1
|
Im D, Kishikawa JI, Shiimura Y, Hisano H, Ito A, Fujita-Fujiharu Y, Sugita Y, Noda T, Kato T, Asada H, Iwata S. Structural insights into the agonists binding and receptor selectivity of human histamine H 4 receptor. Nat Commun 2023; 14:6538. [PMID: 37863901 PMCID: PMC10589313 DOI: 10.1038/s41467-023-42260-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2022] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
Histamine is a biogenic amine that participates in allergic and inflammatory processes by stimulating histamine receptors. The histamine H4 receptor (H4R) is a potential therapeutic target for chronic inflammatory diseases such as asthma and atopic dermatitis. Here, we show the cryo-electron microscopy structures of the H4R-Gq complex bound with an endogenous agonist histamine or the selective agonist imetit bound in the orthosteric binding pocket. The structures demonstrate binding mode of histamine agonists and that the subtype-selective agonist binding causes conformational changes in Phe3447.39, which, in turn, form the "aromatic slot". The results provide insights into the molecular underpinnings of the agonism of H4R and subtype selectivity of histamine receptors, and show that the H4R structures may be valuable in rational drug design of drugs targeting the H4R.
Collapse
Affiliation(s)
- Dohyun Im
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jun-Ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuki Shiimura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute of Life Science, Kurume University, Kurume, Fukuoka, 830-0011, Japan
| | - Hiromi Hisano
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Akane Ito
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoko Fujita-Fujiharu
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yukihiko Sugita
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, 606-8501, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hidetsugu Asada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto, 606-8501, Japan.
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| |
Collapse
|
2
|
Nchourupouo KWT, Nde J, Ngouongo YJW, Zekeng SS, Fongang B. Evolutionary Couplings and Molecular Dynamic Simulations Highlight Details of GPCRs Heterodimers' Interfaces. Molecules 2023; 28:1838. [PMID: 36838825 PMCID: PMC9966702 DOI: 10.3390/molecules28041838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
A growing body of evidence suggests that only a few amino acids ("hot-spots") at the interface contribute most of the binding energy in transient protein-protein interactions. However, experimental protocols to identify these hot-spots are highly labor-intensive and expensive. Computational methods, including evolutionary couplings, have been proposed to predict the hot-spots, but they generally fail to provide details of the interacting amino acids. Here we showed that unbiased evolutionary methods followed by biased molecular dynamic simulations could achieve this goal and reveal critical elements of protein complexes. We applied the methodology to selected G-protein coupled receptors (GPCRs), known for their therapeutic properties. We used the structure-prior-assisted direct coupling analysis (SP-DCA) to predict the binding interfaces of A2aR/D2R, CB1R/D2R, A2aR/CB1R, 5HT2AR/D2R, and 5-HT2AR/mGluR2 receptor heterodimers, which all agreed with published data. In order to highlight details of the interactions, we performed molecular dynamic (MD) simulations using the newly developed AWSEM energy model. We found that these receptors interact primarily through critical residues at the C and N terminal domains and the third intracellular loop (ICL3). The MD simulations showed that these residues are energetically necessary for dimerization and revealed their native conformational state. We subsequently applied the methodology to the 5-HT2AR/5-HTR4R heterodimer, given its implication in drug addiction and neurodegenerative pathologies such as Alzheimer's disease (AD). Further, the SP-DCA analysis showed that 5-HT2AR and 5-HTR4R heterodimerize through the C-terminal domain of 5-HT2AR and ICL3 of 5-HT4R. However, elucidating the details of GPCR interactions would accelerate the discovery of druggable sites and improve our knowledge of the etiology of common diseases, including AD.
