1
|
H Liu D, Kumar S, Alawieh H, Samuel Racz F, Del R Millán J. Personalized µ-transcranial alternating current stimulation improves online brain-computer interface control. J Neural Eng 2025; 22:016037. [PMID: 39819671 DOI: 10.1088/1741-2552/ada980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2024] [Accepted: 01/13/2025] [Indexed: 01/19/2025]
Abstract
Objective.A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).Approach.Previous studies have identified that the peak power spectral density value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 min of tACS at the participant-specific, peakµfrequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-stateµSMRs.Main results.After tACS, we observed significant improvements in event-related desynchronizations (ERDs) ofµSMRs, and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N= 10)-but not in an active control-stimulation control group (N= 10). Lastly, we showed a significant correlation between the resting-stateµSMRs andµERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.Significance.Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.
Collapse
Affiliation(s)
- Deland H Liu
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Satyam Kumar
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Hussein Alawieh
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Frigyes Samuel Racz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - José Del R Millán
- Chandra Department of Electrical and Computer Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, United States of America
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, United States of America
- Mulva Clinic for the Neurosciences, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
2
|
Ivanov N, Chau T. Riemannian geometry-based metrics to measure and reinforce user performance changes during brain-computer interface user training. Front Comput Neurosci 2023; 17:1108889. [PMID: 36860616 PMCID: PMC9968793 DOI: 10.3389/fncom.2023.1108889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Despite growing interest and research into brain-computer interfaces (BCI), their usage remains limited outside of research laboratories. One reason for this is BCI inefficiency, the phenomenon where a significant number of potential users are unable to produce machine-discernible brain signal patterns to control the devices. To reduce the prevalence of BCI inefficiency, some have advocated for novel user-training protocols that enable users to more effectively modulate their neural activity. Important considerations for the design of these protocols are the assessment measures that are used for evaluating user performance and for providing feedback that guides skill acquisition. Herein, we present three trial-wise adaptations (running, sliding window and weighted average) of Riemannian geometry-based user-performance metrics (classDistinct reflecting the degree of class separability and classStability reflecting the level of within-class consistency) to enable feedback to the user following each individual trial. We evaluated these metrics, along with conventional classifier feedback, using simulated and previously recorded sensorimotor rhythm-BCI data to assess their correlation with and discrimination of broader trends in user performance. Analysis revealed that the sliding window and weighted average variants of our proposed trial-wise Riemannian geometry-based metrics more accurately reflected performance changes during BCI sessions compared to conventional classifier output. The results indicate the metrics are a viable method for evaluating and tracking user performance changes during BCI-user training and, therefore, further investigation into how these metrics may be presented to users during training is warranted.
Collapse
Affiliation(s)
- Nicolas Ivanov
- PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Tom Chau
- PRISM Lab, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Bobrova EV, Reshetnikova VV, Vershinina EA, Grishin AA, Isaev MR, Bobrov PD, Gerasimenko YP. Dependence of Brain-Computer Interface Control Training on Personality Traits. DOKL BIOCHEM BIOPHYS 2022; 507:273-277. [PMID: 36786985 DOI: 10.1134/s1607672922060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 02/15/2023]
Abstract
Personality traits (PTs) are predictors of the success of control of brain-computer interfaces (BCIs); however, it is unknown how the PTs that are optimal for BCI control changes during training. The paper for the first time analyzes the correlations between PTs and the accuracy of the classification (AC) of brain states in imagining the movements of the hands, feet, and locomotion during 10-day training of ten volunteers in BCI control. In the first 3 days of training, the AC is higher for more stressed and anxious volunteers; in the last days, for calmer ones. In the middle of the training period, AC is higher in low-demonstrativeness persons, it is more pronounced when imagining foot movements. Correlations of low demonstrativeness, as well as of foresight and self-control with AC when imagining foot movements are revealed significantly more often than when imagining hand movements and locomotions. During almost the entire period of training, AC with locomotion imagination is higher in individualists. The results make it possible to propose individually-oriented recommendations for the use of BCI based on the imagination of movements for the rehabilitation of patients with motor disorders.
Collapse
Affiliation(s)
- E V Bobrova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - V V Reshetnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - E A Vershinina
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | - A A Grishin
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia.
