1
|
Hovan A, Gala M, Sedláková D, Bánó G, Lee OS, Žoldák G, Sedlák E. On the production of singlet oxygen by the isoalloxazine ring in free and protein-bound flavin cofactors. Biophys Chem 2025; 316:107333. [PMID: 39413722 DOI: 10.1016/j.bpc.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flavin cofactors, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), as a part of flavoenzymes play a critical role in the catalysis of multiple reactions predominantly of a redox nature. Question arises why nature developed two very similar cofactors with an identical functional part - isoalloxazine ring. We believe that an answer is related to the fact that the isoalloxazine ring belongs to endogenous photosensitizers able to produce reactive and potentially harmful singlet oxygen, 1O2, with high efficiency, ΦΔ,FMN ∼ 0.6. In fact, in contrast with one main conformation of FMN in water, the presence of the adenosine mononucleotide in FAD induces a dynamic equilibrium of two main conformations - closed (∼80 %) and open (∼20 %). The presence of predominant closed conformation of FAD in water has a significant impact on the ΦΔ,FAD value, which is nearly 10-fold lower, ΦΔ,FAD ∼ 0.07, than that of FMN. On the other hand, based on our analysis of a non-homologous dataset of FAD containing 105 proteins, ∼75 % enzyme-bound FAD exists predominantly in open conformations but the ΦΔ values are significantly decreased, ΦΔ < 0.03. We addressed these contradictory observations by analysis of: (i) dependence of ΦΔ,FAD value on opening the FAD conformation by urea and (ii) amino acid propensities for isoalloxazine binding site. We demonstrated that urea-induced destabilization, in 7 M vs 0 M urea, of the closed FAD conformation leads to a ∼ 3-fold increase of ΦΔ, proving the causative relation between ΦΔ value and the flavin cofactor conformation. Detailed examination of the flavoproteins dataset clearly indicated positive propensities of three amino acids: glycine, cysteine, and tryptophan for isoalloxazine ring binding site. We hypothesize that both the closed conformation of free FAD and the arrangement of the isoalloxazine binding site is important for prevention of potentially harmful 1O2 production in cells.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Michal Gala
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia
| | - Gabriel Žoldák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia.
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, 041 54 Košice, Slovakia; Department of Biochemistry, Faculty of Science, P.J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia.
| |
Collapse
|
2
|
Montecinos F, Eren E, Watts NR, Sackett DL, Wingfield PT. Structure of blood cell-specific tubulin and demonstration of dimer spacing compaction in a single protofilament. J Biol Chem 2024; 301:108132. [PMID: 39725029 PMCID: PMC11791314 DOI: 10.1016/j.jbc.2024.108132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Microtubule (MT) function plasticity originates from its composition of α- and β-tubulin isotypes and the posttranslational modifications of both subunits. Aspects such as MT assembly dynamics, structure, and anticancer drug binding can be modulated by αβ-tubulin heterogeneity. However, the exact molecular mechanism regulating these aspects is only partially understood. A recent insight is the discovery of expansion and compaction of the MT lattice, which can occur via fine modulation of dimer longitudinal spacing mediated by GTP hydrolysis, taxol binding, protein binding, or isotype composition. Here, we report the first structure of the blood cell-specific α1/β1-tubulin isolated from the marginal band of chicken erythrocytes (ChET) determined to a resolution of 3.2 Å by cryo-EM. We show that ChET rings induced with cryptophycin-52 (Cp-52) are smaller in diameter than HeLa cell line tubulin (HeLaT) rings induced with Cp-52 and composed of the same number of heterodimers. We observe compacted interdimer and intradimer curved protofilament interfaces, characterized by shorter distances between ChET subunits and accompanied by conformational changes in the β-tubulin subunit. The compacted ChET interdimer interface brings more residues near the Cp-52 binding site. We measured the Cp-52 apparent binding affinities of ChET and HeLaT by mass photometry, observing small differences, and detected the intermediates of the ring assembly reaction. These findings demonstrate that compaction/expansion of dimer spacing can occur in a single protofilament context and that the subtle structural differences between tubulin isotypes can modulate tubulin small molecule binding.
Collapse
Affiliation(s)
- Felipe Montecinos
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elif Eren
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | - Paul T Wingfield
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
3
|
Hovan A, Sedláková D, Lee OS, Bánó G, Sedlák E. pH modulates efficiency of singlet oxygen production by flavin cofactors. RSC Adv 2024; 14:28783-28790. [PMID: 39263436 PMCID: PMC11388723 DOI: 10.1039/d4ra05540c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are frequently used interchangeably in the catalysis of various reactions as part of flavoenzymes because they have the same functional component, the isoalloxazine ring. However, they differ significantly in their conformational properties. The inclusion of two planar rings in the structure of FAD greatly increases the range of possible conformations compared to FMN. An exemplary instance of this is the remarkable disparity in singlet oxygen efficiency production, Φ Δ, between FMN and FAD. Under neutral pH conditions, FAD has low photosensitizing activity with Φ Δ ∼ 0.07 while FMN demonstrates high photosensitizing activity with Φ Δ ∼ 0.6. Both adenine rings and isoalloxazine in FAD contain pH titratable groups. Through comprehensive analysis of the kinetics of the transient absorbance of the triplet state and the phosphorescence of singlet oxygen from FAD and FMN, we determined the correlation between different conformational states and the pH-dependent generation of singlet oxygen. Based on our findings, we may deduce that within the pH range of pH 2 to pH 13, only two out of the five potential structural states of FAD are capable of efficiently producing singlet oxygen. There are two open conformations: (i) an acidic FAD conformation with a protonated adenine ring, which is around 10 times more populated than the neutral open FAD conformation, and (ii) a neutral pH FAD conformation, which is significantly less populated. The FAD conformer with a protonated adenine ring at acidic pH generates singlet oxygen with approximately 50% efficiency compared to the constantly open FMN at neutral pH. This may have implications for singlet oxygen synthesis in acidic environments.
Collapse
Affiliation(s)
- Andrej Hovan
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Dagmar Sedláková
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences Watsonova 47 040 01 Košice Slovakia
| | - One-Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Šafárik University in Košice Jesenná 5 041 54 Košice Slovakia
- Department of Biochemistry, Faculty of Science, P. J. Šafárik University in Košice Moyzesova 11 041 54 Košice Slovakia
| |
Collapse
|
4
|
Soufi H, Moussaoui M, Baammi S, Baassi M, Salah M, Daoud R, El Allali A, Belghiti ME, Moutaabbid M, Belaaouad S. Multi-combined QSAR, molecular docking, molecular dynamics simulation, and ADMET of Flavonoid derivatives as potent cholinesterase inhibitors. J Biomol Struct Dyn 2024; 42:6027-6041. [PMID: 37485860 DOI: 10.1080/07391102.2023.2238314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/21/2023] [Indexed: 07/25/2023]
Abstract
In searching for a new and efficient therapeutic agent against Alzheimer's disease, a Quantitative structure-activity relationship (QSAR) was derived for 45 Flavonoid derivatives recently synthesized and evaluated as cholinesterase inhibitors. The multiple linear regression method (MLR) was adopted to develop an adequate mathematical model that describes the relationship between a variety of molecular descriptors of the studied compounds and their biological activities (cholinesterase inhibitors). Golbraikh and Tropsha criteria were applied to verify the validity of the built model. The built MLR model was statistically reliable, robust, and predictive (R2 = 0.801, Q2cv = 0.876, R2test = 0.824). Dreiding energy and Molar Refractivity were the major factors that govern the Anti-cholinesterase activity. These results were further exploited to design a new series of Flavonoid derivatives with higher Anti-cholinesterase activities than the existing ones. Thereafter, molecular docking and molecular dynamic studies were performed to predict the binding types of the designed compounds and to investigate their stability at the active site of the Butyrylcholinestérase BuChE protein. The negative and low binding affinity calculated for all designed compounds shows that designed compound 1 has a favorable affinity for the 4TPK. Moreover, molecular dynamics simulation studies confirmed the stability of designed compound 1 in the active pocket of 4TPK over 100 ns. Finally, the ADMET analysis was incorporated to analyze the pharmacokinetics and toxicity parameters. The designed compounds were found to meet the ADMET descriptor criteria at an acceptable level having respectable intestinal permeability and water solubility and can reach the intended destinations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hatim Soufi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Mohamed Moussaoui
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Soukayna Baammi
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Mouna Baassi
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Mohammed Salah
- Team of Chemoinformatics Research and Spectroscopy and Quantum Chemistry, Department of Chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morocco
| | - Rachid Daoud
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Achraf El Allali
- African Genome Centre (AGC), Mohammed VI Polytechnic University, Benguerir, Morocco
| | - M E Belghiti
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
- Laboratory of Nernest Technology, Sherbrook, QC, Canada
| | - Mohammed Moutaabbid
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| | - Said Belaaouad
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M'Sick, Hassan II University of Casablanca, Benguerir, Morocco
| |
Collapse
|
5
|
Felčíková K, Hovan A, Polák M, Loginov DS, Holotová V, Díaz C, Kožár T, Lee O, Varhač R, Novák P, Bánó G, Sedlák E. Design of AsLOV2 domain as a carrier of light-induced dissociable FMN photosensitizer. Protein Sci 2024; 33:e4921. [PMID: 38501448 PMCID: PMC10949324 DOI: 10.1002/pro.4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 03/20/2024]
Abstract
Flavin mononucleotide (FMN) is a highly efficient photosensitizer (PS) yielding singlet oxygen (1 O2 ). However, its 1 O2 production efficiency significantly decreases upon isoalloxazine ring encapsulation into the protein matrix in genetically encoded photosensitizers (GEPS). Reducing isoalloxazine ring interactions with surrounding amino acids by protein engineering may increase 1 O2 production efficiency GEPS, but at the same time weakened native FMN-protein interactions may cause undesirable FMN dissociation. Here, in contrast, we intentionally induce the FMN release by light-triggered sulfur oxidation of strategically placed cysteines (oxidation-prone amino acids) in the isoalloxazine-binding site due to significantly increased volume of the cysteinyl side residue(s). As a proof of concept, in three variants of the LOV2 domain of Avena sativa (AsLOV2), namely V416C, T418C, and V416C/T418C, the effective 1 O2 production strongly correlated with the efficiency of irradiation-induced FMN dissociation (wild type (WT) < V416C < T418C < V416C/T418C). This alternative approach enables us: (i) to overcome the low 1 O2 production efficiency of flavin-based GEPSs without affecting native isoalloxazine ring-protein interactions and (ii) to utilize AsLOV2, due to its inherent binding propensity to FMN, as a PS vehicle, which is released at a target by light irradiation.