Collapse
Affiliation(s)
- Karim Widad Temgbet Nchourupouo
- Laboratory of Mechanics, Materials, and Structures, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Jules Nde
- Department of Physics, University of Washington Seattle, Seattle, WA 98105, USA
| | - Yannick Joel Wadop Ngouongo
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Serge Sylvain Zekeng
- Laboratory of Mechanics, Materials, and Structures, Department of Physics, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon
| | - Bernard Fongang
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
3
|
Conrad M, Söldner CA, Sticht H. Effect of Ions and Sequence Variants on the Antagonist Binding Properties of the Histamine H 1 Receptor. Int J Mol Sci 2022; 23:ijms23031420. [PMID: 35163341 PMCID: PMC8836275 DOI: 10.3390/ijms23031420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
The histamine H1 receptor (H1R) is a G protein-coupled receptor (GPCR) and represents a main target in the treatment of allergic reactions as well as inflammatory reactions and depressions. Although the overall effect of antagonists on H1 function has been extensively investigated, rather little is known about the potential modulatory effect of ions or sequence variants on antagonist binding. We investigated the dynamics of a phosphate ion present in the crystal structure and of a sodium ion, for which we determined the position in the allosteric pocket by metadynamics simulations. Both types of ions exhibit significant dynamics within their binding site; however, some key contacts remain stable over the simulation time, which might be exploited to develop more potent drugs targeting these sites. The dynamics of the ions is almost unaffected by the presence or absence of doxepin, as also reflected in their small effect (less than 1 kcal·mol-1) on doxepin binding affinity. We also examined the effect of four H1R sequence variants observed in the human population on doxepin binding. These variants cause a reduction in doxepin affinity of up to 2.5 kcal·mol-1, indicating that personalized medical treatments that take into account individual mutation patterns could increase precision in the dosage of GPCR-targeting drugs.
Collapse
Affiliation(s)
- Marcus Conrad
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (C.A.S.)
| | - Christian A. Söldner
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (C.A.S.)
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (M.C.); (C.A.S.)
- Erlangen National High Performance Computing Center (NHR@FAU), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Correspondence:
| |
Collapse
|
4
|
Zhang X, Yuan Y, Wang L, Guo Y, Li M, Li C, Pu X. Use multiscale simulation to explore the effects of the homodimerizations between different conformation states on the activation and allosteric pathway for the μ-opioid receptor. Phys Chem Chem Phys 2018; 20:13485-13496. [PMID: 29726867 DOI: 10.1039/c8cp02016g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
Recently, oligomers of G-protein coupled receptors (GPCRs) have been an important topic in the GPCR fields. However, knowledge about their structures and activation mechanisms is very limited due to the absence of crystal structures reported. In this work, we used multiscale simulations to study the effects of homodimerization between different conformation states on their activation, dynamic behaviors, and allosteric communication pathways for μ-OR. The results indicated that the dimerization of one inactive monomer with either one inactive monomer or one active one could enhance its constitutive activation. However, the conformation state of the other protomer (e.g., active or inactive) can influence the activated extent. The dimerization between the two inactive protomers leads to a negative cooperativity for their activation, which should contribute to the asymmetric activation of GPCR dimers observed in some experiments. On the other hand, for the active monomer, its dimerization with one inactive receptor could alleviate its deactivation, whereby negative and positive cooperativities can be observed between the two subunits of the dimer, depending on the different regions. Observations from protein structure network (PSN) analysis indicated that the dimerization of one inactive monomer with one active one would cause a significant drop in the number of main pathways from the ligand binding pocket to the G-protein coupled region for the inactive protomer, while the impact is minor for the active protomer. But, for the active monomer or the inactive one, its dimerization with one inactive monomer would significantly change the types of residues participating in the pathway with the highest frequency.
Collapse
Affiliation(s)
- Xi Zhang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu 610041, P. R. China
| | - Longrong Wang
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, Sichuan 610064, P. R. China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China.
| |
Collapse
|
5
|
Watanabe M, Kobayashi T, Ito Y, Fukuda H, Yamada S, Arisawa M, Shuto S. Design and synthesis of histamine H 3/H 4 receptor ligands with a cyclopropane scaffold. Bioorg Med Chem Lett 2018; 28:3630-3633. [PMID: 30385161 DOI: 10.1016/j.bmcl.2018.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/27/2022]
Abstract
We previously designed and synthesized a series of histamine analogues with an imidazolylcyclopropane scaffold and identified potent non-selective antagonists for histamine H3 and H4 receptor subtypes. In this study, to develop H4 selective ligands, we newly designed and synthesized cyclopropane-based derivatives having an indole, benzimidazole, or piperazine structure, which are components of representative H4 selective antagonists such as JNJ7777120 and JNJ10191584. Among the synthesized derivatives, imidazolylcyclopropanes 12 and 13 conjugated with a benzimidazole showed binding affinity to the H3 and H4 receptors comparable to that of a well-known non-selective H3/H4 antagonist, thioperamide. These results suggest that the binding modes of the cyclopropane-based H3/H4 ligands in the H4 receptor can be different from those of the indole/benzimidazole-piperazine derivatives.