| | - M R Isaev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Russian National Research Medical University, Moscow, Russia
| | - P D Bobrov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia.,Institute of Translational Medicine, Russian National Research Medical University, Moscow, Russia
| | - Yu P Gerasimenko
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
4
|
Kang JH, Youn J, Kim SH, Kim J. Effects of Frontal Theta Rhythms in a Prior Resting State on the Subsequent Motor Imagery Brain-Computer Interface Performance. Front Neurosci 2021; 15:663101. [PMID: 34483816 PMCID: PMC8414888 DOI: 10.3389/fnins.2021.663101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2021] [Accepted: 07/27/2021] [Indexed: 12/01/2022] Open
Abstract
Dealing with subjects who are unable to attain a proper level of performance, that is, those with brain–computer interface (BCI) illiteracy or BCI inefficients, is still a major issue in human electroencephalography (EEG) BCI systems. The most suitable approach to address this issue is to analyze the EEG signals of individual subjects independently recorded before the main BCI tasks, to evaluate their performance on these tasks. This study mainly focused on non-linear analyses and deep learning techniques to investigate the significant relationship between the intrinsic characteristics of a prior idle resting state and the subsequent BCI performance. To achieve this main objective, a public EEG motor/movement imagery dataset that constituted two individual EEG signals recorded from an idle resting state and a motor imagery BCI task was used in this study. For the EEG processing in the prior resting state, spectral analysis but also non-linear analyses, such as sample entropy, permutation entropy, and recurrent quantification analyses (RQA), were performed to obtain individual groups of EEG features to represent intrinsic EEG characteristics in the subject. For the EEG signals in the BCI tasks, four individual decoding methods, as a filter-bank common spatial pattern-based classifier and three types of convolution neural network-based classifiers, quantified the subsequent BCI performance in the subject. Statistical linear regression and ANOVA with post hoc analyses verified the significant relationship between non-linear EEG features in the prior resting state and three types of BCI performance as low-, intermediate-, and high-performance groups that were statistically discriminated by the subsequent BCI performance. As a result, we found that the frontal theta rhythm ranging from 4 to 8 Hz during the eyes open condition was highly associated with the subsequent BCI performance. The RQA findings that higher determinism and lower mean recurrent time were mainly observed in higher-performance groups indicate that more regular and stable properties in the EEG signals over the frontal regions during the prior resting state would provide a critical clue to assess an individual BCI ability in the following motor imagery task.
Collapse
Affiliation(s)
- Jae-Hwan Kang
- AI Grand ICT Research Center, Dong-eui University, Busan, South Korea
| | - Joosang Youn
- Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea
| | - Sung-Hee Kim
- Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea
| | - Junsuk Kim
- Department of Industrial ICT Engineering, Dong-eui University, Busan, South Korea
| |
Collapse
|
5
|
Zhou Q, Lin J, Yao L, Wang Y, Han Y, Xu K. Relative Power Correlates With the Decoding Performance of Motor Imagery Both Across Time and Subjects. Front Hum Neurosci 2021; 15:701091. [PMID: 34483866 PMCID: PMC8414415 DOI: 10.3389/fnhum.2021.701091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022] Open
Abstract
One of the most significant challenges in the application of brain-computer interfaces (BCI) is the large performance variation, which often occurs over time or across users. Recent evidence suggests that the physiological states may explain this performance variation in BCI, however, the underlying neurophysiological mechanism is unclear. In this study, we conducted a seven-session motor-imagery (MI) experiment on 20 healthy subjects to investigate the neurophysiological mechanism on the performance variation. The classification accuracy was calculated offline by common spatial pattern (CSP) and support vector machine (SVM) algorithms to measure the MI performance of each subject and session. Relative Power (RP) values from different rhythms and task stages were used to reflect the physiological states and their correlation with the BCI performance was investigated. Results showed that the alpha band RP from the supplementary motor area (SMA) within a few seconds before MI was positively correlated with performance. Besides, the changes of RP between task and pre-task stage from theta, alpha, and gamma band were also found to be correlated with performance both across time and subjects. These findings reveal a neurophysiological manifestation of the performance variations, and would further provide a way to improve the BCI performance.
Collapse
Affiliation(s)
- Qing Zhou
- Zhejiang Lab, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Jiafan Lin
- Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - Lin Yao
- Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.,The College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yueming Wang
- Zhejiang Lab, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.,The College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| | - Yan Han
- Zhejiang Key Laboratory of Neuroelectronics and Brain Computer Interface Technology, Hangzhou, China
| | - Kedi Xu
- Zhejiang Lab, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China.,Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China.,The College of Computer Science and Technology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Abstract
Abstract
Neurofeedback (NF) is a versatile non-invasive neuromodulation technique. In combination with motor imagery (MI), NF has considerable potential for enhancing motor performance or supplementing motor rehabilitation. However, not all users achieve reliable NF control. While research has focused on various brain signal properties and the optimisation of signal processing to solve this issue, the impact of context, i.e. the conditions in which NF motor tasks occur, is comparatively unknown. We review current research on the impact of context on MI NF and related motor domains. We identify long-term factors that act at the level of the individual or of the intervention, and short-term factors, with levels before/after and during a session. The reviewed literature indicates that context plays a significant role. We propose considering context factors as well as within-level and across-level interactions when studying MI NF.
Collapse
|
7
|
Bobrova EV, Reshetnikova VV, Vershinina EA, Grishin AA, Bobrov PD, Frolov AA, Gerasimenko YP. Success of Hand Movement Imagination Depends on Personality Traits, Brain Asymmetry, and Degree of Handedness. Brain Sci 2021; 11:853. [PMID: 34202413 PMCID: PMC8301954 DOI: 10.3390/brainsci11070853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
Brain-computer interfaces (BCIs), based on motor imagery, are increasingly used in neurorehabilitation. However, some people cannot control BCI, predictors of this are the features of brain activity and personality traits. It is not known whether the success of BCI control is related to interhemispheric asymmetry. The study was conducted on 44 BCI-naive subjects and included one BCI session, EEG-analysis, 16PF Cattell Questionnaire, estimation of latent left-handedness, and of subjective complexity of real and imagery movements. The success of brain states recognition during imagination of left hand (LH) movement compared to the rest is higher in reserved, practical, skeptical, and not very sociable individuals. Extraversion, liveliness, and dominance are significant for the imagination of right hand (RH) movements in "pure" right-handers, and sensitivity in latent left-handers. Subjective complexity of real LH and of imagery RH movements correlates with the success of brain states recognition in the imagination of movement of LH compared to RH and depends on the level of handedness. Thus, the level of handedness is the factor influencing the success of BCI control. The data are supposed to be connected with hemispheric differences in motor control, lateralization of dopamine, and may be important for rehabilitation of patients after a stroke.
