1
|
Liu Y, Lin R, Fang H, Li L, Zhang M, Lu L, Gao X, Song J, Wei J, Xiao Q, Zhang F, Wu K, Cui L. Sargassum polysaccharide attenuates osteoarthritis in rats and is associated with the up-regulation of the ITGβ1-PI3K-AKT signaling pathway. J Orthop Translat 2024; 47:176-190. [PMID: 39040490 PMCID: PMC11260896 DOI: 10.1016/j.jot.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/31/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background Osteoarthritis (OA) presents a formidable challenge, characterized by as-yet-unclear mechanical intricacies within cartilage and the dysregulation of bone homeostasis. Our preliminary data revealed the encouraging potential of a Sargassum polysaccharide (SP), in promoting chondrogenesis. The aim of our study is to comprehensively assess the therapeutic effects of SP on OA models and further elucidate its potential mechanism. Methods The protective effects of SP were initially evaluated in an inflammation-induced human chondrocyte (C28) cell model. CCK-8 assays, Alcian blue staining, RT-qPCR and Western blotting were used to verify the chondrogenesis of SP in vitro. To assess the efficacy of SP in vivo, surgically induced medial meniscus destabilization (DMM) OA rats underwent an 8-week SP treatment. The therapeutic effects of SP in OA rats were comprehensively evaluated using X-ray imaging, micro-computed tomography (μ-CT), histopathological analysis, as well as immunohistochemical and immunofluorescent staining. Following these assessments, we delved into the potential signaling pathways of SP in inflammatory chondrocytes utilizing RNA-seq analysis. Validation of these findings was conducted through RT-qPCR and western blotting techniques. Results SP significantly enhance the viability of C28 chondrocytes, and increased the secretion of acidic glycoproteins. Moreover, SP stimulated the expression of chondrogenic genes (Aggrecan, Sox9, Col2a1) and facilitated the synthesis of Collagen II protein in C28 inflammatory chondrocytes. In vivo experiments revealed that SP markedly ameliorated knee joint stenosis, alleviated bone and cartilage injuries, and reduced the histopathological scores in the OA rats. μ-CT analysis confirmed that SP lessened bone impairments in the medial femoral condyle and the subchondral bone of the tibial plateau, significantly improving the microarchitectural parameters of the subchondral bone. Histopathological analyses indicated that SP notably enhanced cartilage quality on the surface of the tibial plateau, leading to increased cartilage thickness and area. Immunohistochemistry staining and immunofluorescence staining corroborated these findings by showing a significant promotion of Collagen II expression in OA joints treated with SP. RNA-seq analysis suggest that SP's effects were mediated through the regulation of the ITGβ1-PI3K-AKT signaling axis, thereby stimulating chondrogenesis. Verification through RT-qPCR and Western blot analyses confirmed that SP significantly upregulated the expression of ITGβ1, p110δ, AKT1, ACAN, and Col2a1. Notably, knock-down of ITGβ1 using siRNA in C28 chondrocytes inhibited the expression of ITGβ1, p110δ, AKT1, and ACAN. However, these inhibitory effects were not completely reversed by supplemental SP intervention. Conclusions In summary, our findings reveal that SP significantly enhances chondrogenesis both in vitro and in vivo, alleviating OA progression both in bone and cartilage. The observed beneficial effects are intricately linked to the activation of the ITGβ1-PI3K-AKT signaling axis. The translational potential of this article Our research marks the first instance unveiling the advantageous effects and underlying mechanisms of SP in OA treatment. With its clinical prospects, SP presents compelling new evidence for the advancement of a next-generation polysaccharide drug for OA therapy.
