1
|
Hu W, Zhou W, Wang C, Liu Z, Chen Z. Direct coupling in-tube solid-phase microextraction with mass spectrometry using polymer coated open-tubular column for rapid analysis of antiepileptic drugs in biofluids. Anal Chim Acta 2023; 1240:340775. [PMID: 36641145 DOI: 10.1016/j.aca.2022.340775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/25/2022] [Accepted: 12/30/2022] [Indexed: 12/31/2022]
Abstract
Development of high-throughput and rapid screening analytical method is in high demand for anti-doping and clinical point-of-care (POC) analysis. Solid-phase microextraction and mass spectrometry direct coupling (SPME-MS) has been proved as a rapid and effective way for target analysis in complex sample matrixes. An online direct coupling of in-tube SPME (IT-SPME) with MS using polymer coated open-tubular column has been developed in this work. A sharp stainless-steel needle was attached at the end of the SPME column, which enables the direct ionization of the analytes after elution from the IT-SPME column. Itaconic acid-benzene co-polymer was in-situ grown on the inner surface of the fused silica capillary and used as extraction phase. This column has low backpressure and provides both hydrophobic and weak cationic exchange interaction with the target analytes due to the chemical properties. The developed online IT-SPME-MS method showed good extraction performance towards various target analytes and good reusability at least for 60 times. As a proof-of-concept application, the above method was applied for the analysis of antiepileptic drugs (AEDs) in both plasma and urine samples with linear range (1 ng/mL-200 ng/mL), good linearity (R2 ≥ 0.99), and good reproducibility (intra-day RSDs less than 4.36%, inter-day RSDs less than 6.55%). The method exhibited high enrichment factors between 187 and 204 for the two AEDs and high sensitivity for the analysis of human plasma samples and urine samples.
Collapse
Affiliation(s)
- Wei Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Wei Zhou
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Chenlu Wang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zichun Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zilin Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China.
| |
Collapse
|
2
|
Kadhim MM, Rheima AM, Hachim SK, Abdullaha SAH, Taban TZ, Malik SA. Theoretical Sensing Performance for Detection of Cyclophosphamide Drug by Using Aluminum Carbide (C 3Al) Monolayer: a DFT Study. Appl Biochem Biotechnol 2023:10.1007/s12010-022-04305-9. [PMID: 36656537 DOI: 10.1007/s12010-022-04305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 01/20/2023]
Abstract
Because nanomaterials are highly reactive and electronically sensitive towards a variety of drug molecules, they are thought of as efficient drug sensors. In the present research study, an aluminum carbide (C3Al) monolayer is employed and its interaction is examined with cyclophosphamide (CP) by performing DFT computations. The C3Al monolayer is highly reactive and sensitive towards CP according to the computations. CP interacts with the C3Al monolayer with the adsorption energy of -31.39 kcal/mol. A considerable charge transfer (CT) indicates an enhancement in the conductivity. Also, the charge density is explained based on the electron density differences (EDD). The decrease in CP/C3Al energy gap (Eg) by approximately 52.91% is due to the remarkable effect of adsorption on the LUMO and the HOMO levels. Therefore, due to the decrease in Eg which can generate an electrical signal, the electrical conductivity is considerably increased. These results suggest that the C3Al monolayer can be employed as a proper electronic drug sensor for CP. Also, the recovery time for the desorption process of CP form the surface of C3Al is 351 s at 598 K.
Collapse
Affiliation(s)
- Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, 10022, Baghdad, Iraq
| | - Ahmed Mahdi Rheima
- Department of Chemistry, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Safa K Hachim
- College of Technical Engineering, The Islamic University, Najaf, Iraq.,Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | | | - Taleeb Zedan Taban
- Laser and Optoelectronics Engineering Department, Kut University College, Kut, Wasit, Iraq.
| | - Samir Azzat Malik
- Pharmacy Department, Al- Mustaqbal University College, 51001, Hilla, Iraq
| |
Collapse
|
3
|
Sensing of carbamazepine by AlN and BN nanoclusters in gas and solvent phases: DFT and TD-DFT calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118750] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|