Collapse
Affiliation(s)
- Elena V. Bobrova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Varvara V. Reshetnikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Elena A. Vershinina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Alexander A. Grishin
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Pavel D. Bobrov
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University, 117997 Moscow, Russia; (P.D.B.); (A.A.F.)
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Alexander A. Frolov
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University, 117997 Moscow, Russia; (P.D.B.); (A.A.F.)
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, Frazier Rehab Institute, University of Louisville, UofL Health, Louisville, KY 40202, USA
| |
Collapse
|
8
|
Wriessnegger SC, Müller-Putz GR, Brunner C, Sburlea AI. Inter- and Intra-individual Variability in Brain Oscillations During Sports Motor Imagery. Front Hum Neurosci 2020; 14:576241. [PMID: 33192406 PMCID: PMC7662155 DOI: 10.3389/fnhum.2020.576241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of this work was to re-evaluate electrophysiological data from a previous study on motor imagery (MI) with a special focus on observed inter- and intra-individual differences. More concretely, we investigated event-related desynchronization/synchronization patterns during sports MI (playing tennis) compared with simple MI (squeezing a ball) and discovered high variability across participants. Thirty healthy volunteers were divided in two groups; the experimental group (EG) performed a physical exercise between two imagery sessions, and the control group (CG) watched a landscape movie without physical activity. We computed inter-individual differences by assessing the dissimilarities among subjects for each group, condition, time period, and frequency band. In the alpha band, we observe some clustering in the ranking of the subjects, therefore showing smaller distances than others. Moreover, in our statistical evaluation, we observed a consistency in ranking across time periods both for the EG and for the CG. For the latter, we also observed similar rankings across conditions. On the contrary, in the beta band, the ranking of the subjects was more similar for the EG across conditions and time periods than for the subjects of the CG. With this study, we would like to draw attention to variability measures instead of primarily focusing on the identification of common patterns across participants, which often do not reflect the whole neurophysiological reality.
Collapse
Affiliation(s)
- Selina C Wriessnegger
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Gernot R Müller-Putz
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | | | - Andreea I Sburlea
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| |
Collapse
|
9
|
Velasquez-Martinez L, Caicedo-Acosta J, Acosta-Medina C, Alvarez-Meza A, Castellanos-Dominguez G. Regression Networks for Neurophysiological Indicator Evaluation in Practicing Motor Imagery Tasks. Brain Sci 2020; 10:E707. [PMID: 33020435 PMCID: PMC7600302 DOI: 10.3390/brainsci10100707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 11/21/2022] Open
Abstract
Motor Imagery (MI) promotes motor learning in activities, like developing professional motor skills, sports gestures, and patient rehabilitation. However, up to 30% of users may not develop enough coordination skills after training sessions because of inter and intra-subject variability. Here, we develop a data-driven estimator, termed Deep Regression Network (DRN), which jointly extracts and performs the regression analysis in order to assess the efficiency of the individual brain networks in practicing MI tasks. The proposed double-stage estimator initially learns a pool of deep patterns, extracted from the input data, in order to feed a neural regression model, allowing for infering the distinctiveness between subject assemblies having similar variability. The results, which were obtained on real-world MI data, prove that the DRN estimator fosters pre-training neural desynchronization and initial training synchronization to predict the bi-class accuracy response, thus providing a better understanding of the Brain-Computer Interface inefficiency of subjects.
Collapse
Affiliation(s)
- Luisa Velasquez-Martinez
- Signal Processing and Recognition Group, Universidad Nacional de Colombia, Manizales 170004, Colombia; (J.C.-A.); (C.A.-M.); (A.A.-M.); (G.C.-D.)