Collapse
Affiliation(s)
- Yanzhi Liu
- Corresponding author. Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, 524045, China.
| | | | | | - Lixian Li
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Min Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Lujiao Lu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Xiang Gao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Jintong Song
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Jinsong Wei
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Qixian Xiao
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Fucheng Zhang
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Kefeng Wu
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Zhanjiang Key Laboratory of Orthopaedic Technology and Trauma Treatment, Key Laboratory of Traditional Chinese Medicine for the Prevention and Treatment of Infectious Diseases, Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, School of Ocean and Tropical Medicine, The Affiliated Hospital, The Second Affiliated Hospital, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
2
|
Sun K, Qin L. Antiosteoporosis effect of bryodulcosigenin on ovariectomy-induced osteoporosis in experimental rats. Acta Cir Bras 2024; 39:e391024. [PMID: 38656061 PMCID: PMC11037890 DOI: 10.1590/acb391024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2023] [Accepted: 01/11/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE Osteoporosis is a bone disease which commonly occurred in postmenopausal women. Almost 10 percent of world population and approximately 30% of women (postmenopausal) suffer from this disease. Alternative medicine has great success in the treatment of osteoporosis disease. Bryodulcosigenin, a potent phytoconstituent, already displayed the anti-inflammatory and antioxidant effect. In this study, we made effort to analyze the antiosteoporosis effect of bryodulcosigenin against ovariectomy (OVX) induced osteoporosis in rats. METHODS Swiss albino Wistar rats were grouped into fIve groups and given an oral dose of bryodulcosigenin (10, 20 and 30 mg/kg) for eight weeks. Body weight, uterus, bone mineral density, cytokines, hormones parameters, transforming growth factor (TGF)-β, insulin-like growth factor (IGF), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL), and its ratio were estimated. RESULTS Bryodulcosigenin significantly (p < 0.001) suppressed the body weight and enhanced the uterine weight and significantly (p < 0.001) increased the bone mineral density in whole femur, caput femoris, distal femur and proximal femur. Bryodulcosigenin significantly (P < 0.001) altered the level of biochemical parameters at dose dependent manner, significantly (P < 0.001) improved the level of estrogen and suppressed the level of follicle stimulating hormone and luteinizing hormone. Bryodulcosigenin significantly (P < 0.001) improved the level of OPG and suppressed the level of RANKL. CONCLUSIONS Bryodulcosigenin reduced the cytokines level and suppressed the TGF-β and IGF. We concluded that bryodulcosigenin is an antiosteoporosis medication based on the findings.
Collapse
Affiliation(s)
- Kai Sun
- Yunnan University – The Affiliated Hospital – Department of Spinal Surgery – Kunming, China
| | - Lin Qin
- Kunming Medical University – School of Pharmaceutical Science and Yunnan Key – Laboratory of Pharmacology for Natural Products – Kunming, Yunnan, China
- Kunming Medical University – The First Affiliated Hospital – Department of Endocrinology – Kunming, China
| |
Collapse
|
3
|
Zhang YW, Wu Y, Liu XF, Chen X, Su JC. Targeting the gut microbiota-related metabolites for osteoporosis: The inextricable connection of gut-bone axis. Ageing Res Rev 2024; 94:102196. [PMID: 38218463 DOI: 10.1016/j.arr.2024.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Osteoporosis is a systemic skeletal disease characterized by decreased bone mass, destruction of bone microstructure, raised bone fragility, and enhanced risk of fractures. The correlation between gut microbiota and bone metabolism has gradually become a widespread research hotspot in recent years, and successive studies have revealed that the alterations of gut microbiota and its-related metabolites are related to the occurrence and progression of osteoporosis. Moreover, several emerging studies on the relationship between gut microbiota-related metabolites and bone metabolism are also underway, and extensive research evidence has indicated an inseparable connection between them. Combined with latest literatures and based on inextricable connection of gut-bone axis, this review is aimed to summarize the relation, potential mechanisms, application strategies, clinical application prospects, and existing challenges of gut microbiota and its-related metabolites on osteoporosis, thus updating the knowledge in this research field and providing certain reference for future researches.
