1
|
Acupuncture in chronic aspecific low back pain: a Bayesian network meta-analysis. J Orthop Surg Res 2022; 17:319. [PMID: 35725480 PMCID: PMC9208133 DOI: 10.1186/s13018-022-03212-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background This Bayesian network meta-analysis investigated the available randomized control trials (RCTs) to point out which acupuncture protocol is the most effective for chronic aspecific low back pain (LBP). Efficacy was measured in terms of pain (Visual Analogic Scale, VAS) and disability (Roland Morris Disability Questionnaire, RMQ), Transcutaneous Electrical Nerve Stimulation (TENS). Methods PubMed, Google scholar, Embase, and Scopus were accessed in March 2022. All the RCTs comparing two or more acupuncture modalities for aspecific chronic LBP were accessed. Only studies which investigated the efficacy of acupuncture on patients with symptoms lasting a minimum of 1.5 months, or with at least three episodes in the previous 12 months, were considered eligible. The Review Manager Software (The Nordic Cochrane Collaboration, Copenhagen) was used for the methodological quality assessment. The STATA Software/MP, Version 14.1 (StataCorporation, College Station, Texas, USA), was used for the statistical analyses. The NMA was performed through the STATA routine for Bayesian hierarchical random-effects model analysis. Results Data from 44 RCTs (8338 procedures) were retrieved. 56% of patients were women. The mean age of the patients was 48 ± 10.6 years. The mean BMI was 26.3 ± 2.2 kg/m2. The individual group (95% confidence interval (CI) 2.02, 7.98) and the standard combined with TENS (95% CI 2.03, 7.97) demonstrated the highest improvement of the RMQ. The VAS score was lower in the standard combined with TENS group (95% CI 3.28, 4.56). Considering the standard acupuncture group, different studies used similar protocols and acupuncture points and the results could thus be compared. The equation for global linearity did not find any statistically significant inconsistency in any of the network comparison. Conclusion Verum acupuncture is more effective than sham treatment for the non-pharmacological management of LBP. Among the verum protocols, individualized acupuncture and standard acupuncture with TENS were the protocols that resulted in the highest improvement in pain and quality of life. Level of Evidence Level I, Bayesian network meta-analysis of RCTs.
Collapse
|
2
|
Raoofi A, Delbari A, Nasiry D, Golmohammadi R, Javadinia SS, Sadrzadeh R, Mojadadi MS, Rustamzadeh A, Khaneghah AM, Ebrahimi V, Rezaie MJ. Caffeine modulates apoptosis, oxidative stress, and inflammation damage induced by tramadol in cerebellum of male rats. J Chem Neuroanat 2022; 123:102116. [PMID: 35660069 DOI: 10.1016/j.jchemneu.2022.102116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/25/2022]
Abstract
Tramadol, an opioid used as analgesic, can induce neurotoxic effects associated to cognitive dysfunction. Moreover, caffeine has been reported to have neuroprotective effects. In this regard, we hypothesized that administration of caffeine can modulate tramadol-induced damages in cerebellum. For this study, forty male Wistar rats were divided into four groups: the control group, the tramadol group (50mg/kg), the caffeine group (37.5mg/kg), and the tramadol+caffeine group (50mg/kg tramadol+37.5mg/kg caffeine). At the end of study (day 21), after performing rotarod behavioral test, cerebellum tissue samples were removed and prepared for further evaluations including biochemical profile markers (MDA, GPx, and SOD), immunohistochemistry for Caspase-3, as well as the expression of genes involved in cellular processes such as inflammation markers (IL-1β, HMGB1, IL-6, and TNF), apoptosis markers (Caspase-3, Caspase-8, Bax, and P21), and autophagy markers (LAMP2, ATG5, BECN1, and ATG12). Stereological evaluations were performed to determine the total volume of granular and molecular layers and white matter of cerebellum tissue and numerical density of the Purkinje cells. Our results showed that the stereological parameters, biochemical profiles (except MDA) and behavioral function were significantly higher in the tramadol+caffeine group compared to the tramadol group. Autophagy-related genes were significantly upregulated in tramadol+caffeine group compared to the tramadol group. While the expression of inflammatory and apoptosis genes, MDA level, as well as density of apoptosis cells were significantly lower in the tramadol+caffeine group compared to the tramadol group. Briefly, it can be concluded that administration of caffeine has neuroprotective effects in cerebellar damages induced by tramadol.