| | | | | | | | | |
Collapse
|
10
|
Stiso J, Corsi MC, Vettel JM, Garcia J, Pasqualetti F, De Vico Fallani F, Lucas TH, Bassett DS. Learning in brain-computer interface control evidenced by joint decomposition of brain and behavior. J Neural Eng 2020; 17:046018. [PMID: 32369802 PMCID: PMC7734596 DOI: 10.1088/1741-2552/ab9064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Motor imagery-based brain-computer interfaces (BCIs) use an individual's ability to volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe causal relations between brain activity and behavior. However, many individuals cannot learn to successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for basic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered initial evidence that coherent activity across spatially distributed and functionally diverse cognitive systems is a hallmark of individuals who can successfully learn to control the BCI. However, little is known about how these distributed networks interact through time to support learning. APPROACH Here, we address this gap in knowledge by constructing and applying a multimodal network approach to decipher brain-behavior relations in motor imagery-based brain-computer interface learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix decomposition method - non-negative matrix factorization - to simultaneously identify regularized, covarying subgraphs of functional connectivity, to assess their similarity to task performance, and to detect their time-varying expression. MAIN RESULTS We find that learning is marked by diffuse brain-behavior relations: good learners displayed many subgraphs whose temporal expression tracked performance. Individuals also displayed marked variation in the spatial properties of subgraphs such as the connectivity between the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the stage of learning at which they reached maximum expression. From these observations, we posit a conceptual model in which certain subgraphs support learning by modulating brain activity in sensors near regions important for sustaining attention. To test this model, we use tools that stipulate regional dynamics on a networked system (network control theory), and find that good learners display a single subgraph whose temporal expression tracked performance and whose architecture supports easy modulation of sensors located near brain regions important for attention. SIGNIFICANCE The nature of our contribution to the neuroscience of BCI learning is therefore both computational and theoretical; we first use a minimally-constrained, individual specific method of identifying mesoscale structure in dynamic brain activity to show how global connectivity and interactions between distributed networks supports BCI learning, and then we use a formal network model of control to lend theoretical support to the hypothesis that these identified subgraphs are well suited to modulate attention.
Collapse
Affiliation(s)
- Jennifer Stiso
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marie-Constance Corsi
- Inria Paris, Aramis project-team, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Epinire, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universit, F-75013, Paris, France
| | - Jean M. Vettel
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Research & Engineering Directorate, US CCDC Army Research Laboratory, Aberdeen, MD, USA
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Javier Garcia
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Human Research & Engineering Directorate, US CCDC Army Research Laboratory, Aberdeen, MD, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, CA 92521
| | - Fabrizio De Vico Fallani
- Inria Paris, Aramis project-team, F-75013, Paris, France
- Institut du Cerveau et de la Moelle Epinire, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Universit, F-75013, Paris, France
| | - Timothy H. Lucas
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S. Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
11
|
Corsi MC, Chavez M, Schwartz D, George N, Hugueville L, Kahn AE, Dupont S, Bassett DS, De Vico Fallani F. Functional disconnection of associative cortical areas predicts performance during BCI training. Neuroimage 2020; 209:116500. [PMID: 31927130 PMCID: PMC7056534 DOI: 10.1016/j.neuroimage.2019.116500] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2019] [Revised: 12/13/2019] [Accepted: 12/25/2019] [Indexed: 11/21/2022] Open
Abstract
Brain-computer interfaces (BCIs) have been largely developed to allow communication, control, and neurofeedback in human beings. Despite their great potential, BCIs perform inconsistently across individuals and the neural processes that enable humans to achieve good control remain poorly understood. To address this question, we performed simultaneous high-density electroencephalographic (EEG) and magnetoencephalographic (MEG) recordings in a motor imagery-based BCI training involving a group of healthy subjects. After reconstructing the signals at the cortical level, we showed that the reinforcement of motor-related activity during the BCI skill acquisition is paralleled by a progressive disconnection of associative areas which were not directly targeted during the experiments. Notably, these network connectivity changes reflected growing automaticity associated with BCI performance and predicted future learning rate. Altogether, our findings provide new insights into the large-scale cortical organizational mechanisms underlying BCI learning, which have implications for the improvement of this technology in a broad range of real-life applications.
Collapse
Affiliation(s)
- Marie-Constance Corsi
- Inria Paris, Aramis Project-team, F-75013, Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Université, F-75013, Paris, France.
| | | | - Denis Schwartz
- Institut du Cerveau et de la Moelle Epinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Nathalie George
- Institut du Cerveau et de la Moelle Epinière, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Université, F-75013, Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Laurent Hugueville
- Institut du Cerveau et de la Moelle Epinière, ICM, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Ecole Normale Supérieure, ENS, Centre MEG-EEG, F-75013, Paris, France
| | - Ari E Kahn
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sophie Dupont
- Institut du Cerveau et de la Moelle Epinière, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Université, F-75013, Paris, France
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Fabrizio De Vico Fallani
- Inria Paris, Aramis Project-team, F-75013, Paris, France; Institut du Cerveau et de la Moelle Epinière, ICM, Inserm, U 1127, CNRS, UMR 7225, Sorbonne Université, F-75013, Paris, France.
| |
Collapse
|
12
|
Meekes J, Debener S, Zich C, Bleichner MG, Kranczioch C. Does Fractional Anisotropy Predict Motor Imagery Neurofeedback Performance in Healthy Older Adults? Front Hum Neurosci 2019; 13:69. [PMID: 30873015 PMCID: PMC6403184 DOI: 10.3389/fnhum.2019.00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2018] [Accepted: 02/11/2019] [Indexed: 01/02/2023] Open
Abstract
Motor imagery neurofeedback training has been proposed as a potential add-on therapy for motor impairment after stroke, but not everyone benefits from it. Previous work has used white matter integrity to predict motor imagery neurofeedback aptitude in healthy young adults. We set out to test this approach with motor imagery neurofeedback that is closer to that used for stroke rehabilitation and in a sample whose age is closer to that of typical stroke patients. Using shrinkage linear discriminant analysis with fractional anisotropy values in 48 white matter regions as predictors, we predicted whether each participant in a sample of 21 healthy older adults (48–77 years old) was a good or a bad performer with 84.8% accuracy. However, the regions used for prediction in our sample differed from those identified previously, and previously suggested regions did not yield significant prediction in our sample. Including demographic and cognitive variables which may correlate with motor imagery neurofeedback performance and white matter structure as candidate predictors revealed an association with age but also led to loss of statistical significance and somewhat poorer prediction accuracy (69.6%). Our results suggest cast doubt on the feasibility of predicting the benefit of motor imagery neurofeedback from fractional anisotropy. At the very least, such predictions should be based on data collected using the same paradigm and with subjects whose characteristics match those of the target case as closely as possible.