Collapse
Affiliation(s)
- Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| | - Takaaki Kobayashi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Yoshihiko Ito
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hayato Fukuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka, 52-1, Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Mitsuhiro Arisawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
6
|
Kiss R, Keserű GM. Structure-based discovery and binding site analysis of histamine receptor ligands. Expert Opin Drug Discov 2016; 11:1165-1185. [DOI: 10.1080/17460441.2016.1245288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/16/2023]
|
7
|
Levoin N, Labeeuw O, Billot X, Calmels T, Danvy D, Krief S, Berrebi-Bertrand I, Lecomte JM, Schwartz JC, Capet M. Discovery of nanomolar ligands with novel scaffolds for the histamine H4 receptor by virtual screening. Eur J Med Chem 2016; 125:565-572. [PMID: 27718472 DOI: 10.1016/j.ejmech.2016.09.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/11/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 12/29/2022]
Abstract
The involvement of histamine H4 receptor (H4R) in immune cells chemotaxis and mediator release makes it an attractive target for the treatment of inflammation disorders. A decade of medicinal chemistry efforts has led to several promising ligands, although the chemical structures described so far possesses a singular limited diversity. We report here the discovery of novel structures, belonging to completely different scaffolds. The virtual screening was planed as a two-steps process. First, using a "scout screening" methodology, we have experimentally probed the H4R ligand binding site using a small size chemical library with very diverse structures, and identified a hit that further assist us in refining a raw 3D homology model. Second, the refined 3D model was used to conduct a widened virtual screening. This two-steps strategy proved to be very successful, both in terms of structural diversity and hit rate (23%). Moreover, the hits have high affinity for the H4R, with most potent ligands in the nanomolar range.
Collapse
Affiliation(s)
- Nicolas Levoin
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France.
| | - Olivier Labeeuw
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| | - Xavier Billot
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| | - Thierry Calmels
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| | - Denis Danvy
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| | - Stéphane Krief
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| | | | - Jeanne-Marie Lecomte
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| | | | - Marc Capet
- Bioprojet-Biotech, 4rue du Chesnay Beauregard, 35762 Saint-Gregoire Cedex, France
| |
Collapse
|
8
|
Pontiki E, Hadjipavlou-Litina D. QSAR models on H4 receptor antagonists associated with inflammation and anaphylaxis. J Biomol Struct Dyn 2016; 35:968-1005. [DOI: 10.1080/07391102.2016.1166986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eleni Pontiki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki 54124, Greece
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki , Thessaloniki 54124, Greece
| |
Collapse
|
9
|
Kamińska K, Ziemba J, Ner J, Schwed JS, Łażewska D, Więcek M, Karcz T, Olejarz A, Latacz G, Kuder K, Kottke T, Zygmunt M, Sapa J, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. (2-Arylethenyl)-1,3,5-triazin-2-amines as a novel histamine H4 receptor ligands. Eur J Med Chem 2015; 103:238-51. [DOI: 10.1016/j.ejmech.2015.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2015] [Revised: 08/03/2015] [Accepted: 08/06/2015] [Indexed: 01/29/2023]
|
10
|
GPCR crystal structures: Medicinal chemistry in the pocket. Bioorg Med Chem 2015; 23:3880-906. [DOI: 10.1016/j.bmc.2014.12.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/26/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/20/2022]
|
11
|
Bai Q, Zhang Y, Li X, Chen W, Liu H, Yao X. Computational study on the interaction between CCR5 and HIV-1 entry inhibitor maraviroc: insight from accelerated molecular dynamics simulation and free energy calculation. Phys Chem Chem Phys 2015; 16:24332-8. [PMID: 25296959 DOI: 10.1039/c4cp03331k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
C-C chemokine receptor type 5 (CCR5) is the co-receptor of human immunodeficiency virus type 1 (HIV-1) and plays an important role in HIV-1 virus infection. Maraviroc has been proved to be effective for anti-HIV-1 by targeting CCR5. Understanding the detailed interaction mechanism between CCR5 and Maraviroc will be of great help to the rational design of a more potential inverse agonist to block HIV-1 infection. Here, we performed molecular dynamics (MD) simulation and accelerated MD simulation (aMD) to study the interaction mechanism between CCR5 and Maraviroc based on a recently reported crystal structure. The results of MD simulation demonstrate that Maraviroc can form stable hydrogen bonds with residues Tyr37(1.39), Tyr251(6.51) and Glu283(7.39). The results of aMD simulation indicate that the carboxamide moiety is more flexible than the tropane group of Maraviroc in the pocket of CCR5. The electrostatic potential analysis proves that Maraviroc can escape from the pocket of CCR5 along the negative electrostatic potential pathway during the dissociation process. The free energy calculation illustrates that there exist three binding pockets during the dissociation process of Maraviroc. Our results will be useful for understanding the interaction mechanism between CCR5 and Maraviroc as well as for the rational design of a more potent inverse agonist.