Collapse
Affiliation(s)
- Amir Raoofi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Delbari
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Davood Nasiry
- Amol Faculty of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rahim Golmohammadi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sara Sadat Javadinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran; Department of Anatomy, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Reza Sadrzadeh
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad-Shafi Mojadadi
- Leishmaniasis Research Center, Department of Immunology, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Vahid Ebrahimi
- Department of Anatomy, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Jafar Rezaie
- Department of Anatomical Sciences, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
3
|
Does diet play a role in reducing nociception related to inflammation and chronic pain? Nutrition 2019; 66:153-165. [DOI: 10.1016/j.nut.2019.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/22/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
4
|
Bjørklund G, Chirumbolo S, Dadar M, Pen JJ, Doşa MD, Pivina L, Semenova Y, Aaseth J. Insights on Nutrients as Analgesics in Chronic Pain. Curr Med Chem 2019; 27:6407-6423. [PMID: 31309880 DOI: 10.2174/0929867326666190712172015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 02/07/2023]
Abstract
Many serious inflammatory disorders and nutrient deficiencies induce chronic pain, and anti-inflammatory diets have been applied successfully to modify the inflammatory symptoms causing chronic pain. Numerous scientific data and clinical investigations have demonstrated that long-term inflammation could lead to an inappropriate or exaggerated sensibility to pain. In addition, some Non-steroidal Anti-inflammatory Drugs (NSAID), which directly act on the many enzymes involved in pain and inflammation, including cyclooxygenases, are used to dampen the algesic signal to the central nervous system, reducing the responses of soft C-fibers to pain stimuli. On the other hand, there are a few reports from both health authorities and physicians, reporting that decreased transmission of pain signals can be achieved and improved, depending on the patient's dietary habit. Many nutrients, as well as a suitable level of exercise (resistance training), are the best methods for improving the total mitochondrial capacity in muscle cells, which can lead to a reduction in sensitivity to pain, particularly by lowering the inflammatory signaling to C-fibers. According to the current literature, it could be proposed that chronic pain results from the changed ratio of neuropeptides, hormones, and poor nutritional status, often related to an underlying inflammatory disorder. The current review also evaluates the effective role of nutrition-related interventions on the severity of chronic pain. This review pointed out that nutritional interventions can have a positive effect on pain experience through the indirect inhibitory effect on prostaglandin E2 and attenuation of mitochondrial dysfunction caused by ischemia/reperfusion in skeletal muscle, improving the intracellular antioxidant defense system. These data highlight the need for more nutrition studies where chronic pain is the primary outcome, using accurate interventions. To date, no nutritional recommendation for chronic pain has been officially proposed. Therefore, the goal of this article is to explore pain management and pain modulation, searching for a mode of nutrition efficient in reducing pain.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy,CONEM Scientific Secretary, Verona, Italy
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium,Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Yulia Semenova
- Semey Medical University, Semey, Kazakhstan,CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Faculty of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| |
Collapse
|
5
|
Glick NR, Fischer MH. Potential Benefits of Ameliorating Metabolic and Nutritional Abnormalities in People With Profound Developmental Disabilities. Nutr Metab Insights 2017; 10:1178638817716457. [PMID: 35185339 PMCID: PMC8855413 DOI: 10.1177/1178638817716457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Background: People with profound developmental disabilities have some of the most severe neurological impairments seen in society, have accelerated mortality due to huge medical challenges, and yet are often excluded from scientific studies. They actually have at least 2 layers of conditions: (1) the original disability and (2) multiple under-recognized and underexplored metabolic and nutritional imbalances involving minerals (calcium, zinc, and selenium), amino acids (taurine, tryptophan), fatty acids (linoleic acid, docosahexaenoic acid, arachidonic acid, adrenic acid, Mead acid, plasmalogens), carnitine, hormones (insulinlike growth factor 1), measures of oxidative stress, and likely other substances and systems. Summary: This review provides the first list of metabolic and nutritional abnormalities commonly found in people with profound developmental disabilities and, based on the quality of life effects of similar abnormalities in neurotypical people, indicates the potential effects of these abnormalities in this population which often cannot communicate symptoms. Key messages: We propose that improved understanding and management of these disturbed mechanisms would enhance the quality of life of people with profound developmental disabilities. Such insights may also apply to people with other conditions associated with disability, including some diseases requiring stem cell implantation and living in microgravity.