Collapse
Affiliation(s)
- Joost Meekes
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4All, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Catharina Zich
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany.,Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Center for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Martin G Bleichner
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany.,Cluster of Excellence Hearing4All, University of Oldenburg, Oldenburg, Germany
| | - Cornelia Kranczioch
- Neuropsychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
13
|
Darvishi S, Gharabaghi A, Ridding MC, Abbott D, Baumert M. Reaction Time Predicts Brain-Computer Interface Aptitude. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2018; 6:2000311. [PMID: 30533323 PMCID: PMC6280922 DOI: 10.1109/jtehm.2018.2875985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 09/09/2017] [Revised: 11/28/2017] [Accepted: 09/22/2018] [Indexed: 01/24/2023]
Abstract
There is evidence that 15-30% of the general population cannot effectively operate brain-computer interfaces (BCIs). Thus the BCI performance predictors are critically required to pre-screen participants. Current neurophysiological and psychological tests either require complicated equipment or suffer from subjectivity. Thus, a simple and objective BCI performance predictor is desirable. Neurofeedback (NFB) training involves performing a cognitive task (motor imagery) instructed via sensory stimuli and re-adjusted through ongoing real-time feedback. A simple reaction time (SRT) test reflects the time required for a subject to respond to a defined stimulus. Thus, we postulated that individuals with shorter reaction times operate a BCI with rapidly updated feedback better than individuals with longer reaction times. Furthermore, we investigated how changing the feedback update interval (FUI), i.e., modification of the feedback provision frequency, affects the correlation between the SRT and BCI performance. Ten participants attended four NFB sessions with FUIs of 16, 24, 48, and 96 ms in a randomized order. We found that: 1) SRT is correlated with the BCI performance with FUIs of 16 and 96 ms; 2) good and poor performers elicit stronger ERDs and control BCIs more effectively (i.e., produced larger information transfer rates) with 16 and 96 ms FUIs, respectively. Our findings suggest that SRT may be used as a simple and objective surrogate for BCI aptitude with FUIs of 16 and 96 ms. It also implies that the FUI customization according to participants SRT measure may enhance the BCI performance.
Collapse
Affiliation(s)
- Sam Darvishi
- School of Electrical and Electronic EngineeringThe University of Adelaide SA 5005 Australia
| | - Alireza Gharabaghi
- Division of Functional and Restorative NeurosurgeryUniversity of Tübingen 72074 Tübingen Germany
| | - Michael C Ridding
- Robinson Research Institute, School of MedicineThe University of Adelaide SA 5005 Australia
| | - Derek Abbott
- School of Electrical and Electronic EngineeringThe University of Adelaide SA 5005 Australia
| | - Mathias Baumert
- School of Electrical and Electronic EngineeringThe University of Adelaide SA 5005 Australia
| |
Collapse
|
14
|
Robinson N, Thomas KP, Vinod AP. Neurophysiological predictors and spectro-spatial discriminative features for enhancing SMR-BCI. J Neural Eng 2018; 15:066032. [PMID: 30277219 DOI: 10.1088/1741-2552/aae597] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Neural engineering research is actively engaged in optimizing the robustness of sensorimotor rhythms (SMR)-brain-computer interface (BCI) to boost its potential real-world use. OBJECTIVE This paper investigates two vital factors in efficient and robust SMR-BCI design-algorithms that address subject-variability of optimal features and neurophysiological factors that correlate with BCI performance. Existing SMR-BCI research using electroencephalogram (EEG) to classify bilateral motor imagery (MI) focus on identifying subject-specific frequency bands with most discriminative motor patterns localized to sensorimotor region. APPROACH A novel strategy to further optimize BCI performance by taking into account the variability of discriminative spectral regions across various EEG channels is proposed in this paper. MAIN RESULTS The proposed technique results in a significant ([Formula: see text]) increase in average ([Formula: see text]) classification accuracy by [Formula: see text] accompanied by a considerable reduction in number of channels and bands. The session-to-session transfer variation in spectro-spatial patterns using proposed algorithm is investigated offline and classification performance of the optimized BCI model is successfully evaluated in an online SMR-BCI. Further, the effective prediction of SMR-BCI performance with physiological indicators derived from multi-channel resting-state EEG is demonstrated. The results indicate that the resting state activation patterns such as entropy and gamma power from pre-motor (fronto-central) and posterior (parietal and centro-parietal) areas, and beta power from posterior (centro-parietal) areas estimate BCI performance with minimum error. These patterns, strongly related to BCI performance, may represent certain cognitive states during rest. SIGNIFICANCE Findings reported in this paper imply the need for subject-specific modelling of BCI and the prediction of BCI performance using multi-channel rest-state parameters, to ensure enhanced BCI performance.