Collapse
Affiliation(s)
- Kristína Felčíková
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Andrej Hovan
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Marek Polák
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Dmitry S. Loginov
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Veronika Holotová
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Carlos Díaz
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Tibor Kožár
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - One‐Sun Lee
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
| | - Rastislav Varhač
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Petr Novák
- Institute of Microbiology ‐ BioCeV, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Gregor Bánó
- Department of Biophysics, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| | - Erik Sedlák
- Center for Interdisciplinary Biosciences, Technology and Innovation ParkP.J. Šafárik UniversityKošiceSlovakia
- Department of Biochemistry, Faculty of ScienceP.J. Šafárik UniversityKošiceSlovakia
| |
Collapse
|
6
|
Foloppe N, Chen IJ. The reorganization energy of compounds upon binding to proteins, from dynamic and solvated bound and unbound states. Bioorg Med Chem 2021; 51:116464. [PMID: 34798378 DOI: 10.1016/j.bmc.2021.116464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The intramolecular reorganization energy (ΔEReorg) of compounds upon binding to proteins is a component of the binding free energy, which has long received particular attention, for fundamental and practical reasons. Understanding ΔEReorg would benefit the science of molecular recognition and drug design. For instance, the tolerable strain energy of compounds upon binding has been elusive. Prior studies found some large ΔEReorg values (e.g. > 10 kcal/mol), received with skepticism since they imply excessive opposition to binding. Indeed, estimating ΔEReorg is technically difficult. Typically, ΔEReorg has been approached by taking two energy-minimized conformers representing the bound and unbound states, and subtracting their conformational energy. This is a drastic oversimplification, liable to conformational collapse of the unbound conformer. Instead, the present work applies extensive molecular dynamics (MD) and the modern OPLS3 force-field to simulate compounds bound and unbound states, in explicit solvent under physically relevant conditions. The thermalized unbound compounds populate multiple conformations, not reducible to one or a few energy-minimized conformers. The intramolecular energies in the bound and unbound states were averaged over pertinent conformational ensembles, and the reorganization enthalpy upon binding (ΔHReorg) deduced by subtraction. This was applied to 76 systems, including 43 approved drugs, carefully selected for i) the quality of the bioactive X-ray structures and ii) the diversity of the chemotypes, their properties and protein targets. It yielded comparatively low ΔHReorg values (median = 1.4 kcal/mol, mean = 3.0 kcal/mol). A new finding is the observation of negative ΔHReorg values. Indeed, reorganization energies do not have to oppose binding, e.g. when intramolecular interactions stabilize preferentially the bound state. Conversely, even with competing water molecules, intramolecular interactions can occur predominantly in the unbound compound, and be replaced by intermolecular counterparts upon protein binding. Such disruption of intramolecular interactions upon binding gives rise to occasional larger ΔHReorg values. Such counterintuitive larger ΔHReorg values may be rationalized as a redistribution of interactions upon binding, qualitatively compatible with binding.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB21 6GB, UK.
| | - I-Jen Chen
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB21 6GB, UK.
| |
Collapse
|
7
|
Basu S, Chakravarty D, Bhattacharyya D, Saha P, Patra HK. Plausible blockers of Spike RBD in SARS-CoV2-molecular design and underlying interaction dynamics from high-level structural descriptors. J Mol Model 2021; 27:191. [PMID: 34057647 PMCID: PMC8165686 DOI: 10.1007/s00894-021-04779-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Abstract COVID-19 is characterized by an unprecedented abrupt increase in the viral transmission rate (SARS-CoV-2) relative to its pandemic evolutionary ancestor, SARS-CoV (2003). The complex molecular cascade of events related to the viral pathogenicity is triggered by the Spike protein upon interacting with the ACE2 receptor on human lung cells through its receptor binding domain (RBDSpike). One potential therapeutic strategy to combat COVID-19 could thus be limiting the infection by blocking this key interaction. In this current study, we adopt a protein design approach to predict and propose non-virulent structural mimics of the RBDSpike which can potentially serve as its competitive inhibitors in binding to ACE2. The RBDSpike is an independently foldable protein domain, resilient to conformational changes upon mutations and therefore an attractive target for strategic re-design. Interestingly, in spite of displaying an optimal shape fit between their interacting surfaces (attributed to a consequently high mutual affinity), the RBDSpike–ACE2 interaction appears to have a quasi-stable character due to a poor electrostatic match at their interface. Structural analyses of homologous protein complexes reveal that the ACE2 binding site of RBDSpike has an unusually high degree of solvent-exposed hydrophobic residues, attributed to key evolutionary changes, making it inherently “reaction-prone.” The designed mimics aimed to block the viral entry by occupying the available binding sites on ACE2, are tested to have signatures of stable high-affinity binding with ACE2 (cross-validated by appropriate free energy estimates), overriding the native quasi-stable feature. The results show the apt of directly adapting natural examples in rational protein design, wherein, homology-based threading coupled with strategic “hydrophobic ↔ polar” mutations serve as a potential breakthrough. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00894-021-04779-0.
Collapse
Affiliation(s)
- Sankar Basu
- Department of Microbiology, Asutosh College (affiliated to University of Calcutta), Kolkata, 700026, West Bengal, India.
| | - Devlina Chakravarty
- Department of Chemistry, University of Rutgers-Camden, Camden, 08102, NJ, USA
| | - Dhananjay Bhattacharyya
- Computational Science Division, Saha Institute of Nuclear Physics, Kolkata, 700064, West Bengal, India
| | - Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Hirak K Patra
- Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London, NW3 2PF, UK
| |
Collapse
|
8
|
Nutschel C, Coscolín C, David B, Mulnaes D, Ferrer M, Jaeger KE, Gohlke H. Promiscuous Esterases Counterintuitively Are Less Flexible than Specific Ones. J Chem Inf Model 2021; 61:2383-2395. [PMID: 33949194 DOI: 10.1021/acs.jcim.1c00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding mechanisms of promiscuity is increasingly important from a fundamental and application point of view. As to enzyme structural dynamics, more promiscuous enzymes generally have been recognized to also be more flexible. However, examples for the opposite received much less attention. Here, we exploit comprehensive experimental information on the substrate promiscuity of 147 esterases tested against 96 esters together with computationally efficient rigidity analyses to understand the molecular origin of the observed promiscuity range. Unexpectedly, our data reveal that promiscuous esterases are significantly less flexible than specific ones, are significantly more thermostable, and have a significantly increased specific activity. These results may be reconciled with a model according to which structural flexibility in the case of specific esterases serves for conformational proofreading. Our results signify that an esterase sequence space can be screened by rigidity analyses for promiscuous esterases as starting points for further exploration in biotechnology and synthetic chemistry.
Collapse
Affiliation(s)
- Christina Nutschel
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Benoit David
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Daniel Mulnaes
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, 52425 Jülich, Germany.,Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Rosell M, Fernández-Recio J. Docking-based identification of small-molecule binding sites at protein-protein interfaces. Comput Struct Biotechnol J 2020; 18:3750-3761. [PMID: 33250973 PMCID: PMC7679229 DOI: 10.1016/j.csbj.2020.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions play an essential role in many biological processes, and their perturbation is a major cause of disease. The use of small molecules to modulate them is attracting increased attention, but protein interfaces generally do not have clear cavities for binding small compounds. A proposed strategy is to target interface hot-spot residues, but their identification through computational approaches usually require the complex structure, which is not often available. In this context, pyDock energy-based docking and scoring can predict hot-spots on the unbound proteins, thus not requiring the complex structure. Here, we have devised a new strategy to detect protein–protein inhibitor binding sites, based on the integration of molecular dynamics for the generation of transient cavities, and docking-based interface hot-spot prediction for the selection of the suitable cavities. This integrative approach has been validated on a test set formed by protein–protein complexes with known inhibitors for which complete structural data of unbound molecules and complexes is available. The results show that local conformational sampling with short molecular dynamics can generate transient cavities similar to the known inhibitor binding sites, and that docking simulations can identify the best cavities with similar predictive accuracy as when knowing the real interface. In a few cases, these predicted pockets are shown to be suitable for protein–ligand docking. The proposed strategy will be useful for many protein–protein complexes for which there is no available structure, as long as the the unbound proteins do not deviate dramatically from the bound conformations.
