1
|
Kaçar Selvi C, Şenceol B, Erden PE. Disposable glutamate biosensor based on platinum nanoparticles, carbon quantum dots and poly-L-aspartic acid. Prep Biochem Biotechnol 2024:1-9. [PMID: 39264049 DOI: 10.1080/10826068.2024.2402340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This study reports the design and development of a disposable amperometric biosensor for the determination of L-glutamate. Glutamate oxidase (GlOx) was immobilized onto a screen-printed carbon electrode (SPE) modified with poly-L-Aspartic acid (PAsp), carbon quantum dots (CQD), and platinum nanoparticles (PtNP) for the construction of the biosensor. The surface composition of the modified SPE was optimized using the one variable at a time method. The morphological properties of the biosensor were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The electrochemical behavior of the modified electrodes was studied by cyclic voltammetry. Under the optimized experimental conditions the linear working range, detection limit and sensitivity of the GlOx/PtNP/CQD/PAsp/SPE were found to be 1.0 - 140 µM, 0.3 µM and 0.002 µA µM-1, respectively. The GlOx/PtNP/CQD/PAsp/SPE biosensor also exhibited good measurement repeatability. The as-developed biosensor was applied for the determination of L-glutamate in spiked serum samples and the average analytical recovery of added glutamate was 98.9 ± 3.9%.
Collapse
Affiliation(s)
- Ceren Kaçar Selvi
- Department of Chemistry, Faculty of Science, Ankara University, Ankara, Türkiye
| | - Barış Şenceol
- Department of Chemistry, Polatlı Faculty of Science and Letters, Ankara Haci Bayram Veli University, Ankara, Türkiye
| | - Pınar Esra Erden
- Department of Chemistry, Polatlı Faculty of Science and Letters, Ankara Haci Bayram Veli University, Ankara, Türkiye
| |
Collapse
|
2
|
Swier VJ, White KA, Negrão de Assis PL, Johnson TB, Leppert HG, Rechtzigel MJ, Meyerholz DK, Dodd RD, Quelle DE, Khanna R, Rogers CS, Weimer JM. NF1 +/ex42del miniswine model the cellular disruptions and behavioral presentations of NF1-associated cognitive and motor impairment. Clin Transl Sci 2024; 17:e13858. [PMID: 38932491 PMCID: PMC11208292 DOI: 10.1111/cts.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive or motor impairment is common among individuals with neurofibromatosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many as 70% of children with NF1 report difficulties with spatial/working memory, attention, executive function, and fine motor movements. In contrast to the utilization of various Nf1 mouse models, here we employ an NF1+/ex42del miniswine model to evaluate the mechanisms and characteristics of these presentations, taking advantage of a large animal species more like human anatomy and physiology. The prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-type miniswine were examined longitudinally, revealing abnormalities in mature oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus and motor cortex, supporting the role of disruption in inhibitory neurotransmission in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del miniswine demonstrated slower and shorter steps, indicative of a balance-preserving response commonly observed in NF1 patients, and progressive memory and learning impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del miniswine as a valuable resource for assessing cognitive and motor impairments associated with NF1, investigating the involvement of specific neural circuits and glia in these processes, and evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Katherine A. White
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Hannah G. Leppert
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | | | - Rebecca D. Dodd
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowaUSA
| | - Dawn E. Quelle
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | | | - Jill M. Weimer
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
- Department of PediatricsUniversity of South DakotaSioux FallsSouth DakotaUSA
| |
Collapse
|
3
|
Free TJ, Talley JP, Hyer CD, Miller CJ, Griffitts JS, Bundy BC. Engineering the Signal Resolution of a Paper-Based Cell-Free Glutamine Biosensor with Genetic Engineering, Metabolic Engineering, and Process Optimization. SENSORS (BASEL, SWITZERLAND) 2024; 24:3073. [PMID: 38793927 PMCID: PMC11124800 DOI: 10.3390/s24103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Specialized cancer treatments have the potential to exploit glutamine dependence to increase patient survival rates. Glutamine diagnostics capable of tracking a patient's response to treatment would enable a personalized treatment dosage to optimize the tradeoff between treatment success and dangerous side effects. Current clinical glutamine testing requires sophisticated and expensive lab-based tests, which are not broadly available on a frequent, individualized basis. To address the need for a low-cost, portable glutamine diagnostic, this work engineers a cell-free glutamine biosensor to overcome assay background and signal-to-noise limitations evident in previously reported studies. The findings from this work culminate in the development of a shelf-stable, paper-based, colorimetric glutamine test with a high signal strength and a high signal-to-background ratio for dramatically improved signal resolution. While the engineered glutamine test is important progress towards improving the management of cancer and other health conditions, this work also expands the assay development field of the promising cell-free biosensing platform, which can facilitate the low-cost detection of a broad variety of target molecules with high clinical value.
Collapse
Affiliation(s)
- Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joseph P. Talley
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Chad D. Hyer
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Catherine J. Miller
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
4
|
Norris C, Weatherbee J, Murphy SF, VandeVord PJ. Quantifying acute changes in neurometabolism following blast-induced traumatic brain injury. Neurosci Res 2024; 198:47-56. [PMID: 37352935 DOI: 10.1016/j.neures.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Brain health is largely dependent on the metabolic regulation of amino acids. Brain injuries, diseases, and disorders can be detected through alterations in free amino acid (FAA) concentrations; and thus, mapping the changes has high diagnostic potential. Common methods focus on optimizing neurotransmitter quantification; however, recent focus has expanded to investigate the roles of molecular precursors in brain metabolism. An isocratic method using high performance liquid chromatography with electrochemical cell detection was developed to quantify a wide range of molecular precursors and neurotransmitters: alanine, arginine, aspartate, serine, taurine, threonine, tyrosine, glycine, glutamate, glutamine, and γ-Aminobutyric acid (GABA) following traumatic brain injury. First, baseline concentrations were determined in the serum, cerebrospinal fluid, hippocampus, cortex, and cerebellum of naïve male Sprague Dawley rats. A subsequent study was performed investigating acute changes in FAA concentrations following blast-induced traumatic brain injury (bTBI). Molecular precursor associated FAAs decreased in concentration at 4 h after injury in both the cortex and hippocampus while those serving as neurotransmitters remained unchanged. In particular, the influence of oxidative stress on the observed changes within alanine and arginine pathways following bTBI should be further investigated to elucidate the full therapeutic potential of these molecular precursors at acute time points.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA
| | - Justin Weatherbee
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA; Veterans Affairs Medical Center, Salem, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg VA, USA; Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
5
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
6
|
Faraji F, Tavakoli H, Jafari M, Eidi A, Divsalar A. Electrochemical study of the effect of radiofrequency on glutamate oxidase activity using a glutamate oxidase-based biosensor. Heliyon 2023; 9:e15911. [PMID: 37223709 PMCID: PMC10200849 DOI: 10.1016/j.heliyon.2023.e15911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
A biosensor based on glutamate oxidase (GluOx) was developed to measure glutamate concentration. The main function of this type of biosensor is related to the structure and catalytic activity of GluOx. Since radiofrequency, as the widest spectrum of electromagnetic fields, can affect the catalytic activity and structure of GluOx, in this study, the effect of these fields on the analytical parameters of the fabricated biosensor was investigated. To build the biosensor a sol-gel solution of chitosan and native GluOx were prepared and then immobilized on the surface of the platinum electrode. Similarly, to investigate the effect of radiofrequency fields on the analytical parameters of the biosensor, instead of the native GluOx, irradiated GluOx was used to build the biosensor. To evaluate the biosensor responses, cyclic voltammetry experiments were performed and voltammograms were considered as biosensor responses. To determine the analytical parameters including detection limit, linear range, and saturation region of the responses, calibration curves were drawn for each of the biosensors. Also the long-term stability and selectivity of the fabricated biosensor were evaluated. Thereafter, the optimum pH and temperature for each of these two biosensors were examined. The results showed that radiofrequency waves harmed the detection and response of biosensors in the saturation region, while they had little effect on the linear region. Such results could be due to the effect of radiofrequency waves on the structure and function of glutamate oxidase. In general, the results indicate that when a glutamate oxidase-based biosensor is used to measure glutamate in radiofrequency fields, corrective coefficients for this type of biosensor should be considered to accurately measure glutamate concentration.