Collapse
Affiliation(s)
- Neethu Robinson
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | |
Collapse
|
15
|
Shu X, Chen S, Yao L, Sheng X, Zhang D, Jiang N, Jia J, Zhu X. Fast Recognition of BCI-Inefficient Users Using Physiological Features from EEG Signals: A Screening Study of Stroke Patients. Front Neurosci 2018; 12:93. [PMID: 29515363 PMCID: PMC5826359 DOI: 10.3389/fnins.2018.00093] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2017] [Accepted: 02/05/2018] [Indexed: 11/13/2022] Open
Abstract
Motor imagery (MI) based brain-computer interface (BCI) has been developed as an alternative therapy for stroke rehabilitation. However, experimental evidence demonstrates that a significant portion (10-50%) of subjects are BCI-inefficient users (accuracy less than 70%). Thus, predicting BCI performance prior to clinical BCI usage would facilitate the selection of suitable end-users and improve the efficiency of stroke rehabilitation. In the current study, we proposed two physiological variables, i.e., laterality index (LI) and cortical activation strength (CAS), to predict MI-BCI performance. Twenty-four stroke patients and 10 healthy subjects were recruited for this study. Each subject was required to perform two blocks of left- and right-hand MI tasks. Linear regression analyses were performed between the BCI accuracies and two physiological predictors. Here, the predictors were calculated from the electroencephalography (EEG) signals during paretic hand MI tasks (5 trials; approximately 1 min). LI values exhibited a statistically significant correlation with two-class BCI (left vs. right) performance (r = -0.732, p < 0.001), and CAS values exhibited a statistically significant correlation with brain-switch BCI (task vs. idle) performance (r = 0.641, p < 0.001). Furthermore, the BCI-inefficient users were successfully recognized with a sensitivity of 88.2% and a specificity of 85.7% in the two-class BCI. The brain-switch BCI achieved a sensitivity of 100.0% and a specificity of 87.5% in the discrimination of BCI-inefficient users. These results demonstrated that the proposed BCI predictors were promising to promote the BCI usage in stroke rehabilitation and contribute to a better understanding of the BCI-inefficiency phenomenon in stroke patients.
Collapse
Affiliation(s)
- Xiaokang Shu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Shugeng Chen
- Department of Rehabilitation, Huashan Hospital, Shanghai, China
| | - Lin Yao
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Xinjun Sheng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Dingguo Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Jiang
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Jie Jia
- Department of Rehabilitation, Huashan Hospital, Shanghai, China
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Saeedi S, Chavarriaga R, Millan JDR. Long-Term Stable Control of Motor-Imagery BCI by a Locked-In User Through Adaptive Assistance. IEEE Trans Neural Syst Rehabil Eng 2016; 25:380-391. [PMID: 28055886 DOI: 10.1109/tnsre.2016.2645681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
Performance variation is one of the main challenges that BCIs are confronted with, when being used over extended periods of time. Shared control techniques could partially cope with such a problem. In this paper, we propose a taxonomy of shared control approaches used for BCIs and we review some of the recent studies at the light of these approaches. We posit that the level of assistance provided to the BCI user should be adjusted in real time in order to enhance BCI reliability over time. This approach has not been extensively studied in the recent literature on BCIs. In addition, we investigate the effectiveness of providing online adaptive assistance in a motor-imagery BCI for a tetraplegic end-user with an incomplete locked-in syndrome in a longitudinal study lasting 11 months. First, we report a reliable estimation of the BCI performance (in terms of command delivery time) using only a window of 1 s in the beginning of trials (AUC ≈ 0.8 ). Second, we demonstrate how adaptive shared control can exploit the output of the performance estimator to adjust online the level of assistance in a BCI game by regulating its speed. In particular, online adaptive assistance was superior to a fixed condition in terms of success rate ( ). Remarkably, the results exhibited a stable performance over severalmonths without recalibration of the BCI classifier or the performance estimator.
Collapse
|
17
|
Ordikhani-Seyedlar M, Lebedev MA, Sorensen HBD, Puthusserypady S. Neurofeedback Therapy for Enhancing Visual Attention: State-of-the-Art and Challenges. Front Neurosci 2016; 10:352. [PMID: 27536212 PMCID: PMC4971093 DOI: 10.3389/fnins.2016.00352] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/19/2016] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
We have witnessed a rapid development of brain-computer interfaces (BCIs) linking the brain to external devices. BCIs can be utilized to treat neurological conditions and even to augment brain functions. BCIs offer a promising treatment for mental disorders, including disorders of attention. Here we review the current state of the art and challenges of attention-based BCIs, with a focus on visual attention. Attention-based BCIs utilize electroencephalograms (EEGs) or other recording techniques to generate neurofeedback, which patients use to improve their attention, a complex cognitive function. Although progress has been made in the studies of neural mechanisms of attention, extraction of attention-related neural signals needed for BCI operations is a difficult problem. To attain good BCI performance, it is important to select the features of neural activity that represent attentional signals. BCI decoding of attention-related activity may be hindered by the presence of different neural signals. Therefore, BCI accuracy can be improved by signal processing algorithms that dissociate signals of interest from irrelevant activities. Notwithstanding recent progress, optimal processing of attentional neural signals remains a fundamental challenge for the development of efficient therapies for disorders of attention.