Collapse
Affiliation(s)
- Qifeng Bai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Feng Z, Hu G, Ma S, Xie XQ. Computational Advances for the Development of Allosteric Modulators and Bitopic Ligands in G Protein-Coupled Receptors. AAPS JOURNAL 2015; 17:1080-95. [PMID: 25940084 DOI: 10.1208/s12248-015-9776-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022]
Abstract
Allosteric modulators of G protein-coupled receptors (GPCRs), which target at allosteric sites, have significant advantages against the corresponding orthosteric compounds including higher selectivity, improved chemical tractability or physicochemical properties, and reduced risk of receptor oversensitization. Bitopic ligands of GPCRs target both orthosteric and allosteric sites. Bitopic ligands can improve binding affinity, enhance subtype selectivity, stabilize receptors, and reduce side effects. Discovering allosteric modulators or bitopic ligands for GPCRs has become an emerging research area, in which the design of allosteric modulators is a key step in the detection of bitopic ligands. Radioligand binding and functional assays ([(35)S]GTPγS and ERK1/2 phosphorylation) are used to test the effects for potential modulators or bitopic ligands. High-throughput screening (HTS) in combination with disulfide trapping and fragment-based screening are used to aid the discovery of the allosteric modulators or bitopic ligands of GPCRs. When used alone, these methods are costly and can often result in too many potential drug targets, including false positives. Alternatively, low-cost and efficient computational approaches are useful in drug discovery of novel allosteric modulators and bitopic ligands to help refine the number of targets and reduce the false-positive rates. This review summarizes the state-of-the-art computational methods for the discovery of modulators and bitopic ligands. The challenges and opportunities for future drug discovery are also discussed.
Collapse
Affiliation(s)
- Zhiwei Feng
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, 3501 Terrace Street, 529 Salk Hall, Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | |
Collapse
|
13
|
Feng Z, Ma S, Hu G, Xie XQ. Allosteric Binding Site and Activation Mechanism of Class C G-Protein Coupled Receptors: Metabotropic Glutamate Receptor Family. AAPS J 2015; 17:737-53. [PMID: 25762450 PMCID: PMC4406965 DOI: 10.1208/s12248-015-9742-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2014] [Accepted: 02/16/2015] [Indexed: 11/30/2022] Open
Abstract
Metabotropic glutamate receptors (mGluR) are mainly expressed in the central nervous system (CNS) and contain eight receptor subtypes, named mGluR1 to mGluR8. The crystal structures of mGluR1 and mGluR5 that are bound with the negative allosteric modulator (NAM) were reported recently. These structures provide a basic model for all class C of G-protein coupled receptors (GPCRs) and may aid in the design of new allosteric modulators for the treatment of CNS disorders. However, these structures are only combined with NAMs in the previous reports. The conformations that are bound with positive allosteric modulator (PAM) or agonist of mGluR1/5 remain unknown. Moreover, the structural information of the other six mGluRs and the comparisons of the mGluRs family have not been explored in terms of their binding pockets, the binding modes of different compounds, and important binding residues. With these crystal structures as the starting point, we built 3D structural models for six mGluRs by using homology modeling and molecular dynamics (MD) simulations. We systematically compared their allosteric binding sites/pockets, the important residues, and the selective residues by using a series of comparable dockings with both the NAM and the PAM. Our results show that several residues played important roles for the receptors' selectivity. The observations of detailed interactions between compounds and their correspondent receptors are congruent with the specificity and potency of derivatives or compounds bioassayed in vitro. We then carried out 100 ns MD simulations of mGluR5 (residue 26-832, formed by Venus Flytrap domain, a so-called cysteine-rich domain, and 7 trans-membrane domains) bound with antagonist/NAM and with agonist/PAM. Our results show that both the NAM and the PAM seemed stable in class C GPCRs during the MD. However, the movements of "ionic lock," of trans-membrane domains, and of some activation-related residues in 7 trans-membrane domains of mGluR5 were congruent with the findings in class A GPCRs. Finally, we selected nine representative bound structures to perform 30 ns MD simulations for validating the stabilities of interactions, respectively. All these bound structures kept stable during the MD simulations, indicating that the binding poses in this present work are reasonable. We provided new insight into better understanding of the structural and functional roles of the mGluRs family and facilitated the future structure-based design of novel ligands of mGluRs family with therapeutic potential.