Collapse
Affiliation(s)
- Yuan-Wei Zhang
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Xiang-Fei Liu
- Department of Orthopaedics, Shanghai Zhongye Hospital, Shanghai 200941, China.
| | - Xiao Chen
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China.
| | - Jia-Can Su
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Organoid Research Center, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Wu K, Wang P, Deng L, Li Y, Zhang Q, Hou H, Zhu Y, Ye H, Mei S, Cui L. Analysis of bone metabolic alterations linked with osteoporosis progression in type 2 diabetic db/db mice. Exp Gerontol 2024; 185:112347. [PMID: 38097054 DOI: 10.1016/j.exger.2023.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
Type 2 diabetes (T2D) is a common chronic disease, characterized by persistent hyperglycemia and insulin resistance. This disorder is associated with decreased bone quality and an elevated risk of bone fractures. However, evidence on the relationship between systemic metabolic change and the development of type 2 diabetic osteoporosis (T2DOP) remains elusive. Herein, we investigate the changes of bone metabolites with bone loss in db/db mice (an animal model of T2DOP exhibited bone loss with age progression), and explore the potential metabolic mechanism underlying type 2 diabetes and osteoporosis. C57BKS male mice were distributed in four groups, consisting six mice in each group: 8w m/m, 24w m/m, 8w db/db and 24w db/db. Bone morphometric and biomechanical parameters of db/db mice were analyzed by micro-CT and materials tester, it was found that 24w db/db mice showed severe bone loss and decreased bone tissue hardness compared with misty/misty littermates. The tibia of misty/misty mice (8 weeks, 24 weeks) and db/db mice (8 weeks, 24 weeks) were screened for differential metabolites by UPLC-Orbitrap MS. Ninety-eight metabolites were identified (35 and 63 metabolites are associated with early staged and late staged, respectively), consisting of amino acids, fatty acyls, and nucleotides. Notably, fatty acyls (such as 18-HEPE, 16(17)-EpDPE, arachidonic acid) and glycerophospholipids (such as phosphocholines (PC) (O-10:1(9E)/0:0), PC (O-16:1(9E)/0:0) [U] and phosphatidylethanolamines (PE) (P-16:0/0:0)) were significantly increased, and metabolites of amino acid pathway (such as l-glutamine, proline, phenylalanine) showed a downregulation trend. Dysregulation of lipid and glutathione pathways is the major contributor to progression of T2DOP in C57BKS mice.
Collapse
Affiliation(s)
- Kefeng Wu
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong (Zhanjiang) provincial laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, PR China.
| | - Pan Wang
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Luming Deng
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yancai Li
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Qian Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Haiyan Hou
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Yuzhen Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong (Zhanjiang) provincial laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, PR China
| | - Hua Ye
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Si Mei
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Liao Cui
- Marine Biomedical Research Institution of Guangdong Medical University, Guangdong Medical University, Zhanjiang 524023, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, PR China.
| |
Collapse
|
5
|
Qi H, Shen E, Shu X, Liu D, Wu C. ERK-estrogen receptor α signaling plays a role in the process of bone marrow mesenchymal stem cell-derived exosomes protecting against ovariectomy-induced bone loss. J Orthop Surg Res 2023; 18:250. [PMID: 36973789 PMCID: PMC10045825 DOI: 10.1186/s13018-023-03660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/28/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) are considered as candidates for osteoporosis (OP) therapy. Estrogen is critical in the maintenance of bone homeostasis. However, the role of estrogen and/or its receptor in BMSC-Exos treatment of OP, as well as its methods of regulation during this process remain unclear. METHODS BMSCs were cultured and characterized. Ultracentrifugation was performed to collect BMSC-Exos. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify BMSC-Exos. We examined the effects of BMSC-Exos on the proliferation, osteogenic differentiation, mineralization, and cell cycle distribution of MG-63 cells. The protein expression of estrogen receptor α (ERα) and the phosphorylation of ERK were investigated through western blotting. We determined the effects of BMSC-Exos on the prevention of bone loss in female rats. The female Sprague-Dawley rats were divided into three groups: the sham group, ovariectomized (OVX) group, and the OVX + BMSC-Exos group. Bilateral ovariectomy was performed in the OVX and OVX + BMSC-Exos groups, while a similar volume of adipose tissue around the ovary was removed in the sham group. The rats in OVX group and OVX + BMSC-Exos group were given PBS or BMSC-Exos after 2 weeks of surgery. Micro-CT scanning and histological staining were used to evaluate the in vivo effects of BMSC-Exos. RESULTS BMSC-Exos significantly enhanced the proliferation, alkaline phosphatase activity, and the Alizarin red S staining in MG-63 cells. The results of cell cycle distribution demonstrated that BMSC-Exos increased the proportion of cells in the G2 + S phase and decreased the proportion of cells in the G1 phase. Moreover, PD98059, an inhibitor of ERK, inhibited both the activation of ERK and the expression of ERα, which were promoted by administration of BMSC-Exos. Micro-CT scan showed that in the OVX + BMSC-Exos group, bone mineral density, bone volume/tissue volume fraction, trabecular number were significantly upregulated. Additionally, the microstructure of the trabecular bone was preserved in the OVX + BMSC-Exos group compared to that in the OVX group. CONCLUSION BMSC-Exos showed an osteogenic-promoting effect both in vitro and in vivo, in which ERK-ERα signaling might play an important role.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Enpu Shen
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Danping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cheng'ai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China.
- Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
6
|
Devi G.V Y, Nagendra AH, Shenoy P S, Chatterjee K, Venkatesan J. Isolation and purification of fucoidan from Sargassum ilicifolium: Osteogenic differentiation potential in mesenchymal stem cells for bone tissue engineering. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2022]
|
7
|
Sun S, Xiu C, Chai L, Chen X, Zhang L, Liu Q, Chen J, Zhou H. HDAC inhibitor quisinostat prevents estrogen deficiency-induced bone loss by suppressing bone resorption and promoting bone formation in mice. Eur J Pharmacol 2022; 927:175073. [PMID: 35636521 DOI: 10.1016/j.ejphar.2022.175073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 12/28/2022]
Abstract
Postmenopausal osteoporosis (PMOP) is a metabolic skeletal disorder characterized by reduced bone mass and impaired bone microarchitecture resulting in increased bone fragility and fracture risk. PMOP is primarily caused by excessive osteoclastogenesis induced by estrogen deficiency. Quisinostat (Qst) is a potent hydroxamate-based second-generation inhibitor of histone deacetylases (HDACs) that can inhibit osteoclast differentiation in vitro, and protect mice from titanium particle-induced osteolysis in vivo. However, whether Qst has therapeutic potential against PMOP remains unclear. In the present study, we evaluated the therapeutic efficacy of Qst on PMOP, using a murine model of ovariectomy (OVX)-induced osteoporosis. We examined the body weight, femur length, and histology of major organs, and showed that Qst did not cause obvious toxicity in mice. Micro-computed tomography and histological analyses revealed that Qst treatment prevented OVX-induced trabecular bone loss both in femurs and vertebrae. Moreover, ELISA showed that Qst decreased the serum levels of the osteoclastic bone resorption marker CTX-1, whereas increased the levels of the osteoblastic bone formation marker Osteocalcin in OVX mice. Consistent with the CTX-1 results, TRAP staining showed that Qst suppressed OVX-induced osteoclastogenesis. Mechanistically, we showed that Qst suppressed RANKL-induced osteoclast differentiation in part by inhibiting p65 nuclear translocation. Collectively, our results demonstrated that Qst can ameliorate estrogen deficiency-induced osteoporosis by inhibiting bone resorption and promoting bone formation in vivo. In summary, our study provided the first preclinical evidence to support Qst as a potential therapeutic agent for PMOP prevention and treatment.