Collapse
Affiliation(s)
- Mehdi Ordikhani-Seyedlar
- Division of Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark Lyngby, Denmark
| | - Mikhail A Lebedev
- Department of Neurobiology, Duke UniversityDurham, NC, USA; Center for Neuroengineering, Duke UniversityDurham, NC, USA
| | - Helge B D Sorensen
- Division of Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark Lyngby, Denmark
| | - Sadasivan Puthusserypady
- Division of Biomedical Engineering, Department of Electrical Engineering, Technical University of Denmark Lyngby, Denmark
| |
Collapse
|
18
|
Advances in user-training for mental-imagery-based BCI control: Psychological and cognitive factors and their neural correlates. PROGRESS IN BRAIN RESEARCH 2016; 228:3-35. [PMID: 27590964 DOI: 10.1016/bs.pbr.2016.04.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
While being very promising for a wide range of applications, mental-imagery-based brain-computer interfaces (MI-BCIs) remain barely used outside laboratories, notably due to the difficulties users encounter when attempting to control them. Indeed, 10-30% of users are unable to control MI-BCIs (so-called BCI illiteracy) while only a small proportion reach acceptable control abilities. This huge interuser variability has led the community to investigate potential predictors of performance related to users' personality and cognitive profile. Based on a literature review, we propose a classification of these MI-BCI performance predictors into three categories representing high-level cognitive concepts: (1) users' relationship with the technology (including the notions of computer anxiety and sense of agency), (2) attention, and (3) spatial abilities. We detail these concepts and their neural correlates in order to better understand their relationship with MI-BCI user-training. Consequently, we propose, by way of future prospects, some guidelines to improve MI-BCI user-training.
Collapse
|
19
|
Quantifying the role of motor imagery in brain-machine interfaces. Sci Rep 2016; 6:24076. [PMID: 27052520 PMCID: PMC4823701 DOI: 10.1038/srep24076] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2015] [Accepted: 03/15/2016] [Indexed: 11/08/2022] Open
Abstract
Despite technical advances in brain machine interfaces (BMI), for as-yet unknown reasons the ability to control a BMI remains limited to a subset of users. We investigate whether individual differences in BMI control based on motor imagery (MI) are related to differences in MI ability. We assessed whether differences in kinesthetic and visual MI, in the behavioral accuracy of MI, and in electroencephalographic variables, were able to differentiate between high- versus low-aptitude BMI users. High-aptitude BMI users showed higher MI accuracy as captured by subjective and behavioral measurements, pointing to a prominent role of kinesthetic rather than visual imagery. Additionally, for the first time, we applied mental chronometry, a measure quantifying the degree to which imagined and executed movements share a similar temporal profile. We also identified enhanced lateralized μ-band oscillations over sensorimotor cortices during MI in high- versus low-aptitude BMI users. These findings reveal that subjective, behavioral, and EEG measurements of MI are intimately linked to BMI control. We propose that poor BMI control cannot be ascribed only to intrinsic limitations of EEG recordings and that specific questionnaires and mental chronometry can be used as predictors of BMI performance (without the need to record EEG activity).
Collapse
|
20
|
Acqualagna L, Botrel L, Vidaurre C, Kübler A, Blankertz B. Large-Scale Assessment of a Fully Automatic Co-Adaptive Motor Imagery-Based Brain Computer Interface. PLoS One 2016; 11:e0148886. [PMID: 26891350 PMCID: PMC4758702 DOI: 10.1371/journal.pone.0148886] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2015] [Accepted: 01/24/2016] [Indexed: 11/25/2022] Open
Abstract
In the last years Brain Computer Interface (BCI) technology has benefited from the development of sophisticated machine leaning methods that let the user operate the BCI after a few trials of calibration. One remarkable example is the recent development of co-adaptive techniques that proved to extend the use of BCIs also to people not able to achieve successful control with the standard BCI procedure. Especially for BCIs based on the modulation of the Sensorimotor Rhythm (SMR) these improvements are essential, since a not negligible percentage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 participants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psychological interventions were performed prior the BCI session in order to investigate how motor coordination training and relaxation could influence BCI performance. A neurophysiological indicator based on the Power Spectral Density (PSD) was extracted by the recording of few minutes of resting state brain activity and tested as predictor of BCI performances. Results show that high accuracies in operating the BCI could be reached by the majority of the participants before the end of the session. BCI performances could be significantly predicted by the neurophysiological indicator, consolidating the validity of the model previously developed. Anyway, we still found about 22% of users with performance significantly lower than the threshold of efficient BCI control at the end of the session. Being the inter-subject variability still the major problem of BCI technology, we pointed out crucial issues for those who did not achieve sufficient control. Finally, we propose valid developments to move a step forward to the applicability of the promising co-adaptive methods.