Collapse
Affiliation(s)
- Mireia Rosell
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Juan Fernández-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain.,Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC - Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| |
Collapse
|
10
|
Simonovsky M, Meyers J. DeeplyTough: Learning Structural Comparison of Protein Binding Sites. J Chem Inf Model 2020; 60:2356-2366. [DOI: 10.1021/acs.jcim.9b00554] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Martin Simonovsky
- BenevolentAI, London W1T 5HD, U.K
- École des Ponts ParisTech, Champs sur Marne 77455, France
- Université Paris-Est, Champs sur Marne 77455, France
| | | |
Collapse
|
11
|
Kellici TF, Ntountaniotis D, Liapakis G, Tzakos AG, Mavromoustakos T. The dynamic properties of angiotensin II type 1 receptor inverse agonists in solution and in the receptor site. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
12
|
Abrusán G, Marsh JA. Ligand Binding Site Structure Influences the Evolution of Protein Complex Function and Topology. Cell Rep 2019; 22:3265-3276. [PMID: 29562182 PMCID: PMC5873459 DOI: 10.1016/j.celrep.2018.02.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 01/17/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that the evolution of protein complexes is significantly influenced by stochastic, non-adaptive processes. Using ligand binding as a proxy of function, we show that the structure of ligand-binding sites significantly influences the evolution of protein complexes. We show that homomers with multi-chain binding sites (MBSs) evolve new functions slower than monomers or other homomers, and those binding cofactors and metals have more conserved quaternary structure than other homomers. Moreover, the ligands and ligand-binding pockets of homologous MBS homomers are more similar than monomers and other homomers. Our results suggest strong evolutionary selection for quaternary structure in cofactor-binding MBS homomers, whereas neutral processes are more important in complexes with single-chain binding sites. They also have pharmacological implications, suggesting that complexes with single-chain binding sites are better targets for selective drugs, whereas MBS homomers are good candidates for broad-spectrum antibiotic and multitarget drug design. Ligand binding site structure significantly influences protein function evolution MBS homomers have more similar ligand binding pockets than monomers and other homomers Cofactor and metal-binding MBS homomers have more conserved QS than other homomers MBS homomers are promising targets for developing antibiotics and multitarget drugs
Collapse
Affiliation(s)
- György Abrusán
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
13
|
Konovalov B, Živković MD, Milovanović JZ, Djordjević DB, Arsenijević AN, Vasić IR, Janjić GV, Franich A, Manojlović D, Skrivanj S, Milovanović MZ, Djuran MI, Rajković S. Synthesis, cytotoxic activity and DNA interaction studies of new dinuclear platinum(ii) complexes with an aromatic 1,5-naphthyridine bridging ligand: DNA binding mode of polynuclear platinum(ii) complexes in relation to the complex structure. Dalton Trans 2019; 47:15091-15102. [PMID: 30303498 DOI: 10.1039/c8dt01946k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, spectroscopic characterization, cytotoxic activity and DNA binding evaluation of seven new dinuclear platinum(ii) complexes Pt1-Pt7, with the general formula [{Pt(L)Cl}2(μ-1,5-nphe)](ClO4)2 (1,5-nphe is 1,5-naphthyridine; while L is two ammines (Pt1) or one bidentate coordinated diamine: ethylenediamine (Pt2), (±)-1,2-propylenediamine (Pt3), trans-(±)-1,2-diaminocyclohexane (Pt4), 1,3-propylenediamine (Pt5), 2,2-dimethyl-1,3-propylenediamine (Pt6), and 1,3-pentanediamine (Pt7)), were reported. In vitro cytotoxic activity of these complexes was evaluated against three tumor cell lines, murine colon carcinoma (CT26), murine mammary carcinoma (4T1) and murine lung cancer (LLC1) and two normal cell lines, murine mesenchymal stem cells (MSC) and human fibroblast (MRC-5) cells. The results of the MTT assay indicate that all investigated complexes have almost no cytotoxic effects on 4T1 and very low cytotoxicity toward LLC1 cell lines. In contrast to the effects on LLC1 and 4T1 cells, complexes Pt1 and Pt2 had significant cytotoxic activity toward CT26 cells. Complex Pt1 had a much lower IC50 value for activity on CT26 cells compared with cisplatin. In comparison with cisplatin, all dinuclear Pt1-Pt7 complexes showed lower cytotoxicity toward normal MSC and MRC-5 cells. In order to measure the amount of platinum(ii) complexes taken up by the cells, we quantified the cellular platinum content using inductively coupled plasma mass spectrometry (ICP-QMS). Molecular docking studies performed to evaluate the potential binding mode of dinuclear platinum(ii) complexes Pt1-Pt7 and their aqua derivatives W1-W7, respectively, at the double stranded DNA showed that groove spanning and backbone tracking are the most stable binding modes.
Collapse
Affiliation(s)
- Bata Konovalov
- University of Kragujevac, Faculty of Science, Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Energy windows for computed compound conformers: covering artefacts or truly large reorganization energies? Future Med Chem 2019; 11:97-118. [DOI: 10.4155/fmc-2018-0400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The generation of 3D conformers of small molecules underpins most computational drug discovery. Thus, the conformer quality is critical and depends on their energetics. A key parameter is the empirical conformational energy window (ΔEw), since only conformers within ΔEw are retained. However, ΔEw values in use appear unrealistically large. We analyze the factors pertaining to the conformer energetics and ΔEw. We argue that more attention must be focused on the problem of collapsed low-energy conformers. That is due to artificial intramolecular stabilization and occurs even with continuum solvation. Consequently, the conformational energy of extended bioactive structures is artefactually increased, which inflates ΔEw. Thus, this Perspective highlights the issues arising from low-energy conformers and suggests improvements via empirical or physics-based strategies.
Collapse
|
15
|
Kaiser F, Bittrich S, Salentin S, Leberecht C, Haupt VJ, Krautwurst S, Schroeder M, Labudde D. Backbone Brackets and Arginine Tweezers delineate Class I and Class II aminoacyl tRNA synthetases. PLoS Comput Biol 2018; 14:e1006101. [PMID: 29659563 PMCID: PMC5919687 DOI: 10.1371/journal.pcbi.1006101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/26/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022] Open
Abstract
The origin of the machinery that realizes protein biosynthesis in all organisms is still unclear. One key component of this machinery are aminoacyl tRNA synthetases (aaRS), which ligate tRNAs to amino acids while consuming ATP. Sequence analyses revealed that these enzymes can be divided into two complementary classes. Both classes differ significantly on a sequence and structural level, feature different reaction mechanisms, and occur in diverse oligomerization states. The one unifying aspect of both classes is their function of binding ATP. We identified Backbone Brackets and Arginine Tweezers as most compact ATP binding motifs characteristic for each Class. Geometric analysis shows a structural rearrangement of the Backbone Brackets upon ATP binding, indicating a general mechanism of all Class I structures. Regarding the origin of aaRS, the Rodin-Ohno hypothesis states that the peculiar nature of the two aaRS classes is the result of their primordial forms, called Protozymes, being encoded on opposite strands of the same gene. Backbone Brackets and Arginine Tweezers were traced back to the proposed Protozymes and their more efficient successors, the Urzymes. Both structural motifs can be observed as pairs of residues in contemporary structures and it seems that the time of their addition, indicated by their placement in the ancient aaRS, coincides with the evolutionary trace of Proto- and Urzymes. Aminoacyl tRNA synthetases (aaRS) are primordial enzymes essential for interpretation and transfer of genetic information. Understanding the origin of the peculiarities observed with aaRS can explain what constituted the earliest life forms and how the genetic code was established. The increasing amount of experimentally determined three-dimensional structures of aaRS opens up new avenues for high-throughput analyses of molecular mechanisms. In this study, we present an exhaustive structural analysis of ATP binding motifs. We unveil an oppositional implementation of enzyme substrate binding in each aaRS Class. While Class I binds via interactions mediated by backbone hydrogen bonds, Class II uses a pair of arginine residues to establish salt bridges to its ATP ligand. We show how nature realized the binding of the same ligand species with completely different mechanisms. In addition, we demonstrate that sequence or even structure analysis for conserved residues may miss important functional aspects which can only be revealed by ligand interaction studies. Additionally, the placement of those key residues in the structure supports a popular hypothesis, which states that prototypic aaRS were once coded on complementary strands of the same gene.
Collapse
Affiliation(s)
- Florian Kaiser
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
- * E-mail:
| | - Sebastian Bittrich
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | - Christoph Leberecht
- University of Applied Sciences Mittweida, Mittweida, Germany
- Biotechnology Center (BIOTEC), TU Dresden, Dresden, Germany
| | | | | | | | - Dirk Labudde
- University of Applied Sciences Mittweida, Mittweida, Germany
| |
Collapse
|
16
|
Friedrich NO, Simsir M, Kirchmair J. How Diverse Are the Protein-Bound Conformations of Small-Molecule Drugs and Cofactors? Front Chem 2018; 6:68. [PMID: 29637066 PMCID: PMC5880911 DOI: 10.3389/fchem.2018.00068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
Knowledge of the bioactive conformations of small molecules or the ability to predict them with theoretical methods is of key importance to the design of bioactive compounds such as drugs, agrochemicals, and cosmetics. Using an elaborate cheminformatics pipeline, which also evaluates the support of individual atom coordinates by the measured electron density, we compiled a complete set ("Sperrylite Dataset") of high-quality structures of protein-bound ligand conformations from the PDB. The Sperrylite Dataset consists of a total of 10,936 high-quality structures of 4,548 unique ligands. Based on this dataset, we assessed the variability of the bioactive conformations of 91 small molecules-each represented by a minimum of ten structures-and found it to be largely independent of the number of rotatable bonds. Sixty-nine molecules had at least two distinct conformations (defined by an RMSD greater than 1 Å). For a representative subset of 17 approved drugs and cofactors we observed a clear trend for the formation of few clusters of highly similar conformers. Even for proteins that share a very low sequence identity, ligands were regularly found to adopt similar conformations. For cofactors, a clear trend for extended conformations was measured, although in few cases also coiled conformers were observed. The Sperrylite Dataset is available for download from http://www.zbh.uni-hamburg.de/sperrylite_dataset.