Collapse
Affiliation(s)
- Faezeh Faraji
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hassan Tavakoli
- Radiation Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahvash Jafari
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences Kharazmi University, Tehran, Iran
| |
Collapse
|
7
|
Tang S, Wang C, Liu K, Luo B, Dong H, Wang X, Hou P, Li A. In Vivo Detection of Glutamate in Tomatoes by an Enzyme-Based Electrochemical Biosensor. ACS OMEGA 2022; 7:30535-30542. [PMID: 36061716 PMCID: PMC9434751 DOI: 10.1021/acsomega.2c04029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The in vivo and on-site detection of key physiology parameters in plants will be of great relevance for precision agriculture and food technology. In this work, a sensitive enzymatic glutamate sensor was successfully developed. To enhance the conductivity and catalytic ability and to fix the glutamate oxidase, Au-Pt nanoparticles were first deposited on screen-printed electrodes, and then carboxylated graphene oxide and carboxylated multiwalled carbon nanotubes were fabricated for the synthesis of the electrode. The detection range of the glutamate sensor is widest (2 μM to 16 mM) up to date, and its detection limit is relatively low (0.14 μM). A number of standard curves were built in the pH range of 3.5-7.5, which can be applied in various plants and fruits. Using this sensor, the glutamate level in tomatoes was determined in vivo. This glutamate sensor has important practical value in precision agriculture. Our strategy also provides a way to establish the detection modes for other biomolecules in plants.
Collapse
Affiliation(s)
- Shunkun Tang
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College
of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Cheng Wang
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ke Liu
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bin Luo
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongtu Dong
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodong Wang
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichen Hou
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Aixue Li
- Research
Center of Intelligent Equipment, Beijing
Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
8
|
Billa S, Yanamadala Y, Hossain I, Siddiqui S, Moldovan N, Murray TA, Arumugam PU. Brain-Implantable Multifunctional Probe for Simultaneous Detection of Glutamate and GABA Neurotransmitters: Optimization and In Vivo Studies. MICROMACHINES 2022; 13:1008. [PMID: 35888825 PMCID: PMC9316119 DOI: 10.3390/mi13071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023]
Abstract
Imbalances in levels of glutamate (GLU) and gamma-aminobutyric acid (GABA) and their sub-second signaling dynamics occur in several brain disorders including traumatic brain injury, epilepsy, and Alzheimer's disease. The present work reports on the optimization and in vivo testing of a silicon (Si) multifunctional biosensor probe for sub-second simultaneous real-time detection of GLU and GABA. The Si probe features four surface-functionalized platinum ultramicroelectrodes (UMEs) for detection of GLU and GABA, a sentinel site, and integrated microfluidics for in-situ calibration. Optimal enzyme concentrations, size-exclusion phenylenediamine layer and micro spotting conditions were systematically investigated. The measured GLU sensitivity for the GLU and GABA sites were as high as 219 ± 8 nA μM-1 cm-2 (n = 3). The measured GABA sensitivity was as high as 10 ± 1 nA μM-1 cm-2 (n = 3). Baseline recordings (n = 18) in live rats demonstrated a useful probe life of at least 11 days with GLU and GABA concentrations changing at the levels of 100's and 1000's of μM and with expected periodic bursts or fluctuations during walking, teeth grinding and other activities and with a clear difference in the peak amplitude of the sensor fluctuations between rest (low) and activity (higher), or when the rat was surprised (a reaction with no movement). Importantly, the probe could improve methods for large-scale monitoring of neurochemical activity and network function in disease and injury, in live rodent brain.
Collapse
Affiliation(s)
- Sanjeev Billa
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272, USA; (S.B.); (I.H.)
| | - Yaswanthi Yanamadala
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (T.A.M.)
| | - Imran Hossain
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272, USA; (S.B.); (I.H.)
| | - Shabnam Siddiqui
- Department of Chemistry and Physics, Louisiana State University Shreveport, Shreveport, LA 71115, USA;
| | | | - Teresa A. Murray
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (T.A.M.)
| | - Prabhu U. Arumugam
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272, USA; (S.B.); (I.H.)
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272, USA; (Y.Y.); (T.A.M.)
| |
Collapse
|
9
|
Park I, Yang I, Cho Y, Choi Y, Shin J, Shekhar S, Lee SH, Hong S. Evaluation of site-selective drug effects on GABA receptors using nanovesicle-carbon nanotube hybrid devices. Biosens Bioelectron 2022; 200:113903. [PMID: 34973564 DOI: 10.1016/j.bios.2021.113903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Site-selective drug effects on the ion-channel activities of γ-aminobutyric acid type A (GABAA) receptors are evaluated by using a nanovesicle-carbon nanotube hybrid device. Here, nanovesicles containing GABAA receptors are immobilized on the channel region of a carbon nanotube field-effect transistor. The receptor responses of this hybrid device to GABA are detected with a high sensitivity down to ∼1 aM even in the presence of other neurotransmitters. Further, sensitivity differences between two GABAA-receptor-subunit compositions of α5β2γ2 and α1β2γ2 are assessed by normalizing the dose-dependent responses obtained from these hybrid devices. Specifically, the GABA concentration that produces 50% of maximal response (EC50) is obtained as ∼10 pM for α5β2γ2 subunits and ∼1 nM for α1β2γ2 subunits of GABAA receptor. Significantly, the potency profiles of both antagonist and agonist of GABAA receptor can be evaluated by analyzing EC50 values in the presence and absence of those drugs. A competitive antagonist increases the EC50 value of GABA by binding to the same site as GABA, while an allosteric agonist reduces it by binding to a different site. These results indicate that this hybrid device can be a powerful tool for the evaluation of candidate drug substances modulating GABA-mediated neurotransmission.
Collapse
Affiliation(s)
- Inkyoung Park
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inwoo Yang
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngtak Cho
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoonji Choi
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghyun Shin
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shashank Shekhar
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hwan Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Seunghun Hong
- Department of Physics and Astronomy, and the Institute of Applied Physics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
Jeong B, Baek JY, Koo J, Park S, Ryu YK, Kim KS, Zhang S, Chung C, Dogan R, Choi HS, Um D, Kim TK, Lee WS, Jeong J, Shin WH, Lee JR, Kim NS, Lee DY. Maternal exposure to polystyrene nanoplastics causes brain abnormalities in progeny. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127815. [PMID: 34823950 DOI: 10.1016/j.jhazmat.2021.127815] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/14/2021] [Indexed: 05/14/2023]
Abstract
As global plastic production continues to grow, microplastics released from a massive quantity of plastic wastes have become a critical environmental concern. These microplastic particles are found in a wide range of living organisms in a diverse array of ecosystems. In this study, we investigated the biological effects of polystyrene nanoplastic (PSNP) on development of the central nervous system using cultured neural stem cells (NSCs) and mice exposed to PSNP during developmental stages. Our study demonstrates that maternal administration of PSNP during gestation and lactating periods altered the functioning of NSCs, neural cell compositions, and brain histology in progeny. Similarly, PSNP-induced molecular and functional defects were also observed in cultured NSCs in vitro. Finally, we show that the abnormal brain development caused by exposure to high concentrations of PSNP results in neurophysiological and cognitive deficits in a gender-specific manner. Our data demonstrate the possibility that exposure to high amounts of PSNP may increase the risk of neurodevelopmental defects.