Collapse
Affiliation(s)
- Norris R Glick
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Milton H Fischer
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Mohamed MA, Atty SA, Salama NN, Banks CE. Highly Selective Sensing Platform Utilizing Graphene Oxide and Multiwalled Carbon Nanotubes for the Sensitive Determination of Tramadol in the Presence of Co-Formulated Drugs. ELECTROANAL 2016. [DOI: 10.1002/elan.201600668] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Mona A. Mohamed
- Pharmaceutical Chemistry Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Shimaa A. Atty
- Pharmaceutical Chemistry Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Nahla N. Salama
- Pharmaceutical Chemistry Department; National Organization for Drug Control and Research (NODCAR); Giza Egypt
| | - Craig E. Banks
- Faculty of Science and Engineering; Manchester Metropolitan University; Chester Street Manchester M1 5GD UK
| |
Collapse
|
7
|
Saragiotto BT, Machado GC, Ferreira ML, Pinheiro MB, Abdel Shaheed C, Maher CG. Paracetamol for low back pain. Cochrane Database Syst Rev 2016; 2016:CD012230. [PMID: 27271789 PMCID: PMC6353046 DOI: 10.1002/14651858.cd012230] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Analgesic medication is the most frequently prescribed treatment for low back pain (LBP), of which paracetamol (acetaminophen) is recommended as the first choice medication. However, there is uncertainty about the efficacy of paracetamol for LBP. OBJECTIVES To investigate the efficacy and safety of paracetamol for non-specific LBP. SEARCH METHODS We conducted searches on the Cochrane Central Register of Controlled Trials (CENTRAL, which includes the Back and Neck Review Group trials register), MEDLINE, EMBASE, CINAHL, AMED, Web of Science, LILACS, and IPA from their inception to 7 August 2015. We also searched the reference lists of eligible papers and trial registry websites (WHO ICTRP and ClinicalTrials.gov). SELECTION CRITERIA We only considered randomised trials comparing the efficacy of paracetamol with placebo for non-specific LBP. The primary outcomes were pain and disability. We also investigated quality of life, function, adverse effects, global impression of recovery, sleep quality, patient adherence, and use of rescue medication as secondary outcomes. DATA COLLECTION AND ANALYSIS Two review authors independently performed the data extraction and assessed risk of bias in the included studies. We also evaluated the quality of evidence using the GRADE approach. We converted scales for pain intensity to a common 0 to 100 scale. We quantified treatment effects using mean difference for continuous outcomes and risk ratios for dichotomous outcomes. We used effect sizes and 95% confidence intervals as a measure of treatment effect for the primary outcomes. When the treatment effects were smaller than 9 points on a 0 to 100 scale, we considered the effect as small and not clinically important. MAIN RESULTS Our searches retrieved 4449 records, of which three trials were included in the review (n = 1825 participants), and two trials were included in the meta-analysis. For acute LBP, there is high-quality evidence for no difference between paracetamol (4 g per day) and placebo at 1 week (immediate term), 2 weeks, 4 weeks, and 12 weeks (short term) for the primary outcomes. There is high-quality evidence that paracetamol has no effect on quality of life, function, global impression of recovery, and sleep quality for all included time periods. There were also no significant differences between paracetamol and placebo for adverse events, patient adherence, or use of rescue medication. For chronic LBP, there is very low-quality evidence (based on a trial that has been retracted) for no effect of paracetamol (1 g single intravenous dose) on immediate pain reduction. Finally, no trials were identified evaluating patients with subacute LBP. AUTHORS' CONCLUSIONS We found that paracetamol does not produce better outcomes than placebo for people with acute LBP, and it is uncertain if it has any effect on chronic LBP.