Collapse
Affiliation(s)
- Nils-Ole Friedrich
- Department of Informatics, Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| | - Méliné Simsir
- Department of Informatics, Center for Bioinformatics, Universität Hamburg, Hamburg, Germany.,Molécules Thérapeutiques In Silico, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Johannes Kirchmair
- Department of Informatics, Center for Bioinformatics, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Peach ML, Cachau RE, Nicklaus MC. Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding. J Mol Recognit 2017; 30:10.1002/jmr.2618. [PMID: 28233410 PMCID: PMC5553890 DOI: 10.1002/jmr.2618] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/25/2022]
Abstract
In this review, we address a fundamental question: What is the range of conformational energies seen in ligands in protein-ligand crystal structures? This value is important biophysically, for better understanding the protein-ligand binding process; and practically, for providing a parameter to be used in many computational drug design methods such as docking and pharmacophore searches. We synthesize a selection of previously reported conflicting results from computational studies of this issue and conclude that high ligand conformational energies really are present in some crystal structures. The main source of disagreement between different analyses appears to be due to divergent treatments of electrostatics and solvation. At the same time, however, for many ligands, a high conformational energy is in error, due to either crystal structure inaccuracies or incorrect determination of the reference state. Aside from simple chemistry mistakes, we argue that crystal structure error may mainly be because of the heuristic weighting of ligand stereochemical restraints relative to the fit of the structure to the electron density. This problem cannot be fixed with improvements to electron density fitting or with simple ligand geometry checks, though better metrics are needed for evaluating ligand and binding site chemistry in addition to geometry during structure refinement. The ultimate solution for accurately determining ligand conformational energies lies in ultrahigh-resolution crystal structures that can be refined without restraints.
Collapse
Affiliation(s)
- Megan L Peach
- Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raul E Cachau
- Data Science and Information Technology Program, Advanced Biomedical Computing Center, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marc C Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
18
|
Zheng Y, Tice CM, Singh SB. Conformational control in structure-based drug design. Bioorg Med Chem Lett 2017; 27:2825-2837. [DOI: 10.1016/j.bmcl.2017.04.079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022]
|
19
|
Bhagavat R, Srinivasan N, Chandra N. Deciphering common recognition principles of nucleoside mono/di and tri-phosphates binding in diverse proteins via structural matching of their binding sites. Proteins 2017; 85:1699-1712. [PMID: 28547747 DOI: 10.1002/prot.25328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022]
Abstract
Nucleoside triphosphate (NTP) ligands are of high biological importance and are essential for all life forms. A pre-requisite for them to participate in diverse biochemical processes is their recognition by diverse proteins. It is thus of great interest to understand the basis for such recognition in different proteins. Towards this, we have used a structural bioinformatics approach and analyze structures of 4677 NTP complexes available in Protein Data Bank (PDB). Binding sites were extracted and compared exhaustively using PocketMatch, a sensitive in-house site comparison algorithm, which resulted in grouping the entire dataset into 27 site-types. Each of these site-types represent a structural motif comprised of two or more residue conservations, derived using another in-house tool for superposing binding sites, PocketAlign. The 27 site-types could be grouped further into 9 super-types by considering partial similarities in the sites, which indicated that the individual site-types comprise different combinations of one or more site features. A scan across PDB using the 27 structural motifs determined the motifs to be specific to NTP binding sites, and a computational alanine mutagenesis indicated that residues identified to be highly conserved in the motifs are also most contributing to binding. Alternate orientations of the ligand in several site-types were observed and rationalized, indicating the possibility of some residues serving as anchors for NTP recognition. The presence of multiple site-types and the grouping of multiple folds into each site-type is strongly suggestive of convergent evolution. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. Proteins 2017; 85:1699-1712. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Raghu Bhagavat
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Narayanaswamy Srinivasan
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Molecular Biophysics Unit, National Mathematics Initiative, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
20
|
Beshnova DA, Pereira J, Lamzin VS. Estimation of the protein-ligand interaction energy for model building and validation. Acta Crystallogr D Struct Biol 2017; 73:195-202. [PMID: 28291754 PMCID: PMC5349431 DOI: 10.1107/s2059798317003400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 03/01/2017] [Indexed: 12/03/2022] Open
Abstract
Macromolecular X-ray crystallography is one of the main experimental techniques to visualize protein-ligand interactions. The high complexity of the ligand universe, however, has delayed the development of efficient methods for the automated identification, fitting and validation of ligands in their electron-density clusters. The identification and fitting are primarily based on the density itself and do not take into account the protein environment, which is a step that is only taken during the validation of the proposed binding mode. Here, a new approach, based on the estimation of the major energetic terms of protein-ligand interaction, is introduced for the automated identification of crystallographic ligands in the indicated binding site with ARP/wARP. The applicability of the method to the validation of protein-ligand models from the Protein Data Bank is demonstrated by the detection of models that are `questionable' and the pinpointing of unfavourable interatomic contacts.
Collapse
Affiliation(s)
- Daria A. Beshnova
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Joana Pereira
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Victor S. Lamzin
- European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
21
|
Raghavender US. Analysis of residue conformations in peptides in Cambridge structural database and protein-peptide structural complexes. Chem Biol Drug Des 2016; 89:428-442. [DOI: 10.1111/cbdd.12862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/27/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023]
|
22
|
Yang L, Zhang J, Che X, Gao YQ. Simulation Studies of Protein and Small Molecule Interactions and Reaction. Methods Enzymol 2016; 578:169-212. [PMID: 27497167 DOI: 10.1016/bs.mie.2016.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computational studies of protein and small molecule (protein-ligand/enzyme-substrate) interactions become more and more important in biological science and drug discovery. Computer modeling can provide molecular details of the processes such as conformational change, binding, and transportation of small molecules/proteins, which are not easily to be captured in experiments. In this chapter, we discussed simulation studies of both protein and small molecules from three aspects: conformation sampling, transportations of small molecules in enzymes, and enzymatic reactions involving small molecules. Both methodology developments and examples of simulation studies in this field were presented.
Collapse
Affiliation(s)
- L Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China
| | - J Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China
| | - X Che
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China
| | - Y Q Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, PR China; Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, PR China.
| |
Collapse
|
23
|
Affiliation(s)
- C. Satheesan Babu
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan R.O.C
| | - Carmay Lim
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan R.O.C
- Department
of Chemistry, National Tsing-Hua University, Hsinchu 300, Taiwan R.O.C
| |
Collapse
|
24
|
Foloppe N, Chen IJ. Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding. Bioorg Med Chem 2016; 24:2159-89. [PMID: 27061672 DOI: 10.1016/j.bmc.2016.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/09/2016] [Accepted: 03/12/2016] [Indexed: 01/24/2023]
Abstract
There has been an explosion of structural information for pharmaceutical compounds bound to biological targets, but the conformations and dynamics of compounds free in solution are poorly characterized, if at all. Yet, knowledge of the unbound state is essential to understand the fundamentals of molecular recognition, including the much debated conformational intramolecular reorganization energy of a compound upon binding (ΔEReorg). Also, dependable observation of the unbound compounds is important for ligand-based drug discovery, e.g. with pharmacophore modelling. Here, these questions are addressed with long (⩾0.5μs) state-of-the-art molecular dynamics (MD) simulations of 26 compounds (including 7 approved drugs) unbound in explicit solvent. These compounds were selected to be chemically diverse, with a range of flexibility, and good quality bioactive X-ray structures. The MD-simulated free compounds are compared to their bioactive structure and conformers generated with ad hoc sampling in vacuo or with implicit generalized Born (GB) aqueous solvation models. The GB conformational models clearly depart from those obtained in explicit solvent, and suffer from conformational collapse almost as severe as in vacuo. Thus, the global energy minima in vacuo or with GB are not suitable representations of the unbound state, which can instead be extensively sampled by MD simulations. Many, but not all, MD-simulated compounds displayed some structural similarity to their bioactive structure, supporting the notion of conformational pre-organization for binding. The ligand-protein complexes were also simulated in explicit solvent, to estimate ΔEReorg as an enthalpic difference ΔHReorg between the intramolecular energies in the bound and unbound states. This fresh approach yielded ΔHReorg values⩽6kcal/mol for 18 out of 26 compounds. For three particularly polar compounds 15⩽ΔHReorg⩽20kcal/mol, supporting the notion that ΔHReorg can be substantial. Those large ΔHReorg values correspond to a redistribution of electrostatic interactions upon binding. Overall, the study illustrates how MD simulations offer a promising avenue to characterize the unbound state of medicinal compounds.