Collapse
Affiliation(s)
- Bohyeon Jeong
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Jeong Yeob Baek
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jahong Koo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea
| | - Subin Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Young-Kyoung Ryu
- Laboratory animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Kyoung-Shim Kim
- Laboratory animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Seungjae Zhang
- Department of Biological Sciences (Neurophysiology Laboratory, C-Lab), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences (Neurophysiology Laboratory, C-Lab), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Rumeysa Dogan
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hyung-Seok Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Dahun Um
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Wang Sik Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jinyoung Jeong
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, South Korea
| | - Won-Ho Shin
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, South Korea
| | - Jae-Ran Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Nam-Soon Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
11
|
Determination of sulfur dioxide in food by liquid chromatography with pre-column derivatization. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
A derivatization-based densitometric method for simultaneous estimation of artemether and lumefantrine: Method development, validation and applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Lourenco MV, Ribeiro FC, Santos LE, Beckman D, Melo HM, Sudo FK, Drummond C, Assunção N, Vanderborght B, Tovar-Moll F, De Felice FG, Mattos P, Ferreira ST. Cerebrospinal Fluid Neurotransmitters, Cytokines, and Chemokines in Alzheimer's and Lewy Body Diseases. J Alzheimers Dis 2021; 82:1067-1074. [PMID: 34151795 DOI: 10.3233/jad-210147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and Lewy body disease (LBD) are complex neurodegenerative disorders that have been associated with brain inflammation and impaired neurotransmission. OBJECTIVE We aimed to determine concentrations of multiple cytokines, chemokines, and neurotransmitters previously associated with brain inflammation and synapse function in cerebrospinal fluid (CSF) from AD and LBD patients. METHODS We examined a panel of 50 analytes comprising neurotransmitters, cytokines, chemokines, and hormones in CSF in a cohort of patients diagnosed with mild cognitive impairment (MCI), AD, LBD, or non-demented controls (NDC). RESULTS Among neurotransmitters, noradrenaline (NA) was increased in AD CSF, while homovanillic acid (HVA), a dopamine metabolite, was reduced in both AD and LBD CSF relative to NDC. Six cytokines/chemokines out of 30 investigated were reliably detected in CSF. CSF vascular endothelial growth factor (VEGF) was significantly reduced in LBD patients relative to NDC. CONCLUSIONS CSF alterations in NA, HVA, and VEGF in AD and LBD may reflect pathogenic features of these disorders and provide tools for improved diagnosis. Future studies are warranted to replicate current findings in larger, multicenter cohorts.
Collapse
Affiliation(s)
- Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis E Santos
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle Beckman
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Helen M Melo
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe K Sudo
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Cláudia Drummond
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Department of Speech and Hearing Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naima Assunção
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bart Vanderborght
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.,Department of Psychiatry, Queen's University, Kingston, Canada
| | - Paulo Mattos
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil.,Program in Morphological Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Psychiatry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Moldovan N, Blaga II, Billa S, Hossain I, Gong C, Jones CE, Murray TA, Divan R, Siddiqui S, Arumugam PU. Brain-Implantable Multifunctional Probe for Simultaneous Detection of Glutamate and GABA Neurotransmitters. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 337:129795. [PMID: 35603327 PMCID: PMC9122026 DOI: 10.1016/j.snb.2021.129795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glutamate (GLU) and gamma-aminobutyric acid (GABA) are neurotransmitters (NTs) with an essential role in signal transmission in the brain. Brain disorders, such as epilepsy, Alzheimer's and Parkinson's diseases, and traumatic brain injury can be linked to imbalances in the GLU-GABA homeostasis that occurs in sub-second to seconds time frames. Current measurement techniques can detect these two NT concentrations simultaneously only in vitro. The present work reports on the fabrication of a silicon multifunctional biosensor microarray probe for sub-second simultaneous GLU-GABA detection in real-time, with excellent analyte sensitivity and selectivity and in vivo capabilities. The novel Si probes feature four surface-functionalized platinum ultramicroelectrodes (UMEs) for simultaneous amperometric detection of GLU and GABA with a sentinel, and a built-in microfluidic channel for the introduction of neurochemicals in the proximity of the UMEs. The microchannel also allows functioning of an On-Demand In-situ Calibrator that runs in-situ biosensor calibration. The probe exhibited excellent robustness at insertion in agarose-gel brain-tissue-mimicking test, and remarkably high hydrogen peroxide sensitivity (a by-product of GLU-GABA enzyme biosensor) with values on the order of 5000 nA μM -1 cm -2 and maximum sensitivities of 204±15 nA μM -1 cm -2 and 37±7 nA μM -1 cm -2 for GLU and GABA, respectively. Furthermore, the limit of detection of the biosensors reached as low as 7 nM, 165 nM and 750 nM for H 2 O 2, GLU and GABA, respectively and a temporal resolution of hundreds of milliseconds during in vivo studies using freely moving rats.
Collapse
Affiliation(s)
| | | | - Sanjeev Billa
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272
| | - Imran Hossain
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272
| | - Chenggong Gong
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272
| | - Claire E. Jones
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272
| | - Teresa A. Murray
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272
| | - Ralu Divan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439
| | - Shabnam Siddiqui
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272
- Louisiana State University Shreveport, Department of Chemistry and Physics, Shreveport, LA 71115
| | - Prabhu U. Arumugam
- Institute for Micromanufacturing (IfM), Louisiana Tech University, Ruston, LA 71272
- Center for Biomedical Engineering and Rehabilitation Science (CBERS), Louisiana Tech University, Ruston, LA 71272
| |
Collapse
|
15
|
Simultaneous determination of five amino acid neurotransmitters in rat and porcine blood and brain by two-dimensional liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1163:122507. [PMID: 33387860 DOI: 10.1016/j.jchromb.2020.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022]
Abstract
A method for the simultaneous determination of aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), taurine (Tau) and gamma-aminobutyric acid (GABA) in animal blood and brain by two-dimensional liquid chromatography (2D-LC) combined with ultraviolet detection was established for the first time. First, the amino acid neurotransmitters (AANTs) were labeled on the corresponding fluorescent derivatives with 4-fluoro-7-nitrobenzofurazan (NBD-F), enriched on the extraction column and automatically transferred to the analytical column to achieve on-line extraction and complete separation of the target components. This method exhibited good selectivity, and the correlation coefficients for the analyte calibration curves of were > 0.99. The intra- and inter-day precisions were ≤ 16.03, and the accuracies were in the range of 70.59-116.20%. The system realizes the rapid detection and stability quantification of the five AANTs, which proves that the alternative dilution method is feasible. The results show that the system has high loading capacity, excellent resolution, and good peak shape and is not affected by other endogenous substances. Moreover, the developed method has been successfully applied to the analysis of biological samples in the blood and whole brain of rats and pigs. The content of AANTs in the hippocampus and cortex of rats was higher than that in those of pigs. This method is expected to provide applicability for the determination of AANTs in pharmacological, pharmaceutical and clinical research in nervous science.
Collapse
|
16
|
Patel DV, Patel NR, Kanhed AM, Teli DM, Patel KB, Gandhi PM, Patel SP, Chaudhary BN, Shah DB, Prajapati NK, Patel KV, Yadav MR. Further Studies on Triazinoindoles as Potential Novel Multitarget-Directed Anti-Alzheimer's Agents. ACS Chem Neurosci 2020; 11:3557-3574. [PMID: 33073564 DOI: 10.1021/acschemneuro.0c00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The inadequate clinical efficacy of the present anti-Alzheimer's disease (AD) drugs and their low impact on the progression of Alzheimer's disease in patients have revised the research focus from single targets to multitarget-directed ligands. A novel series of substituted triazinoindole derivatives were obtained by introducing various substituents on the indole ring for the development of multitarget-directed ligands as anti-AD agents. The experimental data indicated that some of these compounds exhibited significant anti-AD properties. Among them, 8-(piperidin-1-yl)-N-(6-(pyrrolidin-1-yl)hexyl)-5H-[1,2,4]triazino[5,6-b]indol-3-amine (60), the most potent cholinesterase inhibitor (AChE, IC50 value of 0.32 μM; BuChE, IC50 value of 0.21 μM), was also found to possess significant self-mediated Aβ1-42 aggregation inhibitory activity (54% at 25 μM concentration). Additionally, compound 60 showed strong antioxidant activity. In the PAMPA assay, compound 60 exhibited blood-brain barrier penetrating ability. An acute toxicity study in rats demonstrated no sign of toxicity at doses up to 2000 mg/kg. Furthermore, compound 60 significantly restored the cognitive deficits in the scopolamine-induced mice model and Aβ1-42-induced rat model. In the in silico ADMET prediction studies, the compound satisfied all the parameters of CNS acting drugs. These results highlighted the potential of compound 60 to be a promising multitarget-directed ligand for the development of potential anti-AD drugs.