Collapse
Affiliation(s)
- Zhiwei Feng
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Shifan Ma
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Guanxing Hu
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| | - Xiang-Qun Xie
- />Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />NIDA National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
- />Departments of Computational Biology and of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 USA
| |
Collapse
|
14
|
Corrêa MF, dos Santos Fernandes JP. Histamine H4 receptor ligands: future applications and state of art. Chem Biol Drug Des 2014; 85:461-80. [PMID: 25228262 DOI: 10.1111/cbdd.12431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Histamine is a chemical transmitter found practically in whole organism and exerts its effects through the interaction with H1 to H4 histaminergic receptors. Specifically, H4 receptors are found mainly in immune cells and blood-forming tissues, thus are involved in inflammatory and immune processes, as well as some actions in central nervous system. Therefore, H4 receptor ligands can have applications in the treatment of chronic inflammatory and immune diseases and may be novel therapeutic option in these conditions. Several H4 receptor ligands have been described from early 2000's until nowadays, being imidazole, indolecarboxamide, 2-aminopyrimidine, quinazoline, and quinoxaline scaffolds the most explored and discussed in this review. Moreover, several studies of molecular modeling using homology models of H4 receptor and QSAR data of the ligands are summarized. The increasing and promising therapeutic applications are leading these compounds to clinical trials, which probably will be part of the next generation of blockbuster drugs.
Collapse
Affiliation(s)
- Michelle Fidelis Corrêa
- Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, UNIFESP, Diadema, Brazil
| | | |
Collapse
|
15
|
Pappalardo M, Shachaf N, Basile L, Milardi D, Zeidan M, Raiyn J, Guccione S, Rayan A. Sequential application of ligand and structure based modeling approaches to index chemicals for their hH4R antagonism. PLoS One 2014; 9:e109340. [PMID: 25330207 PMCID: PMC4199621 DOI: 10.1371/journal.pone.0109340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2014] [Accepted: 09/10/2014] [Indexed: 02/03/2023] Open
Abstract
The human histamine H4 receptor (hH4R), a member of the G-protein coupled receptors (GPCR) family, is an increasingly attractive drug target. It plays a key role in many cell pathways and many hH4R ligands are studied for the treatment of several inflammatory, allergic and autoimmune disorders, as well as for analgesic activity. Due to the challenging difficulties in the experimental elucidation of hH4R structure, virtual screening campaigns are normally run on homology based models. However, a wealth of information about the chemical properties of GPCR ligands has also accumulated over the last few years and an appropriate combination of these ligand-based knowledge with structure-based molecular modeling studies emerges as a promising strategy for computer-assisted drug design. Here, two chemoinformatics techniques, the Intelligent Learning Engine (ILE) and Iterative Stochastic Elimination (ISE) approach, were used to index chemicals for their hH4R bioactivity. An application of the prediction model on external test set composed of more than 160 hH4R antagonists picked from the chEMBL database gave enrichment factor of 16.4. A virtual high throughput screening on ZINC database was carried out, picking ∼ 4000 chemicals highly indexed as H4R antagonists' candidates. Next, a series of 3D models of hH4R were generated by molecular modeling and molecular dynamics simulations performed in fully atomistic lipid membranes. The efficacy of the hH4R 3D models in discrimination between actives and non-actives were checked and the 3D model with the best performance was chosen for further docking studies performed on the focused library. The output of these docking studies was a consensus library of 11 highly active scored drug candidates. Our findings suggest that a sequential combination of ligand-based chemoinformatics approaches with structure-based ones has the potential to improve the success rate in discovering new biologically active GPCR drugs and increase the enrichment factors in a synergistic manner.