Collapse
Affiliation(s)
- Nicolas Foloppe
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB21 6GB, UK.
| | - I-Jen Chen
- Vernalis (R&D) Ltd, Granta Park, Abington, Cambridge CB21 6GB, UK.
| |
Collapse
|
25
|
Che X, Zhang J, Zhu Y, Yang L, Quan H, Gao YQ. Structural Flexibility and Conformation Features of Cyclic Dinucleotides in Aqueous Solutions. J Phys Chem B 2016; 120:2670-80. [PMID: 26878265 DOI: 10.1021/acs.jpcb.5b11531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyclic dinucleotides are able to trigger the innate immune system by activating STING. It was found that the binding affinity of asymmetric 2'3'-cGAMP to symmetric dimer of STING is 3 orders of magnitude higher than that of the symmetric 3'3'-cyclic dinucleotides. Such a phenomenon has not been understood yet. Here we show that the subtle changes in phosphodiester linkage of CDNs lead to their distinct structural properties which correspond to the varied binding affinities. 2'-5' and/or 3'-5' linked CDNs adopt specific while different types of ribose puckers and backbone conformations. That ribose conformations and base types have different propensities for anti or syn glycosidic conformations further affects the overall flexibility of CDNs. The counterbalance between backbone ring tension and electrostatic repulsion, both affected by the ring size, also contributes to the different flexibility of CDNs. Our calculations reveal that the free energy cost for 2'3'-cGAMP to adopt the STING-bound structure is smaller than that for 3'3'-cGAMP and cyclic-di-GMP. These findings may serve as a reference for design of CDN-analogues as vaccine adjuvants. Moreover, the cyclization pattern of CDNs closely related to their physiological roles suggests the importance of understanding structural properties in the study of protein-ligand interactions.
Collapse
Affiliation(s)
- Xing Che
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University , Beijing 100871, China
| | - Jun Zhang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University , Beijing 100871, China
| | - Yanyu Zhu
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University , Beijing 100871, China
| | - Lijiang Yang
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University , Beijing 100871, China
| | - Hui Quan
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University , Beijing 100871, China
| | - Yi Qin Gao
- Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, and Biodynamic Optical Imaging Center, Peking University , Beijing 100871, China
| |
Collapse
|
26
|
Korkuć P, Walther D. Physicochemical characteristics of structurally determined metabolite-protein and drug-protein binding events with respect to binding specificity. Front Mol Biosci 2015; 2:51. [PMID: 26442281 PMCID: PMC4569973 DOI: 10.3389/fmolb.2015.00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/25/2015] [Indexed: 12/19/2022] Open
Abstract
To better understand and ultimately predict both the metabolic activities as well as the signaling functions of metabolites, a detailed understanding of the physical interactions of metabolites with proteins is highly desirable. Focusing in particular on protein binding specificity vs. promiscuity, we performed a comprehensive analysis of the physicochemical properties of compound-protein binding events as reported in the Protein Data Bank (PDB). We compared the molecular and structural characteristics obtained for metabolites to those of the well-studied interactions of drug compounds with proteins. Promiscuously binding metabolites and drugs are characterized by low molecular weight and high structural flexibility. Unlike reported for drug compounds, low rather than high hydrophobicity appears associated, albeit weakly, with promiscuous binding for the metabolite set investigated in this study. Across several physicochemical properties, drug compounds exhibit characteristic binding propensities that are distinguishable from those associated with metabolites. Prediction of target diversity and compound promiscuity using physicochemical properties was possible at modest accuracy levels only, but was consistently better for drugs than for metabolites. Compound properties capturing structural flexibility and hydrogen-bond formation descriptors proved most informative in PLS-based prediction models. With regard to diversity of enzymatic activities of the respective metabolite target enzymes, the metabolites benzylsuccinate, hypoxanthine, trimethylamine N-oxide, oleoylglycerol, and resorcinol showed very narrow process involvement, while glycine, imidazole, tryptophan, succinate, and glutathione were identified to possess broad enzymatic reaction scopes. Promiscuous metabolites were found to mainly serve as general energy currency compounds, but were identified to also be involved in signaling processes and to appear in diverse organismal systems (digestive and nervous system) suggesting specific molecular and physiological roles of promiscuous metabolites.
Collapse
Affiliation(s)
- Paula Korkuć
- Max Planck Institute for Molecular Plant Physiology Potsdam-Golm, Germany
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology Potsdam-Golm, Germany
| |
Collapse
|
27
|
Ding Y, Fang Y, Feinstein WP, Ramanujam J, Koppelman DM, Moreno J, Brylinski M, Jarrell M. GeauxDock: A novel approach for mixed-resolution ligand docking using a descriptor-based force field. J Comput Chem 2015; 36:2013-26. [PMID: 26250822 DOI: 10.1002/jcc.24031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/07/2015] [Accepted: 07/03/2015] [Indexed: 12/26/2022]
Abstract
Molecular docking is an important component of computer-aided drug discovery. In this communication, we describe GeauxDock, a new docking approach that builds on the ideas of ligand homology modeling. GeauxDock features a descriptor-based scoring function integrating evolutionary constraints with physics-based energy terms, a mixed-resolution molecular representation of protein-ligand complexes, and an efficient Monte Carlo sampling protocol. To drive docking simulations toward experimental conformations, the scoring function was carefully optimized to produce a correlation between the total pseudoenergy and the native-likeness of binding poses. Indeed, benchmarking calculations demonstrate that GeauxDock has a strong capacity to identify near-native conformations across docking trajectories with the area under receiver operating characteristics of 0.85. By excluding closely related templates, we show that GeauxDock maintains its accuracy at lower levels of homology through the increased contribution from physics-based energy terms compensating for weak evolutionary constraints. GeauxDock is available at http://www.institute.loni.org/lasigma/package/dock/.
Collapse
Affiliation(s)
- Yun Ding
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Ye Fang
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Wei P Feinstein
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Jagannathan Ramanujam
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - David M Koppelman
- School of Electrical Engineering and Computer Science, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Juana Moreno
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803.,Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Michal Brylinski
- Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, 70803.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Mark Jarrell
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana, 70803.,Center for Computation & Technology, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
28
|
Chartier M, Najmanovich R. Detection of Binding Site Molecular Interaction Field Similarities. J Chem Inf Model 2015; 55:1600-15. [PMID: 26158641 DOI: 10.1021/acs.jcim.5b00333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein binding-site similarity detection methods can be used to predict protein function and understand molecular recognition, as a tool in drug design for drug repurposing and polypharmacology, and for the prediction of the molecular determinants of drug toxicity. Here, we present IsoMIF, a method able to identify binding site molecular interaction field similarities across protein families. IsoMIF utilizes six chemical probes and the detection of subgraph isomorphisms to identify geometrically and chemically equivalent sections of protein cavity pairs. The method is validated using six distinct data sets, four of those previously used in the validation of other methods. The mean area under the receiver operator curve (AUC) obtained across data sets for IsoMIF is higher than those of other methods. Furthermore, while IsoMIF obtains consistently high AUC values across data sets, other methods perform more erratically across data sets. IsoMIF can be used to predict function from structure, to detect potential cross-reactivity or polypharmacology targets, and to help suggest bioisosteric replacements to known binding molecules. Given that IsoMIF detects spatial patterns of molecular interaction field similarities, its predictions are directly related to pharmacophores and may be readily translated into modeling decisions in structure-based drug design. IsoMIF may in principle detect similar binding sites with distinct amino acid arrangements that lead to equivalent interactions within the cavity. The source code to calculate and visualize MIFs and MIF similarities are freely available.
Collapse
Affiliation(s)
- Matthieu Chartier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke , 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec, Canada
| | - Rafael Najmanovich
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke , 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
29
|
Fong CW. Binding energies of tyrosine kinase inhibitors: Error assessment of computational methods for imatinib and nilotinib binding. Comput Biol Chem 2015; 58:40-54. [PMID: 26025598 DOI: 10.1016/j.compbiolchem.2015.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/09/2015] [Accepted: 05/13/2015] [Indexed: 11/30/2022]
Abstract
The binding energies of imatinib and nilotinib to tyrosine kinase have been determined by quantum mechanical (QM) computations, and compared with literature binding energy studies using molecular mechanics (MM). The potential errors in the computational methods include these critical factors. Errors in X-ray structures such as structural distortions and steric clashes give unrealistically high van der Waals energies, and erroneous binding energies.MM optimization gives a very different configuration to the QM optimization for nilotinib, whereas the imatinib ion gives similar configurations. Solvation energies are a major component of the overall binding energy. The QM based solvent model (PCM/SMD) gives different values from those used in the implicit PBSA solvent MM models. A major error in inhibitor—kinase binding lies in the non-polar solvation terms. Solvent transfer free energies and the required empirical solvent accessible surface area factors for nilotinib and imatinib ion to give the transfer free energies have been reverse calculated. These values differ from those used in the MM PBSA studies.An intertwined desolvation—conformational binding selectivity process is a balance of thermodynamic desolvation and intramolecular conformational kinetic control.The configurational entropies (TΔS) are minor error sources.
Collapse
|
30
|
Di Pietro ME, Aroulanda C, Celebre G, Merlet D, De Luca G. The conformational behaviour of naproxen and flurbiprofen in solution by NMR spectroscopy. NEW J CHEM 2015. [DOI: 10.1039/c5nj01753j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational equilibrium of common anti-inflammatory drugs has been studied experimentally in solution by NMR in weakly ordered PBLG phases.