Collapse
Affiliation(s)
- Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Ashish M. Kanhed
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM’s NMIMS University, Vile Parle, Mumbai 400056, India
| | - Divya M. Teli
- Department of Pharmaceutical Chemistry, L. M. College of Pharmacy, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Pallav M. Gandhi
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Sagar P. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Bharat N. Chaudhary
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Dharti B. Shah
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390001 Gujarat, India
- Director (R & D), Centre of Research for Development, Parul University, Limbda, Waghodia Road, Vadodara, 391760 Gujarat, India
| |
Collapse
|
17
|
Zeynaloo E, Yang YP, Dikici E, Landgraf R, Bachas LG, Daunert S. Design of a mediator-free, non-enzymatic electrochemical biosensor for glutamate detection. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102305. [PMID: 32992017 DOI: 10.1016/j.nano.2020.102305] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/21/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
A mediator-free, non-enzymatic electrochemical biosensor was constructed by covalent immobilization of a genetically engineered periplasmic glutamate binding protein onto gold nanoparticle-modified, screen-printed carbon electrodes (GluBP/AuNP/SPCE) for the purpose of direct measurement of glutamate levels. Glutamate serves as the predominant excitatory neurotransmitter in the central nervous system. As high levels of glutamate are an indicator of many neurologic disorders, there is a need for advancements in glutamate detection technologies. The biosensor was evaluated for glutamate detection by cyclic voltammetry. Binding of glutamate to the immobilized glutamate binding protein results in a conformational change of the latter that alters the microenvironment on the surface of the sensor, which is manifested as a change in signal. Dose-response plots correlating the electrochemical signal to glutamate concentration revealed a detection limit of 0.15 μM with a linear range of 0.1-0.8 μM. Selectivity studies confirmed a strong preferential response of the biosensor for glutamate against common interfering compounds.
Collapse
Affiliation(s)
- Elnaz Zeynaloo
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Department of Chemistry, University of Miami, Miami, Florida, United States
| | - Yu-Ping Yang
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States
| | - Ralf Landgraf
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Leonidas G Bachas
- Department of Chemistry, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States.
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, , Miller School of Medicine, University of Miami, Miami, Florida, United States; Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, United States; University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, United States.
| |
Collapse
|
18
|
Enantioanalysis of glutamine—a key factor in establishing the metabolomics process in gastric cancer. Anal Bioanal Chem 2020; 412:3199-3207. [DOI: 10.1007/s00216-020-02575-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
|
19
|
Arumugasamy SK, Chellasamy G, Gopi S, Govindaraju S, Yun K. Current advances in the detection of neurotransmitters by nanomaterials: An update. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Patel DV, Patel NR, Kanhed AM, Patel SP, Sinha A, Kansara DD, Mecwan AR, Patel SB, Upadhyay PN, Patel KB, Shah DB, Prajapati NK, Murumkar PR, Patel KV, Yadav MR. Novel Multitarget Directed Triazinoindole Derivatives as Anti-Alzheimer Agents. ACS Chem Neurosci 2019; 10:3635-3661. [PMID: 31310717 DOI: 10.1021/acschemneuro.9b00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The multifaceted nature of Alzheimer's disease (AD) demands treatment with multitarget-directed ligands (MTDLs) to confront the key pathological aberrations. A novel series of triazinoindole derivatives were designed and synthesized. In vitro studies revealed that all the compounds showed moderate to good anticholinesterase activity; the most active compound 23e showed an IC50 value of 0.56 ± 0.02 μM for AChE and an IC50 value of 1.17 ± 0.09 μM for BuChE. These derivatives are also endowed with potent antioxidant activity. To understand the plausible binding mode of the compound 23e, molecular docking studies and molecular dynamics simulation studies were performed, and the results indicated significant interactions of 23e within the active sites of AChE as well as BuChE. Compound 23e successfully diminished H2O2-induced oxidative stress in SH-SY5Y cells and displayed excellent neuroprotective activity against H2O2 as well as Aβ-induced toxicity in SH-SY5Y cells in a concentration dependent manner. Furthermore, it did not show any significant toxicity in neuronal SH-SY5Y cells in the cytotoxicity assay. Compound 23e did not show any acute toxicity in rats at doses up to 2000 mg/kg, and it significantly reversed scopolamine-induced memory deficit in mice model. Additionally, compound 23e showed notable in silico ADMET properties. Taken collectively, these findings project compound 23e as a potential balanced MTDL in the evolution process of novel anti-AD drugs.
Collapse
Affiliation(s)
- Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Ashish M. Kanhed
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Sagar P. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Deep D. Kansara
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Annie R. Mecwan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Sarvangee B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Pragnesh N. Upadhyay
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Dharti B. Shah
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Prashant R. Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| |
Collapse
|
21
|
Sun ZQ, Meng FH, Tu LX, Sun L. Myricetin attenuates the severity of seizures and neuroapoptosis in pentylenetetrazole kindled mice by regulating the of BDNF-TrkB signaling pathway and modulating matrix metalloproteinase-9 and GABA A. Exp Ther Med 2019; 17:3083-3091. [PMID: 30906480 PMCID: PMC6425265 DOI: 10.3892/etm.2019.7282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Currently available antiepileptic drugs are effective; however, frequently associated with adverse effects that limit their therapeutic value. Compounds that target the molecular events underlying epilepsy, with minor or no adverse effects, would be of clinical value. Matrix metalloproteinase-9 (MMP-9) and the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling pathway may be involved in epileptogenesis. The current study investigated the effects of the plant-derived hydroxyflavone, myricetin, in a pentylenetetrazole (PTZ)-induced mouse model of epilepsy. Mice received an intraperitoneal injection of 35 mg/kg body weight PTZ on alternate days (13 injections) and were observed for 30 min following each PTZ injection. Myricetin (100 or 200 mg/kg body weight) was administered orally to the treatment groups (n=18/group) for 26 days, 30 min prior to each PTZ injection. Treatment with myricetin reduced seizure and mortality rates. Increased apoptotic cell count and elevated expression levels of apoptotic proteins caused by PTZ kindling were downregulated following treatment with myricetin. The BDNF-TrkB signaling pathway and MMP-9 expression levels were regulated by myricetin. Expression of γ-aminobutyric acid A (GABA) receptor and glutamic acid decarboxylase 65, as well as the glutamate/GABA balance, were restored following treatment with myricetin. The results of the present study indicated that myricetin may exert protective effects by regulating the molecular events associated with epileptogenesis.
Collapse
Affiliation(s)
- Zhi-Qing Sun
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Fan-Hua Meng
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Li-Xiang Tu
- Department of Infectious Disease, Linyi People's Hospital, Linyi, Shandong 276003, P.R. China
| | - Lei Sun
- Department of Emergency, Hedong People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
22
|
Bongaerts J, De Bundel D, Mangelings D, Smolders I, Vander Heyden Y, Van Eeckhaut A. Sensitive targeted methods for brain metabolomic studies in microdialysis samples. J Pharm Biomed Anal 2018; 161:192-205. [DOI: 10.1016/j.jpba.2018.08.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023]
|
23
|
Hossain I, Tan C, Doughty PT, Dutta G, Murray TA, Siddiqui S, Iasemidis L, Arumugam PU. A Novel Microbiosensor Microarray for Continuous ex Vivo Monitoring of Gamma-Aminobutyric Acid in Real-Time. Front Neurosci 2018; 12:500. [PMID: 30131664 PMCID: PMC6090213 DOI: 10.3389/fnins.2018.00500] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/03/2018] [Indexed: 12/23/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that is essential for normal brain function. It is involved in multiple neuronal activities, including plasticity, information processing, and network synchronization. Abnormal GABA levels result in severe brain disorders and therefore GABA has been the target of a wide range of drug therapeutics. GABA being non-electroactive is challenging to detect in real-time. To date, GABA is detected mainly via microdialysis with a high-performance liquid chromatography (HPLC) system that employs electrochemical (EC) and spectroscopic methodology. However, these systems are bulky and unsuitable for real-time continuous monitoring. As opposed to microdialysis, biosensors are easy to miniaturize and are highly suitable for in vivo studies; they selectively oxidize GABA into a secondary electroactive product (usually hydrogen peroxide, H2O2) in the presence of enzymes, which is then detected by amperometry. Unfortunately, this method requires a rather cumbersome process with prereactors and relies on externally applied reagents. Here, we report the design and implementation of a GABA microarray probe that operates on a newly conceived principle. It consists of two microbiosensors, one for glutamate (Glu) and one for GABA detection, modified with glutamate oxidase and GABASE enzymes, respectively. By simultaneously measuring and subtracting the H2O2 oxidation currents generated from these microbiosensors, GABA and Glu can be detected continuously in real-time in vitro and ex vivo and without the addition of any externally applied reagents. The detection of GABA by this probe is based upon the in-situ generation of α-ketoglutarate from the Glu oxidation that takes place at the Glu microbiosensor. A GABA sensitivity of 36 ± 2.5 pA μM-1cm-2, which is 26-fold higher than reported in the literature, and a limit of detection of 2 ± 0.12 μM were achieved in an in vitro setting. The GABA probe was successfully tested in an adult rat brain slice preparation. These results demonstrate that the developed GABA probe constitutes a novel and powerful neuroscientific tool that could be employed in the future for in vivo longitudinal studies of the combined role of GABA and Glu (a major excitatory neurotransmitter) signaling in brain disorders, such as epilepsy and traumatic brain injury, as well as in preclinical trials of potential therapeutic agents for the treatment of these disorders.