Collapse
Affiliation(s)
- Shengxuan Sun
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Chunmei Xiu
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Langhui Chai
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Xinyu Chen
- Suzhou High School of Jiangsu Province, Suzhou, Jiangsu, 215002, China
| | - Lei Zhang
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China
| | - Qingbai Liu
- Department of Orthopaedics, Lianshui County People's Hospital, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu, 223400, China.
| | - Jianquan Chen
- Orthopedic Institute, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215021, China.
| | - Haibin Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China.
| |
Collapse
|
8
|
Xi X, Li Z, Liu H, Chen S, Liu D. Nrf2 Activation Is Involved in Cyclic Mechanical Stress-Stimulated Osteogenic Differentiation in Periodontal Ligament Stem Cells via PI3K/Akt Signaling and HO1-SOD2 Interaction. Front Cell Dev Biol 2022; 9:816000. [PMID: 35071244 PMCID: PMC8770743 DOI: 10.3389/fcell.2021.816000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Nuclear factor erythroid-2-related factor-2 (Nrf2), the major transcriptional regulator in antioxidant response and cellular defense, had the vital effect on regulating osteogenic differentiation. Our previous study revealed that Nrf2 activation was involved in cyclic mechanical stress-stimulated osteogenic differentiation in the human periodontal ligament stem cells (PDLSCs). However, the mechanisms of Nrf2 underlying this process remained unclear. The goal of the study was to explore the mechanisms of Nrf2 in PDLSCs during cyclic mechanical stress-stimulated osteogenic differentiation via the tandem mass tag (TMT)-based liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis. And we applied tert-Butylhydroquinone (t-BHQ), the Nrf2 activator, to the orthodontic rats and detected the expression levels of the osteogenesis markers by immunohistochemistry (IHC) staining. Our results showed that Nrf2 activation in PDLSCs was involved in cyclic mechanical stress-stimulated osteogenic differentiation via phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt) pathway. The protein-protein interaction between Akt and Nrf2 was detected. And the protein-protein interaction between heme oxygenase 1 (HO1) and superoxide dismutase 2 (SOD2), the downstream antioxidants of Nrf2, was associated with cyclic mechanical stress-stimulated osteogenic differentiation. T-BHQ enhanced the expression levels of the osteogenesis markers in orthodontic rats. Nrf2 might possess the potential to be a feasible molecular target in orthodontics.
Collapse
Affiliation(s)
- Xun Xi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zixuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hong Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shuai Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
9
|
Xi X, Zhao Y, Liu H, Li Z, Chen S, Liu D. Nrf2 activation is involved in osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. Exp Cell Res 2021; 403:112598. [PMID: 33865812 DOI: 10.1016/j.yexcr.2021.112598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/04/2021] [Indexed: 12/28/2022]
Abstract
During orthodontic treatment, mechanical stretch serves a crucial function in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Up-regulated reactive oxygen species (ROS) level is a result of cyclic mechanical stretch in many cell types. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator in various antioxidants expression. However, it is not known whether cyclic mechanical stretch could induce the ROS generation in PDLSCs and whether Nrf2 participated in this process. The present study was aimed to investigate the role of Nrf2 in PDLSCs under cyclic mechanical stretch. Our results showed that cyclic mechanical stretch increased ROS level and the nuclear accumulation of Nrf2 during osteoblast differentiation. Knocking down Nrf2 by siRNA transfection increased ROS formation and suppressed osteogenic differentiation in PDLSCs. T-BHQ, a Nrf2 activator, promoted the osteogenic differentiation in PDLSCs under cyclic mechanical stretch, and improved the microstructure of alveolar bone during orthodontic tooth movement in rats by employing micro-CT system. Taken together, Nrf2 activation was involved in osteogenic differentiation under cyclic mechanical stretch in PDLSCs. T-BHQ could promote the osteogenic differentiation in vitro and in vivo, suggesting a promising option for the remodeling of the alveolar bone during orthodontic tooth movement.
Collapse
Affiliation(s)
- Xun Xi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Yi Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Hong Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Zixuan Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Shuai Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Dongxu Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China.