Collapse
Affiliation(s)
- Maria Enrica Di Pietro
- Lab. LXNMR_S.C.An
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende (CS)
- Italy
| | - Christie Aroulanda
- Equipe de RMN en milieu orienté
- ICMMO
- UMR 8182 CNRS
- Université Paris-Sud
- Orsay
| | - Giorgio Celebre
- Lab. LXNMR_S.C.An
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende (CS)
- Italy
| | - Denis Merlet
- Equipe de RMN en milieu orienté
- ICMMO
- UMR 8182 CNRS
- Université Paris-Sud
- Orsay
| | - Giuseppina De Luca
- Lab. LXNMR_S.C.An
- Dipartimento di Chimica e Tecnologie Chimiche
- Università della Calabria
- Arcavacata di Rende (CS)
- Italy
| |
Collapse
|
31
|
Kuppuraj G, Kruise D, Yura K. Conformational behavior of flavin adenine dinucleotide: conserved stereochemistry in bound and free states. J Phys Chem B 2014; 118:13486-97. [PMID: 25389798 DOI: 10.1021/jp507629n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Metabolic enzymes utilize the cofactor flavin adenine dinucleotide (FAD) to catalyze essential biochemical reactions. Because these enzymes have been implicated in disease pathways, it will be necessary to target them via FAD-based structural analogues that can either activate/inhibit the enzymatic activity. To achieve this, it is important to explore the conformational space of FAD in the enzyme-bound and free states. Herein, we analyze X-ray crystallographic data of the enzyme-bound FAD conformations and sample conformations of the molecule in explicit water by molecular dynamics (MD) simulations. Enzyme-bound FAD conformations segregate into five distinct groups based on dihedral angle principal component analysis (PCA). A notable feature in the bound FADs is that the adenine base and isoalloxazine ring are oppositely oriented relative to the pyrophosphate axis characterized by near trans hypothetical dihedral angle "δV" values. Not surprisingly, MD simulations in water show final compact but not perfectly stacked ring structures in FAD. Simulation data did not reveal noticeable changes in overall conformational dynamics of the dinucleotide in reduced and oxidized forms and in the presence and/or absence of ions. During unfolding-folding dynamics, the riboflavin moiety is more flexible than the adenosine monophosphate group in the molecule. Conversely, the isoalloxazine ring is more stable than the variable adenine base. The pyrophosphate group depicts an unusually highly organized fluctuation illustrated by its dihedral angle distribution. Conformations sampled from enzymes and MD are quantified. The extent to which the protein shifts the distribution from the unbound state is discussed in terms of prevalent FAD shapes and dihedral angle population.
Collapse
Affiliation(s)
- Gopi Kuppuraj
- Center for Informational Biology, Ochanomizu University , 2-1-1 Otsuka, Bunkyo, Tokyo 112-8610, Japan
| | | | | |
Collapse
|
32
|
Bojovschi A, Liu MS, Sadus RJ. Mg²⁺ coordinating dynamics in Mg:ATP fueled motor proteins. J Chem Phys 2014; 140:115102. [PMID: 24655204 DOI: 10.1063/1.4867898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The coordination of Mg(2+) with the triphosphate group of adenosine triphosphate (ATP) in motor proteins is investigated using data mining and molecular dynamics. The possible coordination structures available from crystal data for actin, myosin, RNA polymerase, DNA polymerase, DNA helicase, and F1-ATPase are verified and investigated further by molecular dynamics. Coordination states are evaluated using structural analysis and quantified by radial distribution functions, coordination numbers, and pair interaction energy calculations. The results reveal a diverse range of both transitory and stable coordination arrangements between Mg(2+) and ATP. The two most stable coordinating states occur when Mg(2+) coordinates two or three oxygens from the triphosphate group of ATP. Evidence for five-site coordination is also reported involving water in addition to the triphosphate group. The stable states correspond to a pair interaction energy of either ∼-2750 kJ/mol or -3500 kJ/mol. The role of water molecules in the hydration shell surrounding Mg(2+) is also reported.
Collapse
Affiliation(s)
- A Bojovschi
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Ming S Liu
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Richard J Sadus
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
33
|
Krotzky T, Rickmeyer T, Fober T, Klebe G. Extraction of protein binding pockets in close neighborhood of bound ligands makes comparisons simple due to inherent shape similarity. J Chem Inf Model 2014; 54:3229-37. [PMID: 25345905 DOI: 10.1021/ci500553a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods for comparing protein binding sites are frequently validated on data sets of pockets that were obtained simply by extracting the protein area next to the bound ligands. With this strategy, any unoccupied pocket will remain unconsidered. Furthermore, a large amount of ligand-biased intrinsic shape information is predefined, inclining the subsequent comparisons as rather trivial even in data sets that hardly contain redundancies in sequence information. In this study, we present the results of a very simplistic and shape-biased comparison approach, which stress that unrestricted cavity extraction is essential to enable unexpected cross-reactivity predictions among proteins and function annotations of orphan proteins.
Collapse
Affiliation(s)
- Timo Krotzky
- Institute of Pharmaceutical Chemistry, University of Marburg , Marbacher Weg 6-10, 35032 Marburg, Germany
| | | | | | | |
Collapse
|
34
|
Hansen N, van Gunsteren WF. Practical Aspects of Free-Energy Calculations: A Review. J Chem Theory Comput 2014; 10:2632-47. [PMID: 26586503 DOI: 10.1021/ct500161f] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Free-energy calculations in the framework of classical molecular dynamics simulations are nowadays used in a wide range of research areas including solvation thermodynamics, molecular recognition, and protein folding. The basic components of a free-energy calculation, that is, a suitable model Hamiltonian, a sampling protocol, and an estimator for the free energy, are independent of the specific application. However, the attention that one has to pay to these components depends considerably on the specific application. Here, we review six different areas of application and discuss the relative importance of the three main components to provide the reader with an organigram and to make nonexperts aware of the many pitfalls present in free energy calculations.
Collapse
Affiliation(s)
- Niels Hansen
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart , D-70569 Stuttgart, Germany.,Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH , CH-8093 Zürich, Switzerland
| |
Collapse
|
35
|
Truan D, Bjelić S, Li XD, Winkler FK. Structure and thermodynamics of effector molecule binding to the nitrogen signal transduction PII protein GlnZ from Azospirillum brasilense. J Mol Biol 2014; 426:2783-99. [PMID: 24846646 DOI: 10.1016/j.jmb.2014.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
The trimeric PII signal transduction proteins regulate the function of a variety of target proteins predominantly involved in nitrogen metabolism. ATP, ADP and 2-oxoglutarate (2-OG) are key effector molecules influencing PII binding to targets. Studies of PII proteins have established that the 20-residue T-loop plays a central role in effector sensing and target binding. However, the specific effects of effector binding on T-loop conformation have remained poorly documented. We present eight crystal structures of the Azospirillum brasilense PII protein GlnZ, six of which are cocrystallized and liganded with ADP or ATP. We find that interaction with the diphosphate moiety of bound ADP constrains the N-terminal part of the T-loop in a characteristic way that is maintained in ADP-promoted complexes with target proteins. In contrast, the interactions with the triphosphate moiety in ATP complexes are much more variable and no single predominant interaction mode is apparent except for the ternary MgATP/2-OG complex. These conclusions can be extended to most investigated PII proteins of the GlnB/GlnK subfamily. Unlike reported for other PII proteins, microcalorimetry reveals no cooperativity between the three binding sites of GlnZ trimers for any of the three effectors under carefully controlled experimental conditions.
Collapse
Affiliation(s)
- Daphné Truan
- Macromolecular Crystallography, Swiss Light Source, CH-5232 Villigen PSI, Switzerland
| | - Saša Bjelić
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Xiao-Dan Li
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - Fritz K Winkler
- Laboratory of Biomolecular Research, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland.
| |
Collapse
|
36
|
Nath N, Mitchell JBO, Caetano-Anollés G. The natural history of biocatalytic mechanisms. PLoS Comput Biol 2014; 10:e1003642. [PMID: 24874434 PMCID: PMC4038463 DOI: 10.1371/journal.pcbi.1003642] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 04/09/2014] [Indexed: 11/29/2022] Open
Abstract
Phylogenomic analysis of the occurrence and abundance of protein domains in proteomes has recently showed that the α/β architecture is probably the oldest fold design. This holds important implications for the origins of biochemistry. Here we explore structure-function relationships addressing the use of chemical mechanisms by ancestral enzymes. We test the hypothesis that the oldest folds used the most mechanisms. We start by tracing biocatalytic mechanisms operating in metabolic enzymes along a phylogenetic timeline of the first appearance of homologous superfamilies of protein domain structures from CATH. A total of 335 enzyme reactions were retrieved from MACiE and were mapped over fold age. We define a mechanistic step type as one of the 51 mechanistic annotations given in MACiE, and each step of each of the 335 mechanisms was described using one or more of these annotations. We find that the first two folds, the P-loop containing nucleotide triphosphate hydrolase and the NAD(P)-binding Rossmann-like homologous superfamilies, were α/β architectures responsible for introducing 35% (18/51) of the known mechanistic step types. We find that these two oldest structures in the phylogenomic analysis of protein domains introduced many mechanistic step types that were later combinatorially spread in catalytic history. The most common mechanistic step types included fundamental building blocks of enzyme chemistry: "Proton transfer," "Bimolecular nucleophilic addition," "Bimolecular nucleophilic substitution," and "Unimolecular elimination by the conjugate base." They were associated with the most ancestral fold structure typical of P-loop containing nucleotide triphosphate hydrolases. Over half of the mechanistic step types were introduced in the evolutionary timeline before the appearance of structures specific to diversified organisms, during a period of architectural diversification. The other half unfolded gradually after organismal diversification and during a period that spanned ∼2 billion years of evolutionary history.