Collapse
Affiliation(s)
- Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| | - Chao Tan
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States.,Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Phillip T Doughty
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Gaurab Dutta
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States
| | - Teresa A Murray
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Shabnam Siddiqui
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Leonidas Iasemidis
- Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| | - Prabhu U Arumugam
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA, United States.,Center for Biomedical Engineering and Rehabilitation Science, Louisiana Tech University, Ruston, LA, United States
| |
Collapse
|
24
|
Huang D, Jiang QS, Yang JQ, Cui T, Wang NR, Du TT, Jiang XH. Simultaneous determination of nine analytes related to the pathogenesis of diabetic encephalopathy in diabetic rat cortex and hippocampus by HPLC-FLD. Biomed Chromatogr 2018; 32:e4338. [PMID: 30003560 DOI: 10.1002/bmc.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
The determination of amino acids and monoamine with actions like neurotransmitters or modulators has become increasingly important for studying the relationship between the dysfunction of neurotransmitters and the pathogenesis of diabetic encephalopathy. Here, a high-performance liquid chromatography with fluorescence detection method was developed to simultaneously determine nine monoamines and amino acids including three excitatory neurotransmitters (aspartate, glutamate, and serotonin), four inhibitory neurotransmitters (glycine, γ-aminobutyric acid, taurine, dopamine), a precursor of 5-HT (tryptophan) and methionine using homoserine as the internal standard. The separation was performed on a BDS column with methanol-buffer solution of 35 mmol/L sodium acetate and 5 mmol/L citric acid (pH 6.0) using a simple gradient elution. Several parameters including specificity, precision, and recovery were validated after optimization of the analytical conditions. The developed method was successfully applied to determine the cortex and the hippocampus samples from Sprague-Dawley rats. Our results showed that various neurotransmitters involved in diabetes mellitus may tend to be differentially modulated and present a different alteration tendency at different time course, which might be associated with the duration of diabetes mellitus.
Collapse
Affiliation(s)
- Dan Huang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing-Song Jiang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun-Qing Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ting Cui
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | | | - Ting-Ting Du
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin-Hui Jiang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Mendes ND, Fernandes A, Almeida GM, Santos LE, Selles MC, Lyra E Silva NM, Machado CM, Horta-Júnior JAC, Louzada PR, De Felice FG, Alves-Leon S, Marcondes J, Assirati JA, Matias CM, Klein WL, Garcia-Cairasco N, Ferreira ST, Neder L, Sebollela A. Free-floating adult human brain-derived slice cultures as a model to study the neuronal impact of Alzheimer's disease-associated Aβ oligomers. J Neurosci Methods 2018; 307:203-209. [PMID: 29859877 DOI: 10.1016/j.jneumeth.2018.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Slice cultures have been prepared from several organs. With respect to the brain, advantages of slice cultures over dissociated cell cultures include maintenance of the cytoarchitecture and neuronal connectivity. Slice cultures from adult human brain have been reported and constitute a promising method to study neurological diseases. Despite this potential, few studies have characterized in detail cell survival and function along time in short-term, free-floating cultures. NEW METHOD We used tissue from adult human brain cortex from patients undergoing temporal lobectomy to prepare 200 μm-thick slices. Along the period in culture, we evaluated neuronal survival, histological modifications, and neurotransmitter release. The toxicity of Alzheimer's-associated Aβ oligomers (AβOs) to cultured slices was also analyzed. RESULTS Neurons in human brain slices remain viable and neurochemically active for at least four days in vitro, which allowed detection of binding of AβOs. We further found that slices exposed to AβOs presented elevated levels of hyperphosphorylated Tau, a hallmark of Alzheimer's disease. COMPARISON WITH EXISTING METHOD(S) Although slice cultures from adult human brain have been previously prepared, this is the first report to analyze cell viability and neuronal activity in short-term free-floating cultures as a function of days in vitro. CONCLUSIONS Once surgical tissue is available, the current protocol is easy to perform and produces functional slices from adult human brain. These slice cultures may represent a preferred model for translational studies of neurodegenerative disorders when long term culturing in not required, as in investigations on AβO neurotoxicity.
Collapse
Affiliation(s)
- Niele D Mendes
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil; Dept. Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil
| | - Artur Fernandes
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil; Dept. Physiology, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Glaucia M Almeida
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil
| | - Luis E Santos
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| | - Maria Clara Selles
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| | - N M Lyra E Silva
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil
| | - Carla M Machado
- Department of Anatomy, Institute of Biosciences, São Paulo State University, SP, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences, São Paulo State University, SP, Brazil
| | - Paulo R Louzada
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, RJ, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Soniza Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Jorge Marcondes
- Hospital Universitário Clementino Fraga Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - João Alberto Assirati
- Ribeirão Preto Medical School Clinical Hospital, University of São Paulo, SP, Brazil
| | - Caio M Matias
- Ribeirão Preto Medical School Clinical Hospital, University of São Paulo, SP, Brazil
| | - William L Klein
- Department of Neurobiology, Northwestern University, IL, USA
| | | | - Sergio T Ferreira
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Luciano Neder
- Dept. Pathology and Forensic Medicine, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil; Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Adriano Sebollela
- Dept. Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
26
|
Fonseca BM, Cristóvão AC, Alves G. An easy-to-use liquid chromatography method with fluorescence detection for the simultaneous determination of five neuroactive amino acids in different regions of rat brain. J Pharmacol Toxicol Methods 2018; 91:72-79. [DOI: 10.1016/j.vascn.2018.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/27/2018] [Accepted: 02/02/2018] [Indexed: 11/17/2022]
|
27
|
Police A, Shankar VK, Narasimha Murthy S. RP-HPLC method for simultaneous estimation of vigabatrin, gamma-aminobutyric acid and taurine in biological samples. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1076:44-53. [DOI: 10.1016/j.jchromb.2018.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 12/13/2022]
|
28
|
Kaewman P, Nudmamud-Thanoi S, Thanoi S. GABAergic Alterations in the Rat Testis after Methamphetamine Exposure. Int J Med Sci 2018; 15:1349-1354. [PMID: 30275762 PMCID: PMC6158670 DOI: 10.7150/ijms.27609] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/29/2018] [Indexed: 02/02/2023] Open
Abstract
Gamma-aminobutyric acid (GABA), GABA-A receptors and GABA transporter 1 (GAT1) were reported to be involved in the proliferation of Leydig cells, testosterone production and spermatogenesis. Since methamphetamine (METH) has been reported to have adverse effects on testis and its functions, the aim of this study was therefore to determine the changes of GABAergic activity in testis after METH exposure. Male Sprague-Dawley rats were divided into control, acute binge (AB-METH), escalating dose (ED METH) and escalating dose-binge (ED-binge METH) groups. After sacrifice, rat testes were removed and used to estimate GABA concentration and the expression of GABA-A receptor, GAD1, GAD2 and GAT1 genes by using HPLC and RT-PCR, respectively. The GABA concentration was significantly increased in all METH-administrated groups. In addition, significant increases of GABA-A α1 receptor and GAD1 genes expression were found in the ED-binge METH group. Gene expressions of GAT1 were numerically decreased in all METH-administrated rats and reached significant in the ED METH group. These results indicated a compensatory upregulation of GABA production and its functions in testis after METH exposure. Thus, these changes might represent a homeostatic response of GABAergic to the adverse effects of METH.
