1
|
Mahmoud NF, Omar NR, Mohamed GG, Sayed FN. Synthesis, structural characterization and in vitro antibacterial activity studies of ternary metal complexes of anti-inflammatory bromhexine drug. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
Nguyen TD, Lau MT, Hoang KL, Dinh TH, Nguyen HH, Nguyen MH. Exploring the syntheses, crystal structures and photophysical properties of new anthracene-tethered Ni(II) dithiocarbamates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Synthesis, physicochemical studies, fluorescence behavior, and anticancer properties of transition metal complexes with the pyridyl ligand. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2022. [DOI: 10.2478/pjct-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A novel series of complexes with the formula [MLCl] [M = Co(II) (1), Ni(II) (2), Cu(II) (3), Zn(II) (4)] arising from Pyridyl ligand, N,N’-bis(1-(2-pyridyl)ethylidene)-2,2-dimethylpropane-1,3-diamine), ligand, L, was synthesized and investigated by elemental analyses, FT-IR, 1H and 13C NMR, Powder XRD, and thermal analyses. TGA analysis indicated that all complexes degraded in three different steps, while the PXRD examination showed well-defined sharp crystalline peaks for the complexes, indicating significant crystallinity. The antiproliferative activity of the ligand and its complexes were also evaluated in vitro against the HeLa (Human Cervical Cancer Cells) and HCT116 (Colon Cancer Cells) cell lines. The findings suggested complex 4 to be potential anticancer agent against these cell lines. In addition, ligand and its complexes also exhibited considerable emission properties.
Collapse
|
4
|
Khalaf MM, Abd El-Lateef HM, Gouda M, Sayed FN, Mohamed GG, Abu-Dief AM. Design, Structural Inspection and Bio-Medicinal Applications of Some Novel Imine Metal Complexes Based on Acetylferrocene. MATERIALS 2022; 15:ma15144842. [PMID: 35888309 PMCID: PMC9317992 DOI: 10.3390/ma15144842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023]
Abstract
Some novel imine metal chelates with Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ cations were produced from 2-acetylferrocene and 3-aminophenol. The new acetylferrocene azomethine ligand ((Z)-cyclopenta-1,3-dien-1-yl(2-(1-((3-hydroxyphenyl)imino)ethyl)cyclopenta-2,4-dien-1-yl)iron) and its metal ion chelates were constructed and elucidated using FT-IR, UV/Vis, 1HNMR, DTA/TGA, CHNClM studies, mass spectrometry and SEM analysis. According to the TGA/DTG investigation, the ferrocene moiety spontaneously disintegrates to liberate FeO. The morphology of the free acetylferrocene azomethine via SEM analysis was net-shaped with a size of 64.73 nm, which differed in Cd(II) complex to be a spongy shape with a size of 42.43 nm. The quantum chemical features of the azomethine ligand (HL) were computed, and its electronic and molecular structure was refined theoretically. The investigated acetylferrocene imine ligand behaves as bidinetate ligand towards the cations under study to form octahedral geometries in case of all complexes except in case of Zn2+ is tetrahedral. Various microorganisms were used to investigate the anti-pathogenic effects of the free acetylferrocene azomethine ligand and its metal chelates. Moreover, the prepared ligand and its metal complexes were tested for anticancer activity utilizing four different concentrations against the human breast cancer cell line (MCF7) and the normal melanocyte cell line (HBF4). Furthermore, the binding of 3-aminophenol, 2-acetylferrocene, HL, Mn2+, Cu2+, and Cd2+ metal chelates to the receptor of breast cancer mutant oxidoreductase was discovered using molecular docking (PDB ID: 3HB5).
Collapse
Affiliation(s)
- Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| | - Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Fatma N. Sayed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (F.N.S.); (G.G.M.)
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (F.N.S.); (G.G.M.)