Collapse
Affiliation(s)
- Neetika Nath
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Scotland, United Kingdom
| | - John B. O. Mitchell
- Biomedical Sciences Research Complex and EaStCHEM School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Scotland, United Kingdom
| | - Gustavo Caetano-Anollés
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
37
|
Patel AR, Hunter L, Bhadbhade MM, Liu F. Conformational Regulation of Substituted Azepanes through Mono-, Di-, and Trifluorination. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301811] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
38
|
Maietta P, Lopez G, Carro A, Pingilley BJ, Leon LG, Valencia A, Tress ML. FireDB: a compendium of biological and pharmacologically relevant ligands. Nucleic Acids Res 2013; 42:D267-72. [PMID: 24243844 PMCID: PMC3965074 DOI: 10.1093/nar/gkt1127] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
FireDB (http://firedb.bioinfo.cnio.es) is a curated inventory of catalytic and biologically relevant small ligand-binding residues culled from the protein structures in the Protein Data Bank. Here we present the important new additions since the publication of FireDB in 2007. The database now contains an extensive list of manually curated biologically relevant compounds. Biologically relevant compounds are informative because of their role in protein function, but they are only a small fraction of the entire ligand set. For the remaining ligands, the FireDB provides cross-references to the annotations from publicly available biological, chemical and pharmacological compound databases. FireDB now has external references for 95% of contacting small ligands, making FireDB a more complete database and providing the scientific community with easy access to the pharmacological annotations of PDB ligands. In addition to the manual curation of ligands, FireDB also provides insights into the biological relevance of individual binding sites. Here, biological relevance is calculated from the multiple sequence alignments of related binding sites that are generated from all-against-all comparison of each FireDB binding site. The database can be accessed by RESTful web services and is available for download via MySQL.
Collapse
Affiliation(s)
- Paolo Maietta
- Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid, 28029, Spain and Spanish National Bioinformatics Institute (INB-ISCIII)
| | | | | | | | | | | | | |
Collapse
|
39
|
Giangreco I, Packer MJ. Pharmacophore binding motifs for nicotinamide adenine dinucleotide analogues across multiple protein families: a detailed contact-based analysis of the interaction between proteins and NAD(P) cofactors. J Med Chem 2013; 56:6175-89. [PMID: 23889609 DOI: 10.1021/jm400644z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have analyzed the protein-binding pharmacophore of NAD and its close analogues in all protein-ligand structures available in the RCSB database as of February 2012; this analysis has then been used to assess the novelty of structures emerging after that date. We show that proteins have evolved diverse pharmacophore motifs for binding the adenine moiety, fewer, but still diverse, motifs for nicotinamide, and a very limited set of motifs for binding the pyrophosphate linker. Our exhaustive analysis includes a pharmacophore contact analysis for over 1900 protein-ligand structures containing NAD analogues; we have benchmarked this set of contacts against nearly 27 000 protein-ligand structures to demonstrate that the diversity of interactions seen with NAD is very similar to that seen for all other ligands. Hence, variation in binding motifs for NAD is not distinct from that observed for other ligands and they show significant variation across protein families.
Collapse
Affiliation(s)
- Ilenia Giangreco
- AstraZeneca, Mereside, Alderley Park, Macclesfield SK10 4TG, UK.
| | | |
Collapse
|
40
|
Hoffmann SK, Goslar J, Lijewski S. Electron Paramagnetic Resonance and Electron Spin Echo Studies of Co 2+ Coordination by Nicotinamide Adenine Dinucleotide (NAD +) in Water Solution. APPLIED MAGNETIC RESONANCE 2013; 44:817-826. [PMID: 23766555 PMCID: PMC3677979 DOI: 10.1007/s00723-013-0444-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/31/2013] [Indexed: 06/02/2023]
Abstract
Co2+ binding to the nicotinamide adenine dinucleotide (NAD+) molecule in water solution was studied by electron paramagnetic resonance (EPR) and electron spin echo at low temperatures. Cobalt is coordinated by NAD+ when the metal is in excess only, but even in such conditions, the Co/NAD+ complexes coexist with Co(H2O)6 complexes. EPR spin-Hamiltonian parameters of the Co/NAD+ complex at 6 K are gz = 2.01, gx = 2.38, gy = 3.06, Az = 94 × 10-4 cm-1, Ax = 33 × 10-4 cm-1 and Ay = 71 × 10-4 cm-1. They indicate the low-spin Co2+ configuration with S = 1/2. Electron spin echo envelope modulation spectroscopy with Fourier transform of the modulated spin echo decay shows a strong coordination by nitrogen atoms and excludes the coordination by phosphate and/or amide groups. Thus, Co2+ ion is coordinated in pseudo-tetrahedral geometry by four nitrogen atoms of adenine rings of two NAD+ molecules.
Collapse
Affiliation(s)
- Stanisław K. Hoffmann
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Janina Goslar
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| | - Stefan Lijewski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznan, Poland
| |
Collapse
|
41
|
Parca L, Ferré F, Ausiello G, Helmer-Citterich M. Nucleos: a web server for the identification of nucleotide-binding sites in protein structures. Nucleic Acids Res 2013; 41:W281-5. [PMID: 23703207 PMCID: PMC3692072 DOI: 10.1093/nar/gkt390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nucleos is a web server for the identification of nucleotide-binding sites in protein structures. Nucleos compares the structure of a query protein against a set of known template 3D binding sites representing nucleotide modules, namely the nucleobase, carbohydrate and phosphate. Structural features, clustering and conservation are used to filter and score the predictions. The predicted nucleotide modules are then joined to build whole nucleotide-binding sites, which are ranked by their score. The server takes as input either the PDB code of the query protein structure or a user-submitted structure in PDB format. The output of Nucleos is composed of ranked lists of predicted nucleotide-binding sites divided by nucleotide type (e.g. ATP-like). For each ranked prediction, Nucleos provides detailed information about the score, the template structure and the structural match for each nucleotide module composing the nucleotide-binding site. The predictions on the query structure and the template-binding sites can be viewed directly on the web through a graphical applet. In 98% of the cases, the modules composing correct predictions belong to proteins with no homology relationship between each other, meaning that the identification of brand-new nucleotide-binding sites is possible using information from non-homologous proteins. Nucleos is available at http://nucleos.bio.uniroma2.it/nucleos/.
Collapse
Affiliation(s)
- Luca Parca
- Department of Biology, Centre for Molecular Bioinformatics, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133 Rome, Italy
| | | | | | | |
Collapse
|
42
|
Chemogenomics in drug discovery: computational methods based on the comparison of binding sites. Future Med Chem 2013; 4:1971-9. [PMID: 23088277 DOI: 10.4155/fmc.12.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Novel computational methods for understanding relationships between ligands and all possible biological targets have emerged in recent years. Proteins are connected to each other based on the similarity of their ligands or based on the similarity of their binding sites. The assumption is that compounds sharing chemical similarity should share targets and that targets with a similar binding site should also share ligands. A large number of computational techniques have been developed to assess ligand and binding site similarity, which can be used to make quantitative predictions of the most probable biological target of a given compound. This review covers the recent advances in new computational methods for relating biological targets based on the similarity of their binding sites. Binding site comparisons are used for the prediction of their most likely ligands, their possible cross reactivity and selectivity. These comparisons can also be used to infer the function of novel uncharacterized proteins.
Collapse
|
43
|
Bojovschi A, Liu MS, Sadus RJ. Conformational dynamics of ATP/Mg:ATP in motor proteins via data mining and molecular simulation. J Chem Phys 2013; 137:075101. [PMID: 22920142 DOI: 10.1063/1.4739308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The conformational diversity of ATP/Mg:ATP in motor proteins was investigated using molecular dynamics and data mining. Adenosine triphosphate (ATP) conformations were found to be constrained mostly by inter cavity motifs in the motor proteins. It is demonstrated that ATP favors extended conformations in the tight pockets of motor proteins such as F(1)-ATPase and actin whereas compact structures are favored in motor proteins such as RNA polymerase and DNA helicase. The incorporation of Mg(2+) leads to increased flexibility of ATP molecules. The differences in the conformational dynamics of ATP/Mg:ATP in various motor proteins was quantified by the radius of gyration. The relationship between the simulation results and those obtained by data mining of motor proteins available in the protein data bank is analyzed. The data mining analysis of motor proteins supports the conformational diversity of the phosphate group of ATP obtained computationally.
Collapse
Affiliation(s)
- A Bojovschi
- Centre for Molecular Simulation, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia.
| | | | | |
Collapse
|
44
|
Patel AR, Ball G, Hunter L, Liu F. Conformational regulation of substituted azepanes through selective monofluorination. Org Biomol Chem 2013; 11:3781-5. [DOI: 10.1039/c3ob40391b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
45
|
Saito M, Takemura N, Shirai T. Classification of ligand molecules in PDB with fast heuristic graph match algorithm COMPLIG. J Mol Biol 2012; 424:379-90. [PMID: 23041414 DOI: 10.1016/j.jmb.2012.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 11/29/2022]
Abstract
A fast heuristic graph-matching algorithm, COMPLIG, was devised to classify the small-molecule ligands in the Protein Data Bank (PDB), which are currently not properly classified on structure basis. By concurrently classifying proteins and ligands, we determined the most appropriate parameter for categorizing ligands to be more than 60% identity of atoms and bonds between molecules, and we classified 11,585 types of ligands into 1946 clusters. Although the large clusters were composed of nucleotides or amino acids, a significant presence of drug compounds was also observed. Application of the system to classify the natural ligand status of human proteins in the current database suggested that, at most, 37% of the experimental structures of human proteins were in complex with natural ligands. However, protein homology- and/or ligand similarity-based modeling was implied to provide models of natural interactions for an additional 28% of the total, which might be used to increase the knowledge of intrinsic protein-metabolite interactions.
