1
|
Pang X, Zhao Y, Song J, Kang D, Wu S, Wang L, Liu A, Du G. Pharmacokinetics, excretion and metabolites analysis of DL0410, a dual‑acting cholinesterase inhibitor and histamine‑3 receptor antagonist. Mol Med Rep 2019; 20:1103-1112. [PMID: 31173186 PMCID: PMC6625456 DOI: 10.3892/mmr.2019.10306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/04/2019] [Indexed: 01/20/2023] Open
Abstract
DL0410, a dual‑action cholinesterase inhibitor and histamine‑3 receptor antagonist with a novel structural scaffold, may be a potential candidate for the treatment of Alzheimer's disease (AD). To the best of the authors' knowledge, this is the first study to demonstrate a reliable method for the measurement of DL0410 in rat plasma, brain, bile, urine and feces samples, and identification of its primary metabolites. The pharmacokinetic properties of DL0410 were analyzed by liquid chromatography‑mass spectrometry at oral doses of 25, 50 and 100 mg/kg and intravenous dose of 5 mg/kg. The investigation of the excretion and metabolism of DL0410 was determined following liquid‑liquid extraction for biliary, urinary and fecal samples. Finally, the cytochrome (CY)P450 isoforms involved in the production of DL0410 metabolites with recombinant human cytochrome P450 enzymes were characterized. The results suggested that DL0410 was not well absorbed; however, was distributed to the entorhinal cortex and hippocampus of the brain. A total of two common metabolites of the reduction of DL0140 in the bile, urine and feces were identified and CYP2D6 was involved in this reaction. The pharmacokinetic results of DL0410 provided information for the illustration of its pharmacodynamic properties, mechanism of action and promoted its continued evaluation as a therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Xiaocong Pang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ying Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Junke Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - De Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Lin Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
2
|
Sun L, Sun X, Chen Y, Wang B, Chen X. Degradation Kinetics Study of Anastrozole in Different Conditions by Reverse-Phase High-Performance Liquid Chromatography and Confirmation of its Major Degradation Product by Ultra-Performance Liquid Chromatography with Tandem Mass Spectrometry. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180406130108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Drug stability is essential in the process of drug production, storage, appliance,
and so on. Some drugs’ degradation products may even have a toxic side effect, which can result in
safety risks and economic losses. Therefore, it is very imperative to develop a suitable stability indicating
an analytical method for anastrozole which could be used for stability testing, routine and in-process
quality control analysis or other further studies.
Methods:
A reverse-phase high-performance liquid chromatography method was developed and validated
for the degradation kinetics study of anastrozole, a selective non-steroid third-generation aromatase
inhibitor, which would provide a basis for further studies on anastrozole. The degradation product
was confirmed by ultra-performance liquid chromatography with tandem mass spectrometry.
Results:
Results showed that the degradation behavior of anastrozole followed first-order kinetics in
different temperatures, pH values and oxidation conditions. It was suggested that the degradation behavior
of anastrozole was pH-dependent and it’s more stable at lower pH values.
Conclusion:
A high performance liquid chromatography method was established and used to determine
the residual concentration of anastrozole in this study. It was found that the degradation behavior of
anastrozole followed first-order kinetics at different temperatures, pH values and oxidation conditions.
According to the results, the degradation of anastrozole was found to be pH-dependent and it is more
unstable in alkaline conditions. The information of degradation kinetics will be useful for understanding
the chemical stability of anastrozole and provide a reference for the further preparation research and
clinical therapy of anastrozole.
Collapse
Affiliation(s)
- Linjia Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyang Sun
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Binjie Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaohui Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Lin L, Lin H, Zhang M, Dong X, Yin X, Qu C, Ni J. Types, principle, and characteristics of tandem high-resolution mass spectrometry and its applications. RSC Adv 2015. [DOI: 10.1039/c5ra22856e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We review the principle and functional characteristics of different types or models for THRMS and provide a brief description of its applications in medical research, food safety, and environmental protection fields.
Collapse
Affiliation(s)
- Longfei Lin
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Hongmei Lin
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Miao Zhang
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Xiaoxv Dong
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Xingbin Yin
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Changhai Qu
- Modern Research Center for TCM
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Jian Ni
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing
- China
| |
Collapse
|