Collapse
Affiliation(s)
- Paweena Kaewman
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
29
|
Chen GY, Chao HC, Liao HW, Tsai IL, Kuo CH. Rapid quantification of glutaminase 2 (GLS2)-related metabolites by HILIC-MS/MS. Anal Biochem 2017; 539:39-44. [PMID: 28993139 DOI: 10.1016/j.ab.2017.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/30/2017] [Accepted: 10/04/2017] [Indexed: 12/28/2022]
Abstract
Glutamine, glutamate and glutathione are key modulators of excessive oxidative stress in tumor cells. In this study, we developed a rapid and accurate HILIC-MS/MS method to simultaneously determine concentrations of cellular glutamine, glutamate and glutathione. A bared silica HILIC column was employed to analyze these polar metabolites. The LC-MS parameters were optimized to achieve high sensitivity and selectivity. The analysis can be completed within 4 min under optimal conditions. The method was validated in terms of accuracy, precision, and linearity. Intra-day (n = 9) precision was within 2.68-6.24% among QCs. Inter-day precision (n = 3) was below 12.4%. The method accuracy was evaluated by the recovery test, and the accuracy for three analytes were between 91.6 and 110%. The developed method was applied to study antioxidant function of GLS2 in non-small cell lung cancer cells. Changes in concentrations of glutamine, glutamate and glutathione revealed that the overexpression of GLS2 could effectively decrease oxidative stress. In summary, this study developed a rapid HILIC-MS/MS method for quantification of GLS2-related metabolites that could facilitate elucidation of the role of GLS2 in tumor development.
Collapse
Affiliation(s)
- Guan-Yuan Chen
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsi-Chun Chao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiao-Wei Liao
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Kuo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan; The Metabolomics Core Laboratory, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan; Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
30
|
Farthing CA, Farthing DE, Gress RE, Sweet DH. Determination of l-glutamic acid and γ-aminobutyric acid in mouse brain tissue utilizing GC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:64-70. [PMID: 29031110 DOI: 10.1016/j.jchromb.2017.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
A rapid and selective method for the quantitation of neurotransmitters, l-Glutamic acid (GA) and γ-Aminobutyric acid (GABA), was developed and validated using gas chromatography-tandem mass spectrometry (GC-MS/MS). The novel method utilized a rapid online hot GC inlet gas phase sample derivatization and fast GC low thermal mass technology. The method calibration was linear from 0.5 to 100μg/mL, with limits of detections of 100ng/mL and 250ng/mL for GA and GABA, respectively. The method was used to investigate the effects of deletion of organic anion transporter 1 (Oat1) or Oat3 on murine CNS levels of GA and GABA at 3 and 18 mo of age, as compared to age matched wild-type (WT) animals. Whole brain concentrations of GA were comparable between WT, Oat1-/-, and Oat3-/- 18 mo at both 3 and 18 mo of age. Similarly, whole brain concentrations of GABA were not significantly altered in either knockout mouse strain at 3 or 18 mo of age, as compared to WT. These results indicate that the developed GC-MS/MS method provides sufficient sensitivity and selectivity for the quantitation of these neurotransmitters in mouse brain tissue. Furthermore, these results suggest that loss of Oat1 or Oat3 function in isolation does not result in significant alterations in brain tissue levels of GA or GABA.
Collapse
Affiliation(s)
- Christine A Farthing
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA
| | - Don E Farthing
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA; National Institutes of Health, National Cancer Institute, Experimental Transplant and Immunology Branch, Bethesda, MD 20892, USA
| | - Ronald E Gress
- National Institutes of Health, National Cancer Institute, Experimental Transplant and Immunology Branch, Bethesda, MD 20892, USA
| | - Douglas H Sweet
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA.
| |
Collapse
|
31
|
Sierra T, Crevillen AG, Escarpa A. Derivatization agents for electrochemical detection in amino acid, peptide and protein separations: The hidden electrochemistry? Electrophoresis 2017; 38:2695-2703. [DOI: 10.1002/elps.201700167] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Tania Sierra
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcala; Alcala de Henares Madrid Spain
| | - Agustin G. Crevillen
- Department of Analytical Sciences, Faculty of Sciences; Universidad Nacional de Educación a Distancia (UNED); Madrid Spain
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering; University of Alcala; Alcala de Henares Madrid Spain
| |
Collapse
|
32
|
Fernandes AMAP, Vendramini PH, Galaverna R, Schwab NV, Alberici LC, Augusti R, Castilho RF, Eberlin MN. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI - MS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1944-1951. [PMID: 27704473 DOI: 10.1007/s13361-016-1475-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/30/2016] [Accepted: 07/31/2016] [Indexed: 05/12/2023]
Abstract
Mass spectrometry imaging (MSI) of neurotransmitters has so far been mainly performed by matrix-assisted laser desorption/ionization (MALDI) where derivatization reagents, deuterated matrix and/or high resolution, or tandem MS have been applied to circumvent problems with interfering ion peaks from matrix and from isobaric species. We herein describe the application of desorption electrospray ionization mass spectrometry imaging (DESI)-MSI in rat brain coronal and sagittal slices for direct spatial monitoring of neurotransmitters and choline with no need of derivatization reagents and/or deuterated materials. The amino acids γ-aminobutyric (GABA), glutamate, aspartate, serine, as well as acetylcholine, dopamine, and choline were successfully imaged using a commercial DESI source coupled to a hybrid quadrupole-Orbitrap mass spectrometer. The spatial distribution of the analyzed compounds in different brain regions was determined. We conclude that the ambient matrix-free DESI-MSI is suitable for neurotransmitter imaging and could be applied in studies that involve evaluation of imbalances in neurotransmitters levels. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Anna Maria A P Fernandes
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Pedro H Vendramini
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Nicolas V Schwab
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciane C Alberici
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rodinei Augusti
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roger F Castilho
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, UNICAMP, Campinas, SP, Brazil
| | - Marcos N Eberlin
- Thomson Mass Spectrometry Laboratory, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
33
|
Singh S, Kumar P. Neuroprotective potential of curcumin in combination with piperine against 6-hydroxy dopamine induced motor deficit and neurochemical alterations in rats. Inflammopharmacology 2016; 25:69-79. [DOI: 10.1007/s10787-016-0297-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/04/2016] [Indexed: 11/25/2022]
|
34
|
Dalkıran B, Erden PE, Kılıç E. Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:340-348. [PMID: 26939621 DOI: 10.3109/21691401.2016.1153482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An amperometric biosensor based on tricobalt tetraoxide nanoparticles (Co3O4), graphene (GR), and chitosan (CS) nanocomposite modified glassy carbon electrode (GCE) for sensitive determination of glutamate was fabricated. Scanning electron microscopy was implemented to characterize morphology of the nanocomposite. The biosensor showed optimum response within 25 s at pH 7.5 and 37 °C, at +0.70 V. The linear working range of biosensor for glutamate was from 4.0 × 10-6 to 6.0 × 10-4 M with a detection limit of 2.0 × 10-6 M and sensitivity of 0.73 μA/mM or 7.37 μA/mMcm2. The relatively low Michaelis-Menten constant (1.09 mM) suggested enhanced enzyme affinity to glutamate. The glutamate biosensor lost 45% of its initial activity after three weeks.
Collapse
Affiliation(s)
- Berna Dalkıran
- a Department of Chemistry , Ankara University, Faculty of Science , Tandoğan , Ankara , Turkey
| | - Pınar Esra Erden
- a Department of Chemistry , Ankara University, Faculty of Science , Tandoğan , Ankara , Turkey
| | - Esma Kılıç
- a Department of Chemistry , Ankara University, Faculty of Science , Tandoğan , Ankara , Turkey
| |
Collapse
|
35
|
Efficient Donor Impurities in ZnO Nanorods by Polyethylene Glycol for Enhanced Optical and Glutamate Sensing Properties. SENSORS 2016; 16:222. [PMID: 26861342 PMCID: PMC4801598 DOI: 10.3390/s16020222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
In this paper, we show that the possibility of using polyethylene glycol (EG) as a hydrogen source and it is used to assist the hydrothermal synthesis of ZnO nanorods (ZNRs). EG doping in ZNRs has been found to significantly improve their optical and chemical sensing characteristics toward glutamate. The EG was found to have no role on the structural properties of the ZNRs. However, the x-ray photoelectron spectroscopy (XPS) suggests that the EG could induce donor impurities effect in ZnO. Photoluminescence (PL) and UV-Vis. spectra demonstrated this doping effect. Mott-Schottky analysis at the ZNRs/electrolyte interface was used to investigate the charge density for the doped ZNRs and showed comparable dependence on the used amount of EG. Moreover, the doped ZNRs were used in potentiometric measurements for glutamate for a range from 10−6 M to 10−3 M and the potential response of the sensor electrode was linear with a slope of 91.15 mV/decade. The wide range and high sensitivity of the modified ZNRs based glutamate biosensor is attributed to the doping effect on the ZNRs that is dictated by the EG along with the high surface area-to-volume ratio. The findings in the present study suggest new avenues to control the growth of n-ZnO nanostructures and enhance the performance of their sensing devices.
