid residues at the dimer-dimer interface and analysed the oligomeric state and catalytic properties of the mutant proteins. We demonstrate that alanine replacement of N262 and V263 residues located in the loop at the tetramerisation interface did not inhibit tetramer assembly but dramatically altered the catalytic properties of Bse634I despite of the distal location from the active site. Kinetic analysis using cognate hairpin oligonucleotide and one and two-site plasmids as substrates allowed us to identify two types of communication signals propagated through the dimer-dimer interface in the Bse634I tetramer: the inhibitory, or "stopper" and the activating, or "sync" signal. We suggest that the interplay between the two signals determines the catalytic and regulatory properties of the Bse634I and mutant proteins.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, Vilnius, LT-02241, Lithuania
| | | | | | | |
Collapse
|
34
|
Tamulaitis G, Sasnauskas G, Mucke M, Siksnys V. Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease. J Mol Biol 2006; 358:406-19. [PMID: 16529772 DOI: 10.1016/j.jmb.2006.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/28/2022]
Abstract
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.
Collapse
|
35
|
Tamulaitis G, Mucke M, Siksnys V. Biochemical and mutational analysis ofEcoRII functional domains reveals evolutionary links between restriction enzymes. FEBS Lett 2006; 580:1665-71. [PMID: 16497303 DOI: 10.1016/j.febslet.2006.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2005] [Revised: 01/16/2006] [Accepted: 02/07/2006] [Indexed: 11/23/2022]
Abstract
The archetypal Type IIE restriction endonuclease EcoRII is a dimer that has a modular structure. DNA binding studies indicate that the isolated C-terminal domain dimer has an interface that binds a single cognate DNA molecule whereas the N-terminal domain is a monomer that also binds a single copy of cognate DNA. Hence, the full-length EcoRII contains three putative DNA binding interfaces: one at the C-terminal domain dimer and two at each of the N-terminal domains. Mutational analysis indicates that the C-terminal domain shares conserved active site architecture and DNA binding elements with the tetrameric restriction enzyme NgoMIV. Data provided here suggest possible evolutionary relationships between different subfamilies of restriction enzymes.
Collapse
|
36
|
Wood KM, Daniels LE, Halford SE. Long-range communications between DNA sites by the dimeric restriction endonuclease SgrAI. J Mol Biol 2005; 350:240-53. [PMID: 15923010 DOI: 10.1016/j.jmb.2005.04.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2005] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The SgrAI endonuclease displays its maximal activity on DNA with two copies of its recognition sequence, cleaving both sites concertedly. While most restriction enzymes that act concurrently at two sites are tetramers, SgrAI is a dimer in solution. Its reaction at two cognate sites involves the association of two DNA-bound dimers. SgrAI can also bridge cognate and secondary sites, the latter being certain sequences that differ from the cognate by one base-pair. The mechanisms for cognate-cognate and cognate-secondary communications were examined for sites in the following topological relationships: in cis, on plasmids with two sites in a single DNA molecule; on catenanes containing two interlinked rings of DNA with one site in each ring; and in trans, on oligoduplexes carrying either a single site or the DNA termini generated by SgrAI. Both cognate-cognate and cognate-secondary interactions occur through 3-D space and not by 1-D tracking along the DNA. Both sorts of communication arise more readily when the sites are tethered to each other, either in cis on the same molecule of DNA or by the interlinking of catenane rings, than when released from the tether. However, the dimer bound to an oligoduplex carrying either a cognate or a secondary site could be activated to cleave that duplex by interacting with a second dimer bound to the recognition site, provided both duplexes are at least 30 base-pairs long: the second dimer could alternatively be bound to the two duplexes that correspond to the products of DNA cleavage by SgrAI.
Collapse
Affiliation(s)
- Katie M Wood
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|