| |
Collapse
|
10
|
Liang Y, Zhu B, Li S, Zhai Y, Yang Y, Bai Z, Zeng Y, Li D. Curcumin protects bone biomechanical properties and microarchitecture in type 2 diabetic rats with osteoporosis via the TGFβ/Smad2/3 pathway. Exp Ther Med 2020; 20:2200-2208. [PMID: 32765696 PMCID: PMC7401480 DOI: 10.3892/etm.2020.8943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetic osteoporosis (T2DOP) has become a common secondary cause of osteoporosis that accelerates bone loss and leads to bone fractures. The aim of the current study was to investigate the association between the anti-osteoporotic effect of curcumin (Cur) and the transforming growth factor (TGF)β/Smads signaling pathway. Male Sprague-Dawley rats were used in the experiments. The type 2 diabetes mellitus (T2DM) animals were treated with Cur for 8 weeks and blood lipid markers, bone microstructure and bone biomechanics were then evaluated. The mRNA expression levels of TGFβ1, type I TGFβ receptor (TβRI), TβRII and Smad2/3 were determined using reverse transcription-quantitative PCR (RT-qPCR) and immunohistochemistry. The body weight of rats with type 2 diabetes-induced osteoporosis increased (P<0.05), while the lipid (total cholesterol, triglyceride and low-density lipoprotein) and fasting blood glucose levels were decreased by Cur (P<0.05). In addition, Cur significantly improved bone biomechanical properties (maximum load, breaking load, elastic load and the bone rigidity coefficient) and preserved bone microarchitecture (P<0.05). The RT-qPCR and IHC results revealed that Cur increased TGFβ1, TβRI, TβRII and Smad2/3 expression levels and promoted Smad2/3 phosphorylation in bones. The present results also indicated that Cur regulated lipid and glucose levels, improved bone biomechanical properties and preserved bone microarchitecture, and that these effects may be mediated via TGFβ/Smad2/3 pathway activation.
Collapse
Affiliation(s)
- Yanlong Liang
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, Guangdong 526020, P.R. China.,School of Computer Science and Software, Zhaoqing College, Zhaoqing, Guangdong 526061, P.R. China
| | - Benben Zhu
- Department of Pharmacy, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Shuhui Li
- Key Laboratory of Tropical Diseases, Faculty of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yun Zhai
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, Guangdong 526020, P.R. China
| | - Yiqiu Yang
- Department of Basic Medicine, Zhaoqing Medical College, Zhaoqing, Guangdong 526020, P.R. China
| | - Zaixian Bai
- Department of Pharmacy, Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China
| | - Yuan Zeng
- Department of Pharmacy, People's Hospital of Nanxiong, Shaoguan, Guangdong 512400, P.R. China
| | - Dawei Li
- Department of Orthopedics and Traumatology, The Fourth Affiliated Hospital of Inner Mongolia Medical University, Baotou, Inner Mongolia 014030, P.R. China
| |
Collapse
|
11
|
Characterization and immunogenicity of bone marrow-derived mesenchymal stem cells under osteoporotic conditions. SCIENCE CHINA-LIFE SCIENCES 2019; 63:429-442. [PMID: 31879847 DOI: 10.1007/s11427-019-1555-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/15/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized by their multilineage potential and low immunogenicity. However, the properties of MSCs under pathological conditions are unclear. The current study investigated the differentiation potential and immunological characteristics of bone marrow-derived MSCs from ovariectomized-osteoporotic rats (OP-BMSCs). Although the expression of cell morphology- and stemness-related surface markers was similar between OP-BMSCs and BMSCs from healthy rats (H-BMSCs), the proliferation rate was significantly decreased compared with that of H-BMSCs. Regarding multilineage potential, osteogenesis and chondrogenesis abilities of OP-BMSCs decreased, but the adipogenesis ability was significantly enhanced compared with that of H-BMSCs. As expected, decreased osteogenesis following osteogenic induction resulted in reduced expression of β-catenin, osteocalcin, and runt-related transcription factor 2 in OP-BMSCs. Remarkably, the expression of the co-stimulatory proteins CD40 and CD80 was significantly higher, whereas the expression of the negative co-stimulatory molecule programmed cell death ligand 1 was significantly lower in the OP-BMSCs than that in H-BMSCs. Consequently, H-BMSCs inhibited the proliferation and secretion of inflammatory cytokines from anti-CD3 antibody-activated T cells, whereas OP-BMSCs did not. These results indicate that decreased osteogenesis and increased immunogenicity of OP-BMSCs contribute to bone loss in osteoporosis.
Collapse
|