Collapse
|
36
|
l-Glutamate biosensor based on l-glutamate oxidase immobilized onto ZnO nanorods/polypyrrole modified pencil graphite electrode. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Chen R, Deng Y, Yang L, Wang J, Xu F. Determination of Histamine by High-Performance Liquid Chromatography After Precolumn Derivatization with o-Phthalaldehyde-Sulfite. J Chromatogr Sci 2015; 54:547-53. [PMID: 26688564 DOI: 10.1093/chromsci/bmv185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 02/07/2023]
Abstract
A fast and sensitive method was developed for in vivo determination of histamine in the brain microdialysate by reverse ion pair chromatography with electrochemical detection. The microdialysates were derivatized with o-phthalaldehyde and sodium sulfite, and separation was achieved using isocratic elution within 10 min. The separation was performed in an Agilent Eclipse Plus C18 column (3.0 × 150 mm, particle size 3.5 μm), and the mobile phase consisted of 100 mM monosodium phosphate (pH 6.0), 500 mg L(-1) OSA and 20% methanol (v/v). The linearity (R(2)) was found to be >0.999, with a range from 2 to 50 nM and excellent repeatability (relative standard deviation, 2.29-6.04%), and the limit of detection was 0.4 nM. This method was successfully applied to analyze the extracellular concentration of histamine in the hypothalamus of rats, with probe recovery calculated in vivo.
Collapse
Affiliation(s)
- Rongxiang Chen
- Research Center for Medicine and Biology, Zunyi Medical University, Zunyi, Guizhou, 563003, P. R. China Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, P. R. China
| | - Yinghua Deng
- Department of Chemistry and Life Science, Hubei University of Education, Wuhan, Hubei 430205, P. R. China
| | - Liu Yang
- Department of Chemistry and Life Science, Hubei University of Education, Wuhan, Hubei 430205, P. R. China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, P. R. China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei 430071, P. R. China Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
38
|
Akula KK, Chandrasekaran B, Kaur M, Kulkarni SK. Development and Validation of a Specific RP-HPLC Method for the Estimation of γ-Aminobutyric Acid in Rat Brain Tissue Samples Using Benzoyl Chloride Derivatization and PDA Detection. ACTA CHROMATOGR 2015. [DOI: 10.1556/achrom.27.2015.3.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Chen R, Deng Y, Yao J, Kamal GM, Wang J, Xu F. Assessment of Amino Acid Neurotransmitters in Rat Brain Microdialysis Samples by High-Performance Liquid Chromatography with Coulometric Detection. J LIQ CHROMATOGR R T 2015. [DOI: 10.1080/10826076.2015.1040551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Rongxiang Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Yinghua Deng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
- Department of Chemistry and Life Science, Hubei University of Education, Wuhan, Hubei, P. R. China
| | - Jiao Yao
- Department of Chemistry and Life Science, Hubei University of Education, Wuhan, Hubei, P. R. China
| | - Ghulam Mustafa Kamal
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, P. R. China
- Wuhan National Laboratory for Optoelectronics, Wuhan, Hubei, P. R. China
| |
Collapse
|
40
|
Inoue K, Miyazaki Y, Unno K, Min JZ, Todoroki K, Toyo'oka T. Stable isotope dilution HILIC-MS/MS method for accurate quantification of glutamic acid, glutamine, pyroglutamic acid, GABA and theanine in mouse brain tissues. Biomed Chromatogr 2015; 30:55-61. [DOI: 10.1002/bmc.3502] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences; Ritsumeikan University; 1-1-1 Nojihigashi Kusatsu Shiga 525-8577 Japan
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Yasuto Miyazaki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Keiko Unno
- Department of Neurophysiology, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Shizuoka 422-8526 Japan
| | - Jun Zhe Min
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences; University of Shizuoka; 52-1 Yada Suruga-ku Shizuoka 422-8526 Japan
| |
Collapse
|
41
|
Schitine CS, Mendez-Flores OG, Santos LE, Ornelas I, Calaza KC, Pérez-Toledo K, López-Bayghen E, Ortega A, Gardino PF, de Mello FG, Reis RA. Functional plasticity of GAT-3 in avian Müller cells is regulated by neurons via a glutamatergic input. Neurochem Int 2015; 82:42-51. [DOI: 10.1016/j.neuint.2015.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 10/24/2022]
|
42
|
Chen R, Zhou L, Dong J, Miao LY. A rapid and underivatized method for the determination of glutamine in human serum with ultra performance liquid chromatography-tandem mass spectrometry and its application. Int J Food Sci Nutr 2015; 66:243-7. [PMID: 25582177 DOI: 10.3109/09637486.2014.986074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A rapid and underivatized method for the determination of glutamine (Gln) in human serum was developed using ultra performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS). Gln was eluted in an Acquity UPLC BEH Amid column. The chromatographic separation was performed with an isocratic mobile phase consisting of acetonitrile and ammonium formate. The analyses were carried out by select reaction monitoring using the precursor-to-product combinations of m/z 146.8→83.6 (Gln) and m/z 103.4→57.7 (IS). Validation results indicated that the lower limit of quantification was 30 μg mL(-1) and the assay exhibited a linear range of 30-600 μg mL(-1). A typical equation for the calibration curve was y = 0.0039 x + 0.0139 (r(2 )= 0.9992). The intra-batch precision (relative standard deviation, RSD) was less than 5.4% and inter-batch (RSD) was less than 9.2%, while accuracy was from 93.11 to 101.39% and from 96.22 to 99.62%, determined from quality control (QC) samples for Gln. Then the established method was successfully applied to determine the Gln concentration in the serum of healthy human and pregnant woman within three-month pregnancy. The results showed that the Gln concentration in pregnant woman serum was generally lower than the healthy human group. It suggests that the pregnant woman should eat more food packed with Gln.
Collapse
Affiliation(s)
- Rong Chen
- Department of Pharmacy, Clinical Pharmacology Research Laboratory, First Affiliated Hospital of Soochow University , Jiangsu Province , China and
| | | | | | | |
Collapse
|
43
|
Batra B, Kumari S, Pundir CS. Construction of glutamate biosensor based on covalent immobilization of glutamate oxidase on polypyrrole nanoparticles/polyaniline modified gold electrode. Enzyme Microb Technol 2014; 57:69-77. [PMID: 24629270 DOI: 10.1016/j.enzmictec.2014.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 11/25/2022]
Abstract
A method is described for construction of a highly sensitive electrochemical biosensor for detection of glutamate. The biosensor is based on covalent immobilization of glutamate oxidase (GluOx) onto polypyrrole nanoparticles and polyaniline composite film (PPyNPs/PANI) electrodeposited onto Au electrode. The enzyme electrode was characterized by cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 7.5 (0.1 M sodium phosphate) and 35 °C, when operated at 50 mV s⁻¹. It exhibited excellent sensitivity (detection limit as 0.1 nM), fast response time and wider linear range (from 0.02 to 400 μM). Analytical recovery of added glutamate (5 mM and 10 mM) was 95.56 and 97%, while within batch and between batch coefficients of variation were 3.2% and 3.35% respectively. The enzyme electrode was used 100 times over a period of 60 days, when stored at 4 °C. The biosensor measured glutamate level in food stuff, which correlated well with a standard colorimetric method (r=0.99).