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El Arab, Alexandria 21934, Egypt
| | - Ahmed M. Abu-Dief
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Department of Chemistry, College of Science, Taibah University, Madinah 344, Saudi Arabia
- Correspondence: (M.M.K.); (H.M.A.E.-L.); (A.M.A.-D.)
| |
Collapse
|
5
|
On the Coordination Role of Pyridyl-Nitrogen in the Structural Chemistry of Pyridyl-Substituted Dithiocarbamate Ligands. CRYSTALS 2021. [DOI: 10.3390/cryst11030286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A search of the Cambridge Structural Database was conducted for pyridyl-substituted dithiocarbamate ligands. This entailed molecules containing both an NCS2− residue and pyridyl group(s), in order to study their complexation behavior in their transition metal and main group element crystals, i.e., d- and p-block elements. In all, 73 different structures were identified with 30 distinct dithiocarbamate ligands. As a general observation, the structures of the transition metal dithiocarbamates resembled those of their non-pyridyl derivatives, there being no role for the pyridyl-nitrogen atom in coordination. While the same is true for many main group element dithiocarbamates, a far greater role for coordination of the pyridyl-nitrogen atoms was evident, in particular, for the heavier elements. The participation of pyridyl-nitrogen in coordination often leads to the formation of dimeric aggregates but also one-dimensional chains and two-dimensional arrays. Capricious behaviour in closely related species that adopted very different architectures is noted. Sometimes different molecules comprising the asymmetric-unit of a crystal behave differently. The foregoing suggests this to be an area in early development and is a fertile avenue for systematic research for probing further crystallization outcomes and for the rational generation of supramolecular architectures.
Collapse
|
6
|
Kumari K, Drew MG, Singh N. Impact of ligand substituents on the crystal structures, optical and conducting properties of phenylmercury(II) β-oxodithioester complexes. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Singh A, Dutta A, Singh AK, Trivedi M, Kociok‐Köhn G, Muddassir M, Kumar A. Tertiary phosphine‐appended transition metal ferrocenyl dithiocarbamates: Syntheses, Hirshfeld surface, and electrochemical analyses. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Amita Singh
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
| | - Archisman Dutta
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
- Chemical Division Geological Survey of India Northern Region Lucknow 226024 India
| | - Ashish Kumar Singh
- Department of Chemistry Guru Ghasidas Vishwavidyala, Koni Bilaspur 495009 India
| | - Manoj Trivedi
- Department of Chemistry University of Delhi Delhi India
| | - Gabriele Kociok‐Köhn
- Material and Chemical Characterization Facility (MC2) University of Bath Bath BA27AY UK
| | - Mohd. Muddassir
- Department of Chemistry, College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Abhinav Kumar
- Department of Chemistry, Faculty of science University of Lucknow Lucknow 226007 India
| |
Collapse
|
8
|
Crystal structure, solid-state 13C and 15N NMR characterisation, chemisorption activity and thermal behaviour of new mercury(II) dipropyldithiocarbamate: Binuclear, pseudo-binuclear and heteronuclear complexes of [Hg2(PrDtc)4], [Hg(PrDtc)2]2 and [Au(PrDtc)2]2[Hg2Cl6]. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Tripathi S, Bardhan D, Chand DK. Multistimuli-Responsive Hydrolytically Stable “Smart” Mercury(II) Coordination Polymer. Inorg Chem 2018; 57:11369-11381. [DOI: 10.1021/acs.inorgchem.8b00964] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sarita Tripathi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Devjanee Bardhan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dillip K. Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
10
|
Exploring the Topological Landscape Exhibited by Binary Zinc-triad 1,1-dithiolates. CRYSTALS 2018. [DOI: 10.3390/cryst8070292] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The crystal chemistry of the zinc-triad binary 1,1-dithiolates, that is, compounds of xanthate [−S2COR], dithiophosphate [−S2P(OR)2], and dithiocarbamate [−S2CNR2] ligands, is reviewed. Owing to a wide range of coordination modes that can be adopted by 1,1-dithiolate anions, such as monodentate, chelating, μ2-bridging, μ3-bridging, etc., there exists a rich diversity in supramolecular assemblies for these compounds, including examples of zero-, one-, and two-dimensional architectures. While there are similarities in structural motifs across the series of 1,1-dithiolate ligands, specific architectures are sometimes found, depending on the metal centre and/or on the 1,1-dithiolate ligand. Further, an influence of steric bulk upon supramolecular aggregation is apparent. Thus, bulky R groups generally preclude the close approach of molecules in order to reduce steric hindrance and therefore, lead to lower dimensional aggregation patterns. The ligating ability of the 1,1-dithiolate ligands also proves crucial in determining the extent of supramolecular aggregation, in particular for dithiocarbamate species where the relatively greater chelating ability of this ligand reduces the Lewis acidity of the zinc-triad element, which thereby reduces its ability to significantly expand its coordination number. Often, the functionalisation of the organic substituents in the 1,1-dithiolate ligands, for example, by incorporating pyridyl groups, can lead to different supramolecular association patterns. Herein, the diverse assemblies of supramolecular architectures are classified and compared. In all, 27 structurally distinct motifs have been identified.