Collapse
Affiliation(s)
- Matteo Pappalardo
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Nir Shachaf
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| | - Livia Basile
- Etnalead s.r.l., Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Danilo Milardi
- National Research Council, Institute of Biostructures and Bioimaging, Catania, Italy
| | - Mouhammed Zeidan
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| | - Jamal Raiyn
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| | - Salvatore Guccione
- Etnalead s.r.l., Scuola Superiore di Catania, University of Catania, Catania, Italy
- Department of Pharmaceutical Sciences, University of Catania, Catania, Italy
| | - Anwar Rayan
- Drug Discovery Informatics Lab, QRC-Qasemi Research Center, Al-Qasemi Academic College, Baka El-Garbiah, Israel
| |
Collapse
|
16
|
Salem A, Al-Samadi A, Stegajev V, Stark H, Häyrinen-Immonen R, Ainola M, Hietanen J, Konttinen YT. Histamine H4 receptor in oral lichen planus. Oral Dis 2014; 21:378-85. [PMID: 25207698 DOI: 10.1111/odi.12290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/18/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Oral lichen planus (OLP) is an autoimmune disease characterized by a band-like T-cell infiltrate below the apoptotic epithelial cells and degenerated basement membrane. We tested the hypothesis that the high-affinity histamine H4 receptors (H4 Rs) are downregulated in OLP by high histamine concentrations and proinflammatory T-cell cytokines. MATERIALS AND METHODS Immunohistochemistry and immunofluorescence staining, image analysis and quantitative real-time polymerase chain reaction of tissue samples and cytokine-stimulated cultured SCC-25 and primary human oral keratinocytes. RESULTS H4 R immunoreactivity was weak in OLP and characterized by mast cell (MC) hyperplasia and degranulation. In contrast to controls, H4 R immunostaining and MC counts were negatively correlated in OLP (P = 0.003). H4 R agonist at nanomolar levels led to a rapid internalization of H4 Rs, whereas high histamine concentration and interferon-γ decreased HRH4 -gene transcripts. CONCLUSION Healthy oral epithelial cells are equipped with H4 R, which displays a uniform staining pattern in a MC-independent fashion. In contrast, in OLP, increased numbers of activated MCs associate with increasing loss of epithelial H4 R. Cell culture experiments suggest a rapid H4 R stimulation-dependent receptor internalization and a slow cytokine-driven decrease in H4 R synthesis. H4 R may be involved in the maintenance of healthy oral mucosa. In OLP, this maintenance might be impaired by MC degranulation and inflammatory cytokines.
Collapse
Affiliation(s)
- A Salem
- Department of Medicine, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland; Department of Oral Pathology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Łażewska D, Więcek M, Ner J, Kamińska K, Kottke T, Schwed JS, Zygmunt M, Karcz T, Olejarz A, Kuder K, Latacz G, Grosicki M, Sapa J, Karolak-Wojciechowska J, Stark H, Kieć-Kononowicz K. Aryl-1,3,5-triazine derivatives as histamine H4 receptor ligands. Eur J Med Chem 2014; 83:534-46. [DOI: 10.1016/j.ejmech.2014.06.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2014] [Revised: 04/17/2014] [Accepted: 06/16/2014] [Indexed: 12/01/2022]
|
18
|
Harusawa S, Sawada K, Magata T, Yoneyama H, Araki L, Usami Y, Hatano K, Yamamoto K, Yamamoto D, Yamatodani A. Synthesis and evaluation of N-alkyl-S-[3-(piperidin-1-yl)propyl]isothioureas: High affinity and human/rat species-selective histamine H3 receptor antagonists. Bioorg Med Chem Lett 2013; 23:6415-20. [DOI: 10.1016/j.bmcl.2013.09.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2013] [Revised: 09/11/2013] [Accepted: 09/17/2013] [Indexed: 10/26/2022]
|
19
|
Levoin N, Labeeuw O, Krief S, Calmels T, Poupardin-Olivier O, Berrebi-Bertrand I, Lecomte JM, Schwartz JC, Capet M. Determination of the binding mode and interacting amino-acids for dibasic H3 receptor antagonists. Bioorg Med Chem 2013; 21:4526-9. [DOI: 10.1016/j.bmc.2013.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2013] [Revised: 05/16/2013] [Accepted: 05/21/2013] [Indexed: 12/28/2022]
|