Collapse
Affiliation(s)
- Bhawna Batra
- Department of Biochemistry, M D University, Rohtak 124001, India
| | - Seema Kumari
- Department of Biochemistry, M D University, Rohtak 124001, India
| | | |
Collapse
|
44
|
Zha YP, Wang YK, Deng Y, Zhang RW, Tan X, Yuan WJ, Deng XM, Wang WZ. Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neurosci Ther 2013; 19:244-51. [PMID: 23521912 DOI: 10.1111/cns.12065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/10/2013] [Accepted: 01/11/2013] [Indexed: 12/01/2022] Open
Abstract
AIMS It is well known that low-intensity exercise training (ExT) is beneficial to cardiovascular dysfunction in hypertension. The tonically active glutamatergic input to the rostral ventrolateral medulla (RVLM), a key region for control of blood pressure and sympathetic tone, has been demonstrated to be increased in hypertensive rats. The aim of this study was to determine the effect of ExT on the increased glutamatergic input to the RVLM in spontaneously hypertensive rat (SHR). METHODS Normotensive rats Wistar-Kyoto (WKY) and SHR were treadmill trained or remained sedentary (Sed) for 12 weeks and classed into four groups (WKY-Sed, WKY-ExT, SHR-Sed, and SHR-ExT). The release of glutamate in the RVLM and its contribution to cardiovascular activity were determined in WKY and SHR after treatment of ExT. RESULTS Blood pressure and sympathetic tone were significantly reduced in SHR after treatment with ExT. Bilateral microinjection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nL) into the RVLM significantly decreased resting blood pressure, heart rate, and renal sympathetic nerve activity in SHR-Sed but not in WKY groups (WKY-Sed and WKY-ExT). However, the degree of reduction in these cardiovascular parameters evoked by KYN was significantly blunted in SHR-ExT compared with SHR-Sed group. The concentration of glutamate and the protein expression of vesicular glutamate transporter 2 in the RVLM were significantly increased in SHR-Sed compared with WKY-Sed, whereas they were reduced after treatment with ExT. CONCLUSION Our findings suggest that ExT attenuates the enhancement in the tonically acting glutamatergic input to the RVLM of hypertensive rats, thereby reducing the sympathetic hyperactivity and blood pressure.
Collapse
Affiliation(s)
- Yan-Ping Zha
- Department of Physiology, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Pandareesh MD, Anand T. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS. Neurotoxicology 2013; 40:33-42. [PMID: 24257033 DOI: 10.1016/j.neuro.2013.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/09/2013] [Accepted: 11/10/2013] [Indexed: 11/27/2022]
Abstract
Bacopa monniera is well known herbal medicine for its neuropharmacological effects. It alleviates variety of disorders including neuronal and physiological changes. Crackers smoke is a potent risk factor that leads to free radical mediated oxidative stress in vivo. The aim of the current study is to evaluate the protective efficacy of B. monniera extract (BME) against crackers smoke induced neuronal and physiological changes via modulating inducible nitric oxide synthase (iNOS) and hemeoxygenase-1 (HO-1) expression in rats. Rats were exposed to smoke for 1h for a period of 3 weeks and consecutively treated with BME at three different dosages (i.e., 10, 20 and 40 mg/kg b.wt.). Our results elucidate that BME treatment ameliorates histopathalogical changes, reactive oxygen species levels, lipid peroxidation, acetylcholine esterase activity and brain neurotransmitter levels to normal. BME supplementation efficiently inhibited HO-1 expression and nitric oxide generation by down-regulating iNOS expression. Smoke induced depletion of antioxidant enzyme status, monoamine oxidase activity was also replenished by BME supplementation. Thus the present study indicates that BME ameliorates various impairments associated with neuronal and physiological changes in rats exposed to crackers smoke by its potent neuromodulatory, antioxidant and adaptogenic propensity.
Collapse
Affiliation(s)
- M D Pandareesh
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, India
| | - T Anand
- Biochemistry and Nanosciences Discipline, Defence Food Research Laboratory, Siddarthanagar, Mysore 570011, India.
| |
Collapse
|
46
|
Salunke BP, Umathe SN, Chavan JG. Involvement of NMDA receptor in low-frequency magnetic field-induced anxiety in mice. Electromagn Biol Med 2013; 33:312-26. [DOI: 10.3109/15368378.2013.839453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Birbeck JA, Mathews TA. Simultaneous Detection of Monoamine and Purine Molecules Using High-Performance Liquid Chromatography with a Boron-Doped Diamond Electrode. Anal Chem 2013; 85:7398-404. [DOI: 10.1021/ac4013144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Johnna A. Birbeck
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit,
Michigan 48202, United States
| | - Tiffany A. Mathews
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit,
Michigan 48202, United States
| |
Collapse
|
48
|
Prasad BB, Prasad A, Tiwari MP. Highly selective and sensitive analysis of γ-aminobutyric acid using a new molecularly imprinted polymer modified at the surface of abrasively immobilized multi-walled carbon nanotubes on pencil graphite electrode. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Reinhoud NJ, Brouwer HJ, van Heerwaarden LM, Korte-Bouws GAH. Analysis of glutamate, GABA, noradrenaline, dopamine, serotonin, and metabolites using microbore UHPLC with electrochemical detection. ACS Chem Neurosci 2013; 4:888-94. [PMID: 23642417 DOI: 10.1021/cn400044s] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The applicability of microbore ultrahigh performance liquid chromatography (UHPLC) with electrochemical detection for offline analysis of a number of well-known neurotransmitters in less than 10 μL microdialysis fractions is described. Two methods are presented for the analysis of monoamine or amino acid neurotransmitters, using the same UHPLC instrument. Speed of analysis of noradrenaline (NA), dopamine (DA), serotonin (5-HT), and the metabolites homovanillic acid (HVA), 5-hydroxyindole aceticacid (5-HIAA), and 3,4-dihydroxyphenylacetic acid (DOPAC) was predominated by the retention behavior of NA, the nonideal behavior of matrix components, and the loss in signal of 5-HT. This method was optimized to meet the requirements for detection sensitivity and minimizing the size of collected fractions, which determines temporal resolution in microdialysis. The amino acid neurotransmitters glutamate (Glu) and γ-aminobutyric acid (GABA) were analyzed after an automated derivatization procedure. Under optimized conditions, Glu was resolved from a number of early eluting system peaks, while the total runtime was decreased to 15 min by a 4-fold increase of the flow rate under UHPLC conditions. The detection limit for Glu and GABA was 10 nmol/L (15 fmol in 1.5 μL); the monoamine neurotransmitters had a detection limit between 32 and 83 pmol/L (0.16-0.42 fmol in 5 μL) in standard solutions. Using UHPLC, the analysis times varied from 15 min to less than 2 min depending on the complexity of the samples and the substances to be analyzed.
Collapse
Affiliation(s)
| | | | | | - Gerdien A. H. Korte-Bouws
- Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
50
|
Batra B, Pundir CS. An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron 2013; 47:496-501. [PMID: 23628843 DOI: 10.1016/j.bios.2013.03.063] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 03/24/2013] [Indexed: 11/29/2022]
Abstract
A method is described for the construction of a novel amperometric glutamate biosensor based on covalent immobilization of glutamate oxidase (GluOx) onto, carboxylated multi walled carbon nanotubes (cMWCNT), gold nanoparticles (AuNPs) and chitosan (CHIT) composite film electrodeposited on the surface of a Au electrode. The GluOx/cMWCNT/AuNP/CHIT modified Au electrode was characterized by scanning electron microscopy (SEM), fourier transform infra-red (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The biosensor measured current due to electrons generated at 0.135V against Ag/AgCl from H2O2, which is produced from glutamate by immobilized GluOx. The biosensor showed optimum response within 2s at pH 7.5 and 35°C. A linear relationship was obtained between a wide glutamate concentration range (5-500μM) and current (μA) under optimum conditions. The biosensor showed high sensitivity (155nA/μM/cm(2)), low detection limit (1.6μM) and good storage stability. The biosensor was unaffected by a number of serum substances at their physiological concentrations. The biosensor was evaluated and employed for determination of glutamate in sera from apparently healthy subjects and persons suffering from epilepsy.
Collapse
Affiliation(s)
- Bhawna Batra
- Department of Biochemistry, M.D. University, Rohtak 124001, India
| | | |
Collapse
|