Collapse
|
11
|
Mahmoud WH, Omar M, Sayed FN, Mohamed GG. Synthesis, characterization, spectroscopic and theoretical studies of transition metal complexes of new nano Schiff base derived from l
-histidine and 2-acetylferrocene and evaluation of biological and anticancer activities. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Walaa H. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - M.M. Omar
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Fatma N. Sayed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
- Egypt Nanotechnology Center; Cairo University; El-Sheikh Zayed, 6th October 12588 Egypt
| |
Collapse
|
12
|
Andrew FP, Ajibade PA. Metal complexes of alkyl-aryl dithiocarbamates: Structural studies, anticancer potentials and applications as precursors for semiconductor nanocrystals. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Azam M, Al-Resayes SI, Wabaidur SM, Trzesowska-Kruszynska A, Kruszynski R, Mohapatra RK, Siddiqui MRH. Cd(II) complex constructed from dipyridyl imine ligand: Design, synthesis and exploration of its photocatalytic degradation properties. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Onwudiwe DC, Hosten EC. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Mahmoud WH, Mahmoud NF, Mohamed GG. Mixed ligand complexes of the novel nanoferrocene based Schiff base ligand (HL): Synthesis, spectroscopic characterization, MOE studies and antimicrobial/anticancer activities. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Arman HD, Poplaukhin P, Tiekink ERT. A two-dimensional coordination polymer: poly[[bis-[μ 2- N-ethyl- N-(pyridin-4-ylmeth-yl)di-thio-carbamato-κ 3N: S, S']cadmium(II)] 3-methyl-pyridine monosolvate]. Acta Crystallogr E Crystallogr Commun 2017; 73:488-492. [PMID: 28435704 PMCID: PMC5382605 DOI: 10.1107/s2056989017003516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/10/2022]
Abstract
The title compound, {[Cd(C9H11N2S2)2]·C6H7N} n , features two μ2-κ3-di-thio-carbamate ligands each of which chelates one CdII atom, via the S atoms, while simultaneously bridging to another via the pyridyl-N atom. The result is a two-dimensional coordination polymer extending parallel to the ab plane with square channels along the b axis. The CdII atom geometry is based on a distorted cis-N2S4 octa-hedron. The 3-methyl-pyridine mol-ecules reside in the channels aligned along the b axis, being held in place by methyl-ene-C-H⋯N(3-methyl-pyridine) and (3-methyl-pyridine)-C-H⋯π(pyrid-yl) inter-actions. Pyridyl-C-H⋯S and di-thio-carbamate-methyl-C-H⋯π(pyrid-yl) inter-actions provide connections between layers along the c axis.
Collapse
Affiliation(s)
- Hadi D. Arman
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA
| | - Pavel Poplaukhin
- Chemical Abstracts Service, 2540 Olentangy River Rd, Columbus, Ohio 43202, USA
| | - Edward R. T. Tiekink
- Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| |
Collapse
|