Collapse
Affiliation(s)
- Laura Acqualagna
- Neurotechnology Group, Technische Universität Berlin, Berlin, Germany
- * E-mail:
| | - Loic Botrel
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Carmen Vidaurre
- Machine Learning Group, Technische Universität Berlin, Berlin, Germany
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - Benjamin Blankertz
- Institute of Psychology, University of Würzburg, Würzburg, Germany
- Bernstein Focus Neurotechnology, Berlin, Germany
| |
Collapse
|
21
|
Saeedi S, Chavarriaga R, Leeb R, Millan JDR. Adaptive Assistance for Brain-Computer Interfaces by Online Prediction of Command Reliability. IEEE COMPUT INTELL M 2016. [DOI: 10.1109/mci.2015.2501550] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
22
|
Jeunet C, N’Kaoua B, Subramanian S, Hachet M, Lotte F. Predicting Mental Imagery-Based BCI Performance from Personality, Cognitive Profile and Neurophysiological Patterns. PLoS One 2015; 10:e0143962. [PMID: 26625261 PMCID: PMC4666487 DOI: 10.1371/journal.pone.0143962] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2015] [Accepted: 11/11/2015] [Indexed: 11/18/2022] Open
Abstract
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.
Collapse
Affiliation(s)
- Camille Jeunet
- Laboratoire Handicap & Système Nerveux, University of Bordeaux, Bordeaux, France
- Project-Team Potioc, Inria Bordeaux Sud-Ouest/LaBRI/CNRS, Talence, France
- * E-mail:
| | - Bernard N’Kaoua
- Laboratoire Handicap & Système Nerveux, University of Bordeaux, Bordeaux, France
| | | | - Martin Hachet
- Project-Team Potioc, Inria Bordeaux Sud-Ouest/LaBRI/CNRS, Talence, France
| | - Fabien Lotte
- Project-Team Potioc, Inria Bordeaux Sud-Ouest/LaBRI/CNRS, Talence, France
| |
Collapse
|
23
|
Alonso-Valerdi LM, Sepulveda F, Ramírez-Mendoza RA. Perception and Cognition of Cues Used in Synchronous Brain-Computer Interfaces Modify Electroencephalographic Patterns of Control Tasks. Front Hum Neurosci 2015; 9:636. [PMID: 26635587 PMCID: PMC4655449 DOI: 10.3389/fnhum.2015.00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/17/2015] [Accepted: 11/06/2015] [Indexed: 11/13/2022] Open
Abstract
A motor imagery (MI)-based brain–computer interface (BCI) is a system that enables humans to interact with their environment by translating their brain signals into control commands for a target device. In particular, synchronous BCI systems make use of cues to trigger the motor activity of interest. So far, it has been shown that electroencephalographic (EEG) patterns before and after cue onset can reveal the user cognitive state and enhance the discrimination of MI-related control tasks. However, there has been no detailed investigation of the nature of those EEG patterns. We, therefore, propose to study the cue effects on MI-related control tasks by selecting EEG patterns that best discriminate such control tasks, and analyzing where those patterns are coming from. The study was carried out using two methods: standard and all-embracing. The standard method was based on sources (recording sites, frequency bands, and time windows), where the modulation of EEG signals due to motor activity is typically detected. The all-embracing method included a wider variety of sources, where not only motor activity is reflected. The findings of this study showed that the classification accuracy (CA) of MI-related control tasks did not depend on the type of cue in use. However, EEG patterns that best differentiated those control tasks emerged from sources well defined by the perception and cognition of the cue in use. An implication of this study is the possibility of obtaining different control commands that could be detected with the same accuracy. Since different cues trigger control tasks that yield similar CAs, and those control tasks produce EEG patterns differentiated by the cue nature, this leads to accelerate the brain–computer communication by having a wider variety of detectable control commands. This is an important issue for Neuroergonomics research because neural activity could not only be used to monitor the human mental state as is typically done, but this activity might be also employed to control the system of interest.
Collapse
Affiliation(s)
- Luz María Alonso-Valerdi
- Brain-Computer Interfaces (BCI) Group, School of Computing Science and Electronic Engineering, University of Essex , Colchester , UK ; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey - Campus Ciudad de México , Mexico City , Mexico
| | - Francisco Sepulveda
- Brain-Computer Interfaces (BCI) Group, School of Computing Science and Electronic Engineering, University of Essex , Colchester , UK
| | - Ricardo A Ramírez-Mendoza
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey - Campus Ciudad de México , Mexico City , Mexico
| |
Collapse
|
24
|
Darvishi S, Abbott D, Baumert M. Prediction of motor imagery based brain computer interface performance using a reaction time test. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2880-2883. [PMID: 26736893 DOI: 10.1109/embc.2015.7318993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/05/2023]
Abstract
Brain computer interfaces (BCIs) enable human brains to interact directly with machines. Motor imagery based BCI (MI-BCI) encodes the motor intentions of human agents and provides feedback accordingly. However, 15-30% of people are not able to perform vivid motor imagery. To save time and monetary resources, a number of predictors have been proposed to screen for users with low BCI aptitude. While the proposed predictors provide some level of correlation with MI-BCI performance, simple, objective and accurate predictors are currently not available. Thus, in this study we have examined the utility of a simple reaction time (SRT) test for predicting MI-BCI performance. We enrolled 10 subjects and measured their motor imagery performance with either visual or proprioceptive feedback. Their reaction time was also measured using a SRT test. The results show a significant negative correlation (r ≈ -0.67) between SRT and MI-BCI performance. Therefore SRT may be used as a simple and reliable predictor of MI-BCI performance.
Collapse
|