Collapse
Affiliation(s)
- Mihoko Saito
- Nagahama Institute of Bioscience and Technology and Bioinformatics Research Division, Japan Science and Technology Agency, Nagahama, Shiga 526-0829, Japan
| | | | | |
Collapse
|
46
|
Musafia B, Senderowitz H. Biasing conformational ensembles towards bioactive-like conformers for ligand-based drug design. Expert Opin Drug Discov 2012; 5:943-59. [PMID: 22823989 DOI: 10.1517/17460441.2010.513711] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD In silico or virtual screening has become a common practice in contemporary computer-aided drug discovery efforts and currently constitutes a reasonably mature paradigm. Application of ligand-based approaches to virtual screening requires the ability to identify the bioactive conformers of drug-like compounds as these conformers are expected to elicit the biological activity. However, given the complexity of the energy potential surfaces of such ligands and in particular those exhibiting some degree of flexibility and the limitation of contemporary energy functions, this is not an easy task. AREAS COVERED IN THIS REVIEW The current contribution provides an in-depth review of recent developments in the field of generating conformational ensembles of drug-like compounds with a particular emphasis of focusing such ensembles on bioactive conformers using both energy and structural criteria. The literature reviewed in this manuscript roughly covers the last decade. WHAT THE READER WILL GAIN Readers of this review will gain an appreciation for the complexity of identifying bioactive conformers of drug-like compounds and an exposure to the different computational methods which were developed in order to tackle this problem as well as to the remaining challenges in this field. TAKE HOME MESSAGE The identification of ensembles of bioactive conformers of drug-like compounds is far from being a solved problem. Recent research has advanced the field to the point where bioactive conformers could be readily identified from within conformational ensembles generated by contemporary computational tools. However, as such conformers are inevitably accompanied by many other non-relevant conformations, a focusing mechanism is required. New methods in this field are showing promise but more work is clearly needed. New research lines are proposed which are believed to enhance the performances and with it the usefulness of 3D ligand-based methods in drug discovery and development.
Collapse
|
47
|
Sturm N, Desaphy J, Quinn RJ, Rognan D, Kellenberger E. Structural insights into the molecular basis of the ligand promiscuity. J Chem Inf Model 2012; 52:2410-21. [PMID: 22920885 DOI: 10.1021/ci300196g] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Selectivity is a key factor in drug development. In this paper, we questioned the Protein Data Bank to better understand the reasons for the promiscuity of bioactive compounds. We assembled a data set of >1000 pairs of three-dimensional structures of complexes between a "drug-like" ligand (as its physicochemical properties overlap that of approved drugs) and two distinct "druggable" protein targets (as their binding sites are likely to accommodate "drug-like" ligands). Studying the similarity between the ligand-binding sites in the different targets revealed that the lack of selectivity of a ligand can be due (i) to the fact that Nature has created the same binding pocket in different proteins, which do not necessarily have otherwise sequence or fold similarity, or (ii) to specific characteristics of the ligand itself. In particular, we demonstrated that many ligands can adapt to different protein environments by changing their conformation, by using different chemical moieties to anchor to different targets, or by adopting unusual extreme binding modes (e.g., only apolar contact between the ligand and the protein, even though polar groups are present on the ligand or at the protein surface). Lastly, we provided new elements in support to the recent studies which suggest that the promiscuity of a ligand might be inferred from its molecular complexity.
Collapse
Affiliation(s)
- Noé Sturm
- UMR 7200 CNRS/Université de Strasbourg, MEDALIS Drug Discovery Center, 74 Route du Rhin, 67401 Illkirch, France
| | | | | | | | | |
Collapse
|
48
|
Basu S, Bhattacharyya D, Banerjee R. Self-complementarity within proteins: bridging the gap between binding and folding. Biophys J 2012; 102:2605-14. [PMID: 22713576 DOI: 10.1016/j.bpj.2012.04.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 03/30/2012] [Accepted: 04/17/2012] [Indexed: 01/09/2023] Open
Abstract
Complementarity, in terms of both shape and electrostatic potential, has been quantitatively estimated at protein-protein interfaces and used extensively to predict the specific geometry of association between interacting proteins. In this work, we attempted to place both binding and folding on a common conceptual platform based on complementarity. To that end, we estimated (for the first time to our knowledge) electrostatic complementarity (Em) for residues buried within proteins. Em measures the correlation of surface electrostatic potential at protein interiors. The results show fairly uniform and significant values for all amino acids. Interestingly, hydrophobic side chains also attain appreciable complementarity primarily due to the trajectory of the main chain. Previous work from our laboratory characterized the surface (or shape) complementarity (Sm) of interior residues, and both of these measures have now been combined to derive two scoring functions to identify the native fold amid a set of decoys. These scoring functions are somewhat similar to functions that discriminate among multiple solutions in a protein-protein docking exercise. The performances of both of these functions on state-of-the-art databases were comparable if not better than most currently available scoring functions. Thus, analogously to interfacial residues of protein chains associated (docked) with specific geometry, amino acids found in the native interior have to satisfy fairly stringent constraints in terms of both Sm and Em. The functions were also found to be useful for correctly identifying the same fold for two sequences with low sequence identity. Finally, inspired by the Ramachandran plot, we developed a plot of Sm versus Em (referred to as the complementarity plot) that identifies residues with suboptimal packing and electrostatics which appear to be correlated to coordinate errors.
Collapse
Affiliation(s)
- Sankar Basu
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India
| | | | | |
Collapse
|
49
|
EPR and potentiometric studies of copper(II) binding to nicotinamide adenine dinucleotide (NAD+) in water solution. J Inorg Biochem 2012; 111:18-24. [PMID: 22484248 DOI: 10.1016/j.jinorgbio.2012.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/23/2012] [Accepted: 02/23/2012] [Indexed: 11/24/2022]
Abstract
Coordination of Cu(II) by nicotinamide adenine dinucleotide (NAD(+)) molecule has been studied in water solutions of various pH by potentiometry and electron paramagnetic resonance (EPR) and electron spin echo (ESE) spectroscopy. Potentiometric results indicate Cu(II) coordination by protonated NAD(+) at low pH and by deprotonated NAD(+) at high pH. At medium pH value (around pH=7) NAD(+) is not able to coordinate Cu(II) ions effectively and mainly the Cu(H(2)O)(6) complexes exist in the studied solution. This has been confirmed by EPR results. Electronic structure of Cu(II)-NAD complex and coordination sites is determined from EPR and ESE measurements in frozen solutions (at 77K and 6K). EPR spectra exclude coordination with nitrogen atoms. Detailed analysis of EPR parameters (g(||)=2.420, g(perpendicular)==2.080, A(||)=-131×10(-4)cm(-1) and A(perpendicular)=8×10(-4)cm(-1)) performed in terms of molecular orbital (MO) theory shows that Cu(II)NAD complex has elongated axial octahedral symmetry with a relatively strong delocalization of unpaired electron density on in-plane and axial ligands. The distortion of octahedron is analyzed using A(||) vs. g(||) diagram for various CuO(x) complexes. Electron spin echo decay modulation excludes the coordination by oxygen atoms of phosphate groups. We postulate a coordination of Cu(II) by two hydroxyl oxygen atoms of two ribose moieties of the NAD molecules and four solvated water molecules both at low and high pH values with larger elongation of the octahedron at higher pH.
Collapse
|
50
|
Stegemann B, Klebe G. Cofactor-binding sites in proteins of deviating sequence: comparative analysis and clustering in torsion angle, cavity, and fold space. Proteins 2011; 80:626-48. [PMID: 22095739 DOI: 10.1002/prot.23226] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 09/29/2011] [Accepted: 10/10/2011] [Indexed: 12/13/2022]
Abstract
Small molecules are recognized in protein-binding pockets through surface-exposed physicochemical properties. To optimize binding, they have to adopt a conformation corresponding to a local energy minimum within the formed protein-ligand complex. However, their conformational flexibility makes them competent to bind not only to homologous proteins of the same family but also to proteins of remote similarity with respect to the shape of the binding pockets and folding pattern. Considering drug action, such observations can give rise to unexpected and undesired cross reactivity. In this study, datasets of six different cofactors (ADP, ATP, NAD(P)(H), FAD, and acetyl CoA, sharing an adenosine diphosphate moiety as common substructure), observed in multiple crystal structures of protein-cofactor complexes exhibiting sequence identity below 25%, have been analyzed for the conformational properties of the bound ligands, the distribution of physicochemical properties in the accommodating protein-binding pockets, and the local folding patterns next to the cofactor-binding site. State-of-the-art clustering techniques have been applied to group the different protein-cofactor complexes in the different spaces. Interestingly, clustering in cavity (Cavbase) and fold space (DALI) reveals virtually the same data structuring. Remarkable relationships can be found among the different spaces. They provide information on how conformations are conserved across the host proteins and which distinct local cavity and fold motifs recognize the different portions of the cofactors. In those cases, where different cofactors are found to be accommodated in a similar fashion to the same fold motifs, only a commonly shared substructure of the cofactors is used for the recognition process.
Collapse
Affiliation(s)
- Björn Stegemann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35032 Marburg, Germany
| | | |
Collapse
|