Collapse
Affiliation(s)
- Bruno T Saragiotto
- Universidade Cidade de São PauloMasters and Doctoral Programs in Physical TherapySao PauloBrazil
| | - Gustavo C Machado
- Sydney Medical School, The University of SydneySydney School of Public HealthPO Box M179, Missenden RdSydneyNSWAustralia2050
| | - Manuela L Ferreira
- Sydney Medical School, The University of SydneyInstitute of Bone and Joint Research, The Kolling InstituteSydneyNSWAustralia
| | - Marina B Pinheiro
- The University of SydneyDiscipline of Physiotherapy, Faculty of Health SciencesRoom S227, S BlockSydneyAustraliaNSW 2141
| | | | - Christopher G Maher
- University of SydneySydney School of Public HealthLevel 10 North, King George V Building, Missenden Road, CamperdownSydneyNSWAustralia2050
| | | |
Collapse
|
8
|
Chitravathi S, Munichandraiah N. Voltammetric determination of paracetamol, tramadol and caffeine using poly(Nile blue) modified glassy carbon electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.01.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Grujić-Letić N, Rakić B, Šefer E, Milanović M, Nikšić M, Vujić I, Milić N. Quantitative determination of caffeine in different matrices. MAKEDONSKO FARMACEVTSKI BILTEN 2016. [DOI: 10.33320/maced.pharm.bull.2016.62.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caffeine is odorless, bitter taste substance which can be naturally found in coffee, cocoa, tea leaves, and is intentionally added in food and pharmaceutical products. It can also be found in surface water in small concentrations where is often used as an excellent indicator of human waste. The aim of the work is determination of caffeine content in food, beverages, analgesics and surface water using solidphase extraction followed by high-performance liquid chromatography (HPLC). Caffeine content was determined in 12 commercial tea and coffee products, non-alcoholic energy drinks and food, 5 combined preparations of analgesics and the Danube samples collected from
7 representative locations. The results showed that caffeine content in food ranged 5,6-158 mg/100 g, tea samples 24,71-30,81 mg/100 ml, coffee samples 1328-3594 mg/100 g, energy drinks 9,69-30,79 mg/100 ml and in the Danube samples 15,91-306,12 ng/l. Caffeine content in combined commercial formulations of non-narcotic analgesics of all brands did meet specifications. The data suggested that the proposed HPLC method can be used for routine determination and control of caffeine content in different matrices.
Collapse
|
10
|
Ukrainets IV, Petrushova LA, Dzyubenko SP, Sim G, Grinevich LA. The Effective Synthesis of N-(Arylalkyl)-1-R-4-hydroxy-2,2-dioxo- 1H-2λ(6),1-benzothiazine-3-carboxamides as Promising Analgesics of a New Chemical Class. Sci Pharm 2015; 83:549-66. [PMID: 26839838 PMCID: PMC4727766 DOI: 10.3797/scipharm.1506-04] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/17/2015] [Indexed: 11/22/2022] Open
Abstract
A new, effective preparative method has been proposed and the synthesis of a series of N-(arylalkyl)-1-R-4-hydroxy-2,2-dioxo-1H-2λ(6),1-benzothiazine-3-car-boxamides has been carried out. It has been shown that amidation of alkyl 1-R-4-hydroxy-2,2-dioxo-1H-2λ(6),1-benzothiazine-3-carboxylates with arylalkyl-amines in boiling xylene proceeds with good yield and purity to the corresponding N-(arylalkyl)-amides. However, the presence of water in the reaction mixture has been shown to cause the formation of specific impurities: N-(arylalkyl)-1-R-2,2-dioxo-1H-2λ(6),1-benzothiazin-4-amines. According to the results of the pharmacological studies, powerful analgesics have been found among the substances synthesized.
Collapse
Affiliation(s)
- Igor V Ukrainets
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska St., 61002, Kharkiv, Ukraine
| | - Lidiya A Petrushova
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska St., 61002, Kharkiv, Ukraine
| | - Sergiy P Dzyubenko
- Department of Pharmaceutical Chemistry, N. I. Pirogov Vinnitsa National Medical University, 56 Pirogov St., Vinnitsa, 21018, Ukraine
| | - Galina Sim
- Department of Pharmaceutical Chemistry, Far Eastern State Medical University, 35 Murav'eva-Amurskogo St., 680000, Khabarovsk, Russia
| | - Lina A Grinevich
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 53 Pushkinska St., 61002, Kharkiv, Ukraine
